

# Article Supplementary Material

# **Reducing Ensembles of Protein Tertiary Structures Generated De Novo via Clustering**

Ahmed Bin Zaman<sup>1,†</sup>, Parastoo Kamranfar<sup>1,†</sup> Carlotta Domeniconi<sup>1,†,\*</sup> and Amarda Shehu<sup>1,2,3,4,†,\*</sup>

- <sup>1</sup> Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; azaman6@gmu.edu; pkamranf@gmu.edu; cdomenic@gmu.edu amarda@gmu.edu
- <sup>2</sup> Center for Advancing Human-Machine Partnerships, George Mason University
- <sup>3</sup> Department of Bioengineering, George Mason University
- <sup>4</sup> School of Systems Biology, George Mason University
- \* Correspondence: cdomenic@gmu.edu; amarda@gmu.edu
- + Current address: 4400 University Dr., MS 4A5, Fairfax, VA 22030, USA.

Version May 1, 2020 submitted to Journal Not Specified

#### 1 1. Comparing Distributions of IRMSDs from Known Native Structure over CASP Dataset

Figures 1, 2, and 3 respectively show the minimum, average, and standard deviation of IRMSDs

- to the known native structure) of the structures in the original and the reduced ensembles for each
- target in the CASP dataset. Figure 1 includes the ensemble reduced via truncation selection as a
- ₅ baseline.



**Figure 1.** Comparison of minimum lRMSDs (to the known native structure) of structures in the  $\Omega_{gen}$  and  $\Omega_{red}$  ensembles of each target in the CASP dataset.



**Figure 2.** Comparison of average lRMSDs (to the known native structure) of structures in the  $\Omega_{gen}$  and  $\Omega_{red}$  ensembles of each target in the CASP dataset.



**Figure 3.** Comparison of standard deviation of distribution of lRMSDs (to the known native structure) of structures in the  $\Omega_{gen}$  and  $\Omega_{red}$  ensembles of each target in the CASP dataset.

#### 6 1.1. Visually Comparing Distributions of IRMSDs and Energies Pre- and Post Reduction

<sup>7</sup> The  $\Omega_{\text{gen}}$  and  $\Omega_{\text{red}}$  ensembles for the benchmark dataset are visualized in Figure 4-7. Rosetta

score4 energy function values are plotted against the IRSMDs of the structures to the native structure.

• Structures in  $\Omega_{gen}$  are highlighted in purple, while the green ones belong to the  $\Omega_{red}$  ensembles.

<sup>10</sup> Figure 4 superimposes the  $\Omega_{red}$  ensemble identified by k-means over the generated ensemble, and

GMM-corresponding results are given in Figure 5. The  $\Omega_{red}$  ensemble obtained via hierarchical clustering is indicated in Figure 6 while the  $\Omega_{red}$  ensemble identified by gmx-cluster-usr is shown in

13 Figure 7.

Similar visualization is provided for the CASP dataset in Figure 8-11. Figures 4-11 show that the reduced ensemble  $\Omega_{red}$  includes structures from all the regions in the structure space populated by the original ensemble  $\Omega_{gen}$ . All the purple dots being occluded by the superimposition in the k-means and GMM case visually makes the case that these two clustering algorithms perform better than gmx-cluster-usr and hierarchical clustering. As stated earlier, this is not surprising, as k-means and GMM preserve more of the original ensemble.

### 20 2. Relating the Number of Clusters

Regardless of which process is used to identify an optimal value for the number of clusters, this number varies for each target protein. Figure 12 shows the distribution of this number for each protein. Specifically, the distribution shown in Figure 12(a) is obtained from the SSE-based approach for k-means clustering over all target proteins (over both datasets). Figure 12(b)-(c) do so for the BIC- and DB-based approaches, respectively. Figure 12(d) shows the distribution for gmx-cluster-usr

clustering for radius = 0.1.

Figure 12 shows that, for most of the target proteins, the number of clusters is in the 10 - 40 range.

<sup>28</sup> This suggests that a large number of similar structures are present in the generated structure ensemble;

- <sup>29</sup> therefore, finding the underlying structure to reduce the generated structure ensemble while retaining
- the diversity and quality is a reasonable goal. Table 1, 2, 3, and 4 show the specific number of clusters

<sup>31</sup> for each run of k-means, GMM, hierarchical, and gmx-cluster-usr clustering algorithms respectively

<sup>32</sup> for each target.

**Table 1.** Number of clusters determined for each run of the k-means clustering algorithm on each target.

|            | No. of Clusters for K-means |       |       |       |       |
|------------|-----------------------------|-------|-------|-------|-------|
| Id         | Run 1                       | Run 2 | Run 3 | Run 4 | Run 5 |
| 1ail       | 20                          | 30    | 20    | 20    | 25    |
| 1bq9       | 25                          | 30    | 25    | 30    | 25    |
| 1c8ca      | 25                          | 30    | 30    | 25    | 25    |
| 1cc5       | 25                          | 25    | 25    | 20    | 30    |
| 1dtja      | 25                          | 25    | 30    | 25    | 30    |
| 1hhp       | 25                          | 30    | 25    | 30    | 23    |
| 1tig       | 25                          | 23    | 25    | 22    | 30    |
| 2ezk       | 25                          | 30    | 30    | 30    | 30    |
| 2h5nd      | 23                          | 25    | 22    | 25    | 25    |
| 3gwl       | 23                          | 25    | 23    | 25    | 25    |
| T0859-D1   | 23                          | 25    | 20    | 20    | 25    |
| T0886-D1   | 23                          | 20    | 23    | 25    | 30    |
| T0892-D2   | 20                          | 20    | 20    | 23    | 20    |
| T0897-D1   | 20                          | 25    | 20    | 23    | 25    |
| T0898-D2   | 20                          | 20    | 30    | 30    | 30    |
| T0953s1-D1 | 30                          | 25    | 23    | 20    | 25    |
| T0953s2-D3 | 20                          | 20    | 20    | 23    | 20    |
| T0957s1-D1 | 20                          | 23    | 20    | 25    | 23    |
| T0960-D2   | 20                          | 23    | 25    | 23    | 30    |
| T1008-D1   | 23                          | 20    | 20    | 25    | 20    |



**Figure 4.** Benchmark Dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via k-means clustering are superimposed in green.



**Figure 5.** Benchmark Dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via GMM clustering are superimposed in green.



**Figure 6.** Benchmark Dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via hierarchical clustering are superimposed in green.



**Figure 7.** Benchmark Dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via gmx-cluster-usr are superimposed in green.



**Figure 8.** CASP Dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via k-means clustering are superimposed in green.



Figure 9. CASP dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via GMM clustering are superimposed in green.

Rosetta score4 energy (REU)

-20

-61

-20

-40

-60

-80

-100

-120

-140

-160

Rosetta score4 energy (REU)

-20

-30

-41

-51

-70

6 8 10 12 14 16 18 Cα IRMSD to native structure (Å)

T0953s2-D3

Rosetta score4 energy (REU)





6 10 12 14 16 18 20 22 24 26 28 Cα IRMSD to native structure (Å)

6 8 10 12 14 16 18 20 22 24 26 Cα IRMSD to native structure (Å)

T0957s1-D1

-20

-40 -60 -80 -100 -120 -140 -160

Rosetta score4 energy (REU)

6 8 10 12 14 16 1 Cα IRMSD to native structure (Å)

T0960-D2



**Figure 11.** CASP dataset: structures in the  $\Omega_{gen}$  ensemble are plotted in purple in terms of their lRMSD (Å) from the native structure (x-axis) versus their Rosetta score4 energy function (y-axis) measured in Rosetta Energy Units (REUs). structures in the  $\Omega_{red}$  ensemble obtained via gmx-cluster-usr are superimposed in green.



**Figure 12.** Distribution of the number of clusters identified via the (a) SSE-based process in k-means, (b) BIC-based process in GMM, (c) DB-based process in agglomerative hierarchical clustering, and (d) radius = 0.1 in gmx-cluster-usr clustering over target proteins in the benchmark and CASP datasets.

|            | No. of Clusters for GMM |       |       |       |       |
|------------|-------------------------|-------|-------|-------|-------|
| Id         | Run 1                   | Run 2 | Run 3 | Run 4 | Run 5 |
| 1ail       | 44                      | 47    | 46    | 49    | 45    |
| 1bq9       | 37                      | 36    | 34    | 40    | 39    |
| 1c8ca      | 40                      | 37    | 37    | 38    | 49    |
| 1cc5       | 78                      | 39    | 39    | 40    | 67    |
| 1dtja      | 54                      | 39    | 37    | 39    | 39    |
| 1hhp       | 48                      | 27    | 40    | 49    | 32    |
| 1tig       | 30                      | 59    | 39    | 40    | 69    |
| 2ezk       | 38                      | 40    | 60    | 39    | 38    |
| 2h5nd      | 19                      | 30    | 32    | 37    | 29    |
| 3gwl       | 30                      | 29    | 56    | 49    | 74    |
| T0859-D1   | 36                      | 35    | 37    | 39    | 38    |
| T0886-D1   | 38                      | 29    | 39    | 37    | 32    |
| T0892-D2   | 37                      | 39    | 34    | 32    | 36    |
| T0897-D1   | 47                      | 40    | 36    | 65    | 67    |
| T0898-D2   | 35                      | 40    | 72    | 40    | 37    |
| T0953s1-D1 | 30                      | 34    | 64    | 39    | 38    |
| T0953s2-D3 | 38                      | 37    | 36    | 69    | 37    |
| T0957s1-D1 | 26                      | 35    | 37    | 28    | 77    |
| T0960-D2   | 38                      | 38    | 73    | 39    | 32    |
| T1008-D1   | 62                      | 48    | 30    | 28    | 34    |

**Table 2.** Number of clusters determined for each run of the GMM clustering algorithm on each target.

## 33 3. Comparing IRSMD to USR Score

Table 5 shows the Pearson's correlation coefficient between USR scores and IRMSDs to the native structure of all the generated structures for each target in the benchmark and the CASP datasets.

© 2020 by the authors. Submitted to *Journal Not Specified* for possible open access
 publication under the terms and conditions of the Creative Commons Attribution (CC BY) license
 (http://creativecommons.org/licenses/by/4.0/).

|            | No. of Clusters for Hierarchical |       |       |       |       |
|------------|----------------------------------|-------|-------|-------|-------|
| Id         | Run 1                            | Run 2 | Run 3 | Run 4 | Run 5 |
| 1ail       | 20                               | 21    | 67    | 34    | 23    |
| 1bq9       | 27                               | 21    | 20    | 34    | 22    |
| 1c8ca      | 22                               | 21    | 20    | 42    | 79    |
| 1cc5       | 84                               | 28    | 21    | 20    | 89    |
| 1dtja      | 79                               | 20    | 43    | 20    | 48    |
| 1hhp       | 40                               | 22    | 34    | 45    | 23    |
| 1tig       | 26                               | 51    | 24    | 27    | 62    |
| 2ezk       | 20                               | 29    | 48    | 21    | 21    |
| 2h5nd      | 24                               | 20    | 20    | 41    | 27    |
| 3gwl       | 25                               | 22    | 62    | 36    | 75    |
| T0859-D1   | 25                               | 28    | 28    | 30    | 31    |
| T0886-D1   | 22                               | 33    | 26    | 20    | 20    |
| T0892-D2   | 30                               | 26    | 28    | 20    | 32    |
| T0897-D1   | 46                               | 46    | 31    | 49    | 61    |
| T0898-D2   | 20                               | 30    | 63    | 33    | 21    |
| T0953s1-D1 | 20                               | 23    | 61    | 37    | 36    |
| T0953s2-D3 | 27                               | 21    | 20    | 58    | 22    |
| T0957s1-D1 | 20                               | 27    | 33    | 31    | 80    |
| T0960-D2   | 33                               | 34    | 83    | 22    | 20    |
| T1008-D1   | 59                               | 43    | 21    | 20    | 20    |

**Table 3.** Number of clusters determined for each run of the hierarchical clustering algorithm on each target.

**Table 4.** Number of clusters determined for each run of the gmx-cluster-usr clustering algorithm on each target.

|            | No. of Clusters for Gmx-cluster-usr |       |       |       |       |
|------------|-------------------------------------|-------|-------|-------|-------|
| Id         | Run 1                               | Run 2 | Run 3 | Run 4 | Run 5 |
| 1ail       | 15                                  | 15    | 17    | 11    | 13    |
| 1bq9       | 16                                  | 18    | 12    | 16    | 13    |
| 1c8ca      | 13                                  | 15    | 16    | 12    | 17    |
| 1cc5       | 19                                  | 13    | 16    | 14    | 17    |
| 1dtja      | 17                                  | 13    | 13    | 15    | 20    |
| 1hhp       | 19                                  | 14    | 20    | 16    | 13    |
| 1tig       | 16                                  | 15    | 18    | 13    | 19    |
| 2ezk       | 14                                  | 17    | 13    | 13    | 14    |
| 2h5nd      | 13                                  | 12    | 11    | 12    | 12    |
| 3gwl       | 12                                  | 19    | 13    | 17    | 15    |
| T0859-D1   | 20                                  | 20    | 14    | 11    | 18    |
| T0886-D1   | 15                                  | 13    | 17    | 20    | 18    |
| T0892-D2   | 13                                  | 14    | 16    | 12    | 15    |
| T0897-D1   | 16                                  | 16    | 18    | 16    | 19    |
| T0898-D2   | 12                                  | 16    | 17    | 21    | 14    |
| T0953s1-D1 | 17                                  | 19    | 15    | 16    | 22    |
| T0953s2-D3 | 16                                  | 14    | 15    | 11    | 12    |
| T0957s1-D1 | 14                                  | 14    | 10    | 14    | 14    |
| T0960-D2   | 11                                  | 11    | 11    | 11    | 19    |
| T1008-D1   | 16                                  | 12    | 13    | 15    | 16    |

**Table 5.** Pearson's correlation coefficient between USR scores and IRMSDs to the native structure of allgenerated structures for each target.

| Id         | Pearson's Coefficient |
|------------|-----------------------|
| 1ail       | 0.65                  |
| 1bq9       | 0.71                  |
| 1c8ca      | 0.80                  |
| 1cc5       | 0.80                  |
| 1dtja      | 0.70                  |
| 1hhp       | 0.80                  |
| 1tig       | 0.88                  |
| 2ezk       | 0.71                  |
| 2h5nd      | 0.85                  |
| 3gwl       | 0.83                  |
| T0859-D1   | 0.49                  |
| T0886-D1   | 0.82                  |
| T0892-D2   | 0.85                  |
| T0897-D1   | 0.89                  |
| T0898-D2   | 0.59                  |
| T0953s1-D1 | 0.07                  |
| T0953s2-D3 | 0.74                  |
| T0957s1-D1 | 0.78                  |
| T0960-D2   | 0.59                  |
| T1008-D1   | 0.77                  |