Supplementary Materials

Steric and electronic effect of Cp-substituents on the structure of the ruthenocene based palladium pincer borohydrides

Sergey V. Safronov^{1,*}, Yulia V. Nelubina¹, Oleg A. Filippov¹, Irina G. Barakovskaya¹, Natalia V. Belkova^{1,*} and Elena S. Shubina¹

Table of content

Table S1 . Crystal data and structure refinement parameters for 3a , 3b .	S2
Figure S1. ¹ H NMR spectrum (400.13 MHz) of 2a in CDCl ₃ .	S 3
Figure S2 . ${}^{31}P{}^{1}H$ NMR spectrum (161.98 MHz) of 2a in CDCl ₃ .	S 3
Figure S3. ¹⁹ F NMR spectrum (376.50 MHz) of 2a in CDCl ₃ .	S 4
Figure S4 . ${}^{13}C{}^{1}H$ NMR spectrum (150.93 MHz) of 2a in CDCl ₃ .	S4
Figure S5 . ¹ H NMR spectrum (400.13 MHz) of 3a in C_6D_6 .	S 5
Figure S6 . ¹¹ B{ ¹ H} NMR spectrum (128.38 MHz) of 3a in C_6D_6 .	S 5
Figure S7 . ³¹ P{ ¹ H} NMR spectrum (121.49 MHz) of 3a in C_6D_6 .	S 6
Figure S8 . ¹⁹ F NMR spectrum (376.50 MHz) of 3a in C_6D_6 .	S6
Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum (150.93 MHz) of 3a in C ₆ D ₆ .	S 7
Figure S10 . ¹ H NMR spectrum (400.13 MHz) of 3b in C_6D_6 .	S 7
Figure S11 . ¹¹ B{ ¹ H} NMR spectrum (128.38 MHz) of 3b in C_6D_6 .	S 8
Figure S12 . ³¹ P{ ¹ H} NMR spectrum (161.98 MHz) of 3b in C_6D_6 .	S 8
Figure S13 . ${}^{13}C{}^{1}H$ NMR spectrum (150.93 MHz) of 3b in C ₆ D ₆ .	S9
Figure S14. FTIR spectra of 3a in KBr pellet.	S10
Figure S15. FTIR spectra of 3b in KBr pellet.	S10

¹ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., Moscow 119991, Russia;

^{*} Correspondence: <u>nataliabelk@ineos.ac.ru</u> (N.V.B.); <u>sergiosfr-hcc@mail.ru</u> (S.V.S.)

Figure S16. FTIR spectra of 3a in the CH ₂ Cl ₂ solution.	S11
Figure S17. FTIR spectra of 3b in the CH_2Cl_2 solution.	S11

	3 a	3 b
Empirical formula	$C_{33}H_{58}BF_3P_2PdRu$	$C_{33}H_{61}BP_2PdRu$
Formula weight	792.01	738.03
Crystal system	Monoclinic	Orthorhombic
Space group	$P2_1/c$	$P2_{1}2_{1}2_{1}$
a, Å	18.5494(6)	11.3765(5)
b, Å	12.0953(4)	15.0316(6)
c, Å	15.8197(5)	21.0022(9)
α, °	90	90
β, °	90.2560(10)	90
γ, °	90	90
V, $Å^3$	3549.3(2)	3591.5(3)
Z	4	4
$D_{calc} (g \cdot cm^{-3})$	1.482	1.365
$m(cm^{-1})$	10.59	10.30
F(000)	1632	1536
$2\Theta_{ m max}$, °	58	58
Reflections measured	72725	36743
Independent reflections	9442	9578
Observed reflections $[I > 2s(I)]$	8034	8230
R ₁	0.0235	0.0394
wR ₂	0.0535	0.0729
GOF	1.023	1.009

Table S1. Crystal data and structure refinement parameters for 3a, 3b.

Figure S1. ¹H NMR spectrum (400.13 MHz) of 2a in CDCl₃.

Figure S2. ${}^{31}P{}^{1}H$ NMR spectrum (161.98 MHz) of **2a** in CDCl₃.

Figure S3. ¹⁹F NMR spectrum (376.50 MHz) of **2a** in CDCl₃.

Figure S5. ¹H NMR spectrum (400.13 MHz) of **3a** in C_6D_6 .

Figure S6. ¹¹B{¹H} NMR spectrum (128.38 MHz) of 3a in C₆D₆.

Figure S8. ¹⁹F NMR spectrum (376.50 MHz) of 3a in C₆D₆.

Figure S9. ${}^{13}C{}^{1}H$ NMR spectrum (150.93 MHz) of 3a in C₆D₆.

Figure S10. ¹H NMR spectrum (400.13 MHz) of **3b** in C_6D_6 .

Figure S11. ¹¹B{¹H} NMR spectrum (128.38 MHz) of **3b** in C_6D_6 .

Figure S12. ³¹P{¹H} NMR spectrum (161.98 MHz) of **3b** in C_6D_6 .

Figure S13. ¹³C{¹H} NMR spectrum (150.93 MHz) of **3b** in C_6D_6 .

Figure S14. FTIR spectra of 3a in KBr pellet.

Figure S15. FTIR spectra of 3b in KBr pellet.

Figure S16. FTIR spectra of **3a** solution in CH_2Cl_2 (c = 0.01 M).

Figure S17. FTIR spectra of **3b** solution in CH_2Cl_2 (c = 0.01 M).

