Supplementary Material

Multi-Targeting bioactive compounds extracted from Essential Oils as kinase inhibitors

Annalisa Maruca ^{1,2}, Delia Lanzillotta ³, Roberta Rocca ^{2,3}, Antonio Lupia ², Giosuè Costa ^{1,2}, Raffaella Catalano ^{1,2}, Federica Moraca ^{2,4}, Eugenio Gaudio ⁵, Francesco Ortuso ^{1,2}, Anna Artese ^{1,2}, Francesco Trapasso ³, Stefano Alcaro ^{1,2,*}

¹ Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy.

² Net4Science srl, Università "Magna Græcia" di Catanzaro, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.

³ Department of Experimental and Clinical Medicine, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy.

⁴ University "Federico II" of Naples, Department of Pharmacy, Via D. Montesano 49, Naples, 80131, Italy.

⁵ Lymphoma and Genomics Research Program, The Institute of Oncology Research, Bellinzona, Switzerland.

*Correspondence: Stefano Alcaro alcaro@unicz.it +39 0961 3694198 / +39 0961 391490

Received: date; Accepted: date; Published: date

Oil Name	Compounds	Botanic name	Percentage (%)
Styrax	Cinnamyl cinnamate	<i>Liquidambar styraciflua</i> L., fam. Hamamelidaceae	38.00
Cumin	α -terpinen-7-al	<i>Cuminum cyminum</i> L., fam. Apiaceae (Umbelliferae)	17.77
Ageratum conyzoides	Precocene II	Ageratum conyzoides L., fam. Asteraceae	17.65
Vetiver	β-vetivone	<i>Vetiveria zizanioides</i> Stapf, fam. Poaceae (Gramineae)	5.00
Parsley leaf	Psoralen	Petroselinum crispum, fam. Apiaceae	3.20
Rue 1	Piperonylacetone	<i>Ruta graveolens</i> L., fam. Rutaceae	3.10
Oregano	Thymohydroquinone	<i>Coridothymus capitatus</i> Rchb., fam. Lamiaceae	1.40
Jasmine sambac	1H-indol-2ol	Jasminum sambac (L.) Aiton, fam. Oleaceae	0.50
Cassie absolute	Isoquinoline	<i>Acacia farnesiana</i> (L.) Willd., fam. Mimosaceae	0.50
Oakmoss	kmoss Atronorin <i>Evernia prunastri</i> (L.) Ach., fam. Usneaceae		0.30
Vassoura	1H-benzochromene	Baccharis dracunculifolia DC., fam. Asteraceae	0.20
Star anise	Hinokitiol	<i>Illicium verum</i> Hooker fil., fam. Magnoliaceae	0.19
Ginger	3- Phenylbenzaldehyde	Zingiber officinale Roscoe, fam. Zingiberaceae	0.01

Table S1. Percentage of compounds contained in essential oils (EOs).

Target	PDB code	Co-crystallized ligand	G-score
c-Met	2WGJ	Crizotinib	-12.03
VEGFR2	3VHE	Pyrrolopyrimidine derivative	-13.90
EGFR	3POZ	Tak-285	-13.89
B-Raf	2FB8	SB-590885	-10.95
PDK1	3NAX	1-(3,4-difluorobenzyl)-2-oxo-N-{(1R)-2-[(2- oxo- 2,3-dihydro-1H-benzimidazol-5-yl)oxy]- 1- phenylethyl}-1,2-dihydropyridine-3-carboxamide	-18.82
BMX	3SXR	Dasatinib	-11.29
ROCK1	3TWJ	RKI1447	-8.93

Table S2. For each analysed target: the PDB accession code, the name of the co-crystallized ligand and the relative binding affinity G-score value (in kcal/mol) after re-docking simulations.

 Table S3. G-score and IFD scores, expressed in kcal/mol, of PDB co-crystallized ligands complexed with their related kinase proteins.

Target	G-score	IFD Score
VEGFR2	-14.20	-877.00
ROCK1	-9.23	-870.20
EGFR	-15.87	-669.32
PDK1	-19.61	-621.81
BMX	-12.68	-587.91
B-Raf wt	-10.15	-574.98
c-Met	-14.45	-643.86

Figure S1. 3D representations of the best IFD pose of α -terpinen-7-al with the following anti-cancer targets: (**A**) VEGFR2 (PDB: 3VHE), represented as green surface; (**B**) PDK1 (PDB: 3NAX), represented as orange surface; (**C**) ROCK1 (3TWJ), represented as pink surface; (**D**) c-Met (PDB: 2WGJ), represented as grey surface. Ligands are shown in green carbon ball-and-sticks, while amino acid residues involved in the molecular interactions are shown as carbon sticks with the correspondent color of protein's surface. H-bonds and π - π interactions are displayed as purple and cyan dashed lines, respectively.

Figure S2. 3D representations of the best IFD pose of cinnamyl cinnamate with the following anti-cancer targets: (**A**) EGFR (PDB: 3POZ), represented as blue surface; (**B**) PDK1 (PDB: 3NAX), represented as orange surface; (**C**)

BMX (PDB: 3SXR), represented as red surface; (**D**) B-Raf (PDB: 2FB8), represented as yellow surface; (**E**) c-Met (PDB: 2WGJ), represented as grey surface. Ligands are shown in green carbon ball-and-sticks, while amino acid residues involved in the molecular interactions are shown as carbon sticks with the correspondent color of protein's surface. H-bonds and π - π interactions are displayed as purple and cyan dashed lines, respectively.

Table S4. Target and abbreviations of the 23 Protein Kinases targets, selected for the SBVS study, with the relative PDB accession code and X-ray resolution expressed in Å. For each target, the RMSD value, expressed in Å, was calculated after re-docking simulation between the experimental pose of the co-crystallized ligand and the best pose generated by the docking protocol. The binding energy of the re-docked pose was reported as G-score value, expressed in kcal /mol.

Target	Abbreviation	PDB models	Resolution	RMSD	G-score
Serine/threonine- protein kinases	Akt	4GV1	1.49	1.06	-11.63
Aurora A kinase	AAK	2X81	2.91	0.47	-9.38
Aurora B kinase	ABK	2VRX	1.86	0.74	-10.18
Cytoplasmic tyrosine- protein kinase	BMX	3SXR	2.40	0.89	-11.29
B-Raf proto-oncogene serine/threonine-protein kinase	B-Raf	2FB8	2.90	0.68	-10.95
B-Raf proto-oncogene serine/threonine-protein kinase V600E	B-Raf V600E	30G7	2.45	1.62	-12.24
Cyclin-dependent kinase 2	CDK2	4KD1	1.70	1.39	-11.61
Hepatocyte growth factor receptor	c-Met	2WGJ	1.20	0.85	-12.03
Epidermal growth factor receptor	EGFR	3POZ	1.50	0.89	-13.89
Epidermal growth factor receptor V948R	EGFR V948R	4I22	1.71	1.01	-8.71
Extracellular signal regulated Kinases 1	ERK1	2ZOQ	2.39	0.37	-9.26
Extracellular signal regulated Kinases 2	ERK2	4ZZN	1.45	0.58	-12.41
Glycogen synthase kinase-3β	GSK3β	4ACC	2.21	1.20	-9.15
Kinesin-like protein KIF11	Kinesis Eg5	2X7C	1.90	0.12	-10.31
Mitogen-activated protein kinase 1	MEK1	4ARK	2.60	0.71	-8.64
Mitogen-activated protein kinase 2	MEK2	1591	3.20	0.38	-8.61

3-Phosphoinositide-					
dependent protein	PDK1	3NAX	1.75	0.34	-18.82
kinase 1					
Phosphoinositide-3-	DI2K a	5UBR	2.40	0.92	-10.48
kinase α	I ISKa				
Phosphoinositide-3-	DI2V	3DBS	2.80	0.78	-9.34
kinase y	ΡΙ3Κγ				
cAMP-dependent	DKA C a	2000	1 (0	0.22	10.25
protein kinase	PKA C-a	3POO	1.60	0.23	-12.35
Rho-associated protein	POCV1	3TWJ	2.90	0.55	-8.98
kinase 1	KOCKI				
Serum and					
glucocorticoid-regulated	SGK1	3HDM	2.60	0.68	-9.77
kinase 1					
Vascular endothelial	VECEDO	3VHE	1.55	0.34	-13.90
growth factor receptor 2	VEGFK2				