Bimetallic Zr,Zr- Hydride Complexes in Zirconocene Catalysed Alkene Dimerization

Lyudmila V. Parfenova^{1,*}, Pavel V. Kovyazin¹, Almira Kh. Bikmeeva¹

¹Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, 141, Prospekt Oktyabrya, 450075 Ufa, Russia; kpv38@mail.ru (P.V.K.); almira.bikmeeva@gmail.com (A.K.B.) *Correspondence: luda_parfenova@ipc-ras.ru (L.V.P.)

Supporting Information

Figure S1. Effect of OAC structure on product vield in the system	
[Cp ₂ ZrH ₂] ₂ -CIAIR ₂ -MMAO-12- 1-hexene (1:3:30:100, 20°C)	3
Figure S2. ¹ H NMR of system Cp ₂ ZrCl ₂ – AlBu ⁱ ₃ (1:5) in C ₇ D ₈ (240 K)	4
Figure S3. ¹ H NMR of system $Cp_2ZrCl_2 - AlBu_3^i$ (1:5) in C_7D_8 (298 K).	4
Figure S4. ¹ H NMR of system Cp ₂ ZrCl ₂ – AlBu ⁱ ₃ – MMAO-12 (1:5:12) in C ₇ D ₈ (298 K)	5
Figure S5. COSY HH of system Cp ₂ ZrCl ₂ – AlBu ⁱ ₃ – MMAO-12 (1:5:12) in C ₇ D ₈ (298 K)	5
Figure S6. NOESY of system $Cp_2ZrCl_2 - AlBu_3^i - MMAO-12$ (1:5:12) in C_7D_8 (298 K)	6
Figure S7. ¹ H NMR of system Cp ₂ ZrCl ₂ –HAlBu ⁱ ₂ –MMAO-12 in C ₇ D ₈ (T= 298 K): a) [Zr]:[Al]:[Al _{MAO}]= 1:1.5:0; b) [Zr]:[Al]:[Al _{MAO}]= 1:1.5:1.5; c) [Zr]:[Al]:[Al _{MAO}]= 1:1.5:3	6
Figure S8. ¹ H NMR of system Cp ₂ ZrCl ₂ – HAlBu ⁱ ₂ (1:2) in C ₇ D ₈	7
Figure S9. ¹ H NMR of system Cp ₂ ZrCl ₂ – HAlBu ⁱ ₂ – MMAO-12 (1:1.5:3) in C ₇ D ₈	7
Figure S10. ¹ H NMR of system [Cp ₂ ZrH ₂] ₂ – CIAIMe ₂ (1:3) in C ₇ D ₈	8
Figure S11. COSY HH of system [Cp ₂ ZrH ₂] ₂ – CIAIMe ₂ (1:3) in C ₇ D ₈	8
Figure S12. ¹³ C NMR of system [Cp ₂ ZrH ₂] ₂ – ClAlMe ₂ (1:3) in C ₇ D ₈	9
Figure S13. HSQC of system $[Cp_2ZrH_2]_2 - CIAIMe_2$ (1:3) in C_7D_8	9
Figure S14. ¹ H NMR of system [Cp ₂ ZrH ₂] ₂ – CIAIMe ₂ – MMAO-12 (1:3:6) in C ₇ D ₈ 1	0
Figure S15. DOSY of system [Cp ₂ ZrH ₂] ₂ -ClAlMe ₂ MMAO-12 (1:3:6) in C ₇ D ₈ (T=299.3 K).	0
Figure S16. COSY of system [Cp ₂ ZrH ₂] ₂ -CIAIMe ₂ -MMAO-12 (1:3:6) in C ₇ D ₈ 1	1
Figure S17. NOESY of system [Cp ₂ ZrH ₂] ₂ -CIAIMe ₂ -MMAO-12 (1:3:6) in C ₇ D ₈ 1	1
Figure S18. ¹ H NMR of system [Cp ₂ ZrH ₂] ₂ – CIAIEt ₂ (1:3) in C ₇ D ₈	2
Figure S19. NMR monitoring of system [Cp ₂ ZrH ₂] ₂ - CIAIBu ⁱ ₂ - 1-hexene (1:2.6:(0.7- 2.4)) in C ₇ D ₈ , intensity of upfield signals is increased12	2

Figure S20. ¹³ C NMR of system $[Cp_2ZrH_2]_2 - CIAIBu_2^i - 1$ -hexene (1:2.6:(0.7-2.4)) in C_7D_8 (end of reaction)	13
Figure S21. ¹³ C NMR of system $[Cp_2ZrH_2]_2 - CIAIMe_2 - MMAO-12 - 1$ -hexene in C_7D_8 (end of reaction)	13
GC-MS analysis of products	14
Figure S22. Example of GC-MS of products obtained in the system Cp ₂ ZrCl ₂ – AIMe ₃ – MMAO-12– 1-hexene	14

Figure S1. Effect of OAC structure on product yield in the system $[Cp_2ZrH_2]_2$ -CIAIR₂-MMAO-12- 1-hexene (1:3:30:100, 20°C): (a) - CIAIMe₂; (b) - CIAIEt₂; (c) CIAIBuⁱ₂.

Figure S7. ¹H NMR of system Cp_2ZrCl_2 -HAIBuⁱ₂-MMAO-12 in C_7D_8 (T= 298 K): a) [Zr]:[AI]:[AI_{MAO}]= 1:1.5:0; b) [Zr]:[AI]:[AI_{MAO}]= 1:1.5:1.5; c) [Zr]:[AI]:[AI_{MAO}]= 1:1.5:3.

Figure S12. ¹³C NMR of system $[Cp_2ZrH_2]_2 - CIAIMe_2$ (1:3) in C_7D_8 .

Figure S19. NMR monitoring of system $[Cp_2ZrH_2]_2$ - CIAIBuⁱ₂ - 1-hexene (1:2.6:(0.7-2.4)) in C₇D₈, intensity of upfield signals is increased.

Figure S20. ¹³C NMR of system $[Cp_2ZrH_2]_2$ – CIAIBuⁱ₂ – 1-hexene (1:2.6:(0.7-2.4)) in C_7D_8 (end of reaction).

GC-MS analysis of products

Before each series of mass spectral analysis, calibration was performed using alkenedimer mixtures with various molar concentrations to determine response factors (RF). calculated RF(dimer)= Response factors of dimers were as Slope(1alkene)/Slope(dimer), where Slope(1-alkene) was found from the dependence Peak area (1-alkene) - Concentration (1-alkene), and Slope(dimer) from the dependence Peak area (dimer) – Concentration (dimer). 1-Alkenes were used as a standards with RF=1. Response factors of low molecular weight products 2-D, 5-D and 6 were taken as 1 as well. Thus, product yields were determined via peak areas multiplied by response factors. RFs of trimers were taken as RFs of dimers.

Figure S22. Example of GC-MS of products obtained in the system $Cp_2ZrCl_2 - AlMe_3 - MMAO-12 - 1$ -hexene (Table 1, entry 18)

