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Abstract: Genus Stachys, the largest genera of the family Lamiaceae, and its species are frequently
used as herbal teas due to their essential oils. Tubers of some Stachys species are also consumed
as important nutrients for humans and animals due to their carbohydrate contents. Three new
neo-clerodane diterpene peroxides, named stachaegyptin F-H (1, 2, and 4), together with two known
compounds, stachysperoxide (3) and stachaegyptin A (5), were isolated from Stachys aegyptiaca
aerial parts. Their structures were determined using a combination of spectroscopic techniques,
including HR-FAB-MS and extensive 1D and 2D NMR (1H, 13C NMR, DEPT, 1H-1H COSY, HMQC,
HMBC and NOESY) analyses. Additionally, a biosynthetic pathway for the isolated compounds
(1–5) was discussed. The chemotaxonomic significance of the isolated diterpenoids of S. aegyptiaca in
comparison to the previous reported ones from other Stachys species was also studied.

Keywords: Stachys aegyptiaca; lamiaceae; herbal tea; nutrients; neo-clerodane diterpene peroxides

1. Introduction

The genus Stachys (woundwort) has about 300 species growing wild in the temperate and
tropical regions throughout the world except the continent of Australia and New Zealand [1]. In the
Mediterranean region and Iran, Stachys species are known as mountain tea with great medicinal
and nutritional values due to their traditional uses as food additives, herbal teas, and medicinal
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supplements [2–5]. The tubers of some species are used as phytonutrients rich in carbohydrates,
particularly in some parts of Europe and China [6]. In folk medicine, the infusions, decoctions, and
ointments made from flowers and leaves of these herbs have been used in the treatment of some
disorders such as skin infections, inflammation, wounds, digestive problems, cough, ulcers, and
stomach ache, and applied as antispasmodic, sedative, and diuretic agents, and cardiac tonic [3,5,7–10],
and recently administrated for genital tumours, sclerosis of the spleen, and inflammatory cancerous
ulcers [11–13]. Phenolic extracts and essential oils of Stachys species showed a number of important
biological activities such as antioxidant [14–18], anti-inflammatory [16,19], antiangiogenic [20],
anti-nociceptive [21,22], antimicrobial [3,4,23,24], cytotoxic, and anticancer [25–30]. Additionally,
the genus Stachys is rich with flavonoids and phenolic [17,31–36], diterpenoids [10,21,27,37–42],
iridoids [20,43–45], and phenylethanoid glycosides [46,47] metabolites.

Stachys aegyptiaca Pers., a member of this genus, is a perennial aromatic plant growing wild in
Sinai Peninsula, Egypt, and is called “Qourtom”. Previous phytochemical investigations on this species
led to the isolation of diterpenes [27,40,41,48], flavonoids [40,49–52]), and essential oils [53,54]. In our
previous work on this species, we isolated five new diterpenes of the neo-clerodane type, stachaegyptin
A-E, in addition to seven known flavonoids from the aerial parts [27,40].

Herein, we report the isolation and structural determination of further three new ent-neo-clerodane
diterpene peroxides, named stachaegyptin F-H (1, 2, 4), as well as two known compounds,
stachysperoxide (3) and stachaegyptin A (5) (Figure 1), from the aerial parts of this species using
extensive 1D and 2D NMR and HR-FAB-MS analyses. Additionally, a biosynthetic pathway of the
isolated metabolites (1–5) as well as the chemotaxonomic significance of the isolated diterpenoids from
S. aegyptiaca were studied.

2. Results and Discussion

The CH2Cl2:MeOH (1:1) extract of S. aegyptiaca aerial parts afforded three new ent-neo-clerodane
diterpenoids, named stachaegyptin F (1), stachaegyptin G (2), and stachaegyptin H (4), together with
two known compounds, stachysperoxide (3) and stachaegyptin A (5) (Figure 1), using chromatographic
techniques. Their structures were established using extensive 1D [1H (Table 1), 13C NMR (Table 2)], and
2D NMR (1H-1H COSY, HMQC, HMBC and NOESY) analyses(the details in Supplementary Materials).

Compound 1 was isolated as a colorless oil with an optical rotation of [α]25
D +30 (c, 0.001, MeOH).

Its molecular formula C20H30O4 was determined from the high-resolution FAB-MS analysis with a
molecular ion peak [M + Na]+ at m/z 357.2045 (calcd. for C20H30O4Na, 357.2044), indicating six degrees
of unsaturation. The 13C NMR spectrum revealed the presence of 20 carbon resonances (Table 2), which
was in agreement with the molecular formula. Their multiplicities were deduced from the results of
13C DEPT NMR analyses as four methyls, five methylenes (two olefinic), six methines (two olefinic
and two oxygenated at δC 73.2 and δC 83.7), and five quaternary carbons (two olefinic and one keto at
δC 199.7) (Table 2). With 20 carbons and six degrees of unsaturation; one of them was assigned as a
keto group (δC 199.8) and three were attributed to double bonds, therefore, compound 1 is apparently
a bicyclic diterpene. The 1H NMR analysis of 1 (Table 1) displayed typical signals for two tertiary
methyls at δH 1.02 and 1.39 (each 3H, s), a secondary methyl at δH 1.09 (3H, d, J = 7.0 Hz) and an
olefinic methyl at δH 1.92 (3H, s), which showed a correlation in the Double Quantum Filtered COSY
(DQF-COSY) spectrum with an olefinic proton signal at δH 5.68 (1H, br s), indicating the presence of a
trisubstituted double bond. The spectrum also showed two oxomehine protons at δH 4.09 (1H, br d,
J = 3.4) and δH 4.66 (1H, dd, J = 7.5 and 2.7 Hz), an ABX spin system at δH 5.17 (1H, d, J = 11.0 Hz), δH

5.49 (1H, d, J = 17.0 Hz) and δH 6.29 (1H, dd, J = 17.0, 11.0 Hz), and two terminal olefinic protons at
δH 5.23 and 5.13 (each 1H, s). The COSY spectrum exhibited four spin systems coupled with ring A,
ring B, and the side chain (Figure 2). All these accumulated data are regular with the plain skeleton of
neo-clerodane diterpenes formerly isolated from this genus [27,40,55].
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Figure 1. Structures of the isolated diterpenes from Stachys aegyptiaca.

Interpretation of the 2D NMR data, including DQF-COSY, HMQC and HMBC, clearly indicated
that we are dealing with a structure similar to that of stachaegyptin A (5), previously isolated from this
species, and its structure was confirmed by X-ray crystallography [40]. The distinct difference observed
in the 1H NMR spectrum of 1 was the additional oxymethine proton at δH 4.66 (1H, dd, J = 7.5 and
2.7 Hz) (H-12), which showed couplings in the DQF-COSY spectrum with H2-11 at δH 1.64 (1H, dd,
J = 16.5, 7.5 Hz) (H-11a) and δH 1.50 (1H, dd, J = 16.5, 2.7 Hz) (H-11b), while in the HMQC spectrum
this proton showed a correlation with the oxymethine carbon at δC 83.7. The 13C NMR data of 1 also
revealed similarities with those of stachaegyptin A (5) except that the methylene carbon C-12 in 5 was
replaced by the oxomethine carbon at δC 83.7 in 1. The HMBC experiment (Figure 2) confirmed the
presence of 12-oxymethine in 1 by the HMBC connections from H-12 (δH 4.66) to C-9 (δC 39.6), C-11
(δC 41.2), C-14 (δC 134.8) and C-16 (δC 116.5). With four oxygen atoms in 1 (C20H30O4, HR-FAB-MS),
three of them were assigned from the 13C NMR data as two oxomethine carbons [δC 73.2 (C-7) and δC

83.7 (C-12)] and one keto group at δC 199.8 (C-2). Additionally, and due to the lack of an additional
oxymethine signal, the remaining oxygen should, therefore, be a part of a hydroperoxyl group instead
of a hydroxyl group.
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Table 1. The 1H NMR data assignments for compounds 1–4 (600 MHz, in CDCl3) a.

Position 1 2 3 a 4

1α 2.41 dd, (17.0, 14.0) 2.41 dd (17.0, 14.4) 2.52 dd (17.0, 14.0) 2.41 m *
1β 2.29 dd (17.0, 3.4) 2.60 dd (17.0, 2.8) 2.32 dd (17.0, 3.4) 2.80 dd (17.0, 3.4)
2 — — — —
3 5.68 br s 5.68 br s 5.69 br s 5.69 br s
4 — — — —
5 — — — —

6α 2.20 dd (14.0, 2.7) 2.22 dd (14.0, 2.7) 2.19 dd (14.0, 2.7) 2.17 dd (14.0, 2.7)
6β 1.60 dd (14.0, 3.4) 1.63 dd (14.0, 3.4) 1.57 dd (14.0, 3.4) 1.57 dd (14.0, 3.4)
7 4.09 br d (3.4) 4.11 br d (2.4) 4.07 m 4.11 br d (2.7)
8 1.90 m * 1.71 m 2.06 m 1.69 m *
9 — — — —
10 2.14 dd (14.0, 3.4) 2.25 dd (14.0, 2.8) 2.11 dd (14.0, 3.4) 2.41 m *

11a 1.64 dd (16.5, 7.5) 1.62 dd (16.5, 7.5) 1.91 dd (14.0, 10.5) 1.96 dd (16.5, 10.3)
11b 1.50 dd (16.5, 2.0) 1.52 dd (16.5, 2.0) 1.44 m * 1.42 m *
12 4.66 dd (7.5, 2.7) 4.66 d (8.2) 4.18 br d (10.5) 4.18 d (10.3)
13 — — — —
14 6.29 dd (17.0, 11.0) 6.31 dd (17.0, 11.0) 5.58 br s 5.57 br d (2.5)

15a 5.49 d (17.0) 5.45 d (17.0) 4.61 br d (14.0) 4.61 br dd (14.4, 2.5)
15b 5.17 d (11.0) 5.15 d (11.0) 4.28 br d (14.0) 4.29 br d (14.4)
16a 5.23 s 5.23 s 1.73 s 1.71 s
16b 5.13 s 5.18 s — —
17 1.09 d (7.0) 0.99 d (7.5) 1.13 d (7.0) 1.06 d (7.0)
18 1.92 s 1.91 s 1.91 s 1.88 s
19 1.39 s 1.39 s 1.42 s 1.39 s
20 1.02 s 1.01 s 1.07 s 1.07 s

a Data are given for comparison with the new compound 4. * Overlapping signals.

This was supported by the positive TLC spray test for hydroperoxides (N,N-dimethyl-1,4-
phenylenediammonium chloride) [56] as well as from the unusual downfield chemical shift of
12-oxymethine at δC 83.6, which was very similar to those reported for related 12-hydroperoxy
diterpenes [56,57]. Related 12-hydroxy diterpenes, by contrast, showed a 12-oxymethine between δC

62.0–64.0 [58–60]. Comprehensive assignment of 1 was established from the results of DQF-COSY,
HMQC, and HMBC NMR experiments. Therefore, 1 could be elucidated as 12-hydroperoxy derivative
of 5.
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The relative stereochemistry of 1 was determined by the coupling constants, the NOESY
experiments (Figure 3) with inspection of the 3D molecular model, and the biogenetic correlation
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with stachaegyptin A (5), where its structure and stereochemistry were confirmed by X-ray
crystallography [40]. The hydroxyl group configuration at C-7 was assigned to be α (axial), conferring
the small coupling constants of H-7 (3.4 Hz), which was similar to those reported for 5 and other
neo-clerodane diterpenes [27,40]. The NOESY connections between H-7 (δH 4.09) and H-8 (δH

1.90) indicated that these protons are on β-configuration of the B ring. The NOESY correlations
observed between CH3-17 (δH 1.09) and CH3-20 (δH 1.02) and between CH3-20 and CH3-19 (δH 1.39)
indicated that these methyl groups are all on the same side in an α-configuration. The absence of a
NOESY correlation between CH3-19α and H-10 revealed that the A/B ring system was trans-diaxially
oriented, and the orientation of H-10 was β. All of previous results were well matched with
the biogenetic precedent and formerly reported NMR chemical shift data for stachaegyptin 5 and
related neo-clerodane diterpenes with the same configurations [27,40]. The C-12 configuration was
determined by the NOESY analysis with inspection of the 3D molecular model (Figure 3). The observed
correlations between H-12 (δH 4.66), H-1β (δH 2.29), and H-10 (δH 2.14) implied that these protons
were in closeness and confirmed that the C-12 stereo center had the R configuration as those reported
for (12R) 12-hydroperoxy and 12-hydroxy diterpenes [56–62]. Therefore, the structure of 1 was
established as 12(R)-12-hydroperoxy-7α-hydroxy-neo-cleroda-3,13(16),14-triene-2-one, and was named
stachaegyptin F.
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Compound 2 was isolated as a colorless oil with an optical rotation of [α]25
D 29 (c, 0.005, MeOH).

The FAB-MS spectrum of 2 exhibited the base peak at m/z 357 [M + Na]+, consistent with a molecular
formula C20H30O4, which was established by a molecular ion peak at m/z 357.2042[M + Na]+ (calcd.
for C20H30O4Na, 357.2044) in the HR-FAB-MS analysis. This formula was the same as that reported for
1. The positive reaction on TLC with N,N-dimethyl-1,4-phenylenediammonium chloride) [60] also
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revealed the presence of a hydroperoxid as in 1. The 1H and 13C NMR spectra of 2 (Tables 1 and 2) were
almost identical with those reported for 1, except for the upfield chemical shifts of CH3-17 (δH 0.99) as
well as H-8 (δH 1.71), in addition to the downfield shift of H-1β (δH 2.60) in 2 comparing with those of
1. The 2D NMR experiments including the DQF-COSY, HMQC, and HMBC exhibited an identical
planar structure to that of 1. Additionally, combined NOESY and coupling contacts analysis clearly
indicated that 2 is matching the relative stereochemistry of 1 in the bicyclic system. All the above data
and differences between 1 and 2 established that 2 should be an epimer of 1 at C-12 (S configuration)
as previously shown in related compounds [57,60–62]. This was supported by the NOESY experiment
with inspection of the 3D-molecular model (Figure 3). The strong correlations between H-12, H-10β,
and H-8β, together with the absence of a NOESY correlation between H-12 and H-1β, confirmed the S
configuration at C-12 in 2 instead of 12R as in 1.

Further confirmation was given by the relative downfield shift of H-1β at δH 2.60 in 2, instead
of that at δH 2.29 in 1, which was attributed to the presence of H-1β in a close proximity to the
hydroperoxyl group. By contrast, H-8β and CH3-17 were slightly shifted at higher-field (δH 1.71 and δH

0.99, respectively), than those of 1 at δH 1.90 (H-8β) and δH 1.09 (CH3-17) [57,59,61,62]. Accordingly, the
structure of 2 was established as 12(S)-12-hydroperoxy-7α-hydroxy-neo-cleroda-3,13(16),14-triene-2-one,
and was named stachaegyptin G. Both epimers 1 and 2 have 6 stereocenters, and only one center (C-12)
was inverted from 12R to 12S. Therefore, 1 and 2 are diastereomers.

Compound 4 was isolated as a colorless oil with an optical rotation of [α]25
D -10 (c, 0.005, MeOH).

The molecular formula C20H30O4 was recognized from the HR-FAB-MS analysis, which exhibited a
molecular ion peak at m/z 357.2044 [M + Na]+ (calcd. for C20H31O4Na, 357.2042), demonstrating six
degrees of unsaturation in agreement with the 13C NMR spectrum of 4 (Table 2), which displayed 20
carbon resonances. Their multiplicities were determined from DEPT analysis as five methyls, four
methylenes (one oxygenated at δC 69.8), six methines (two olefinic and two oxygenated at δ 73.3 and
79.0), and five quaternary carbons (two olefinic and one keto at δ 200.7). The 1H NMR spectrum of 1
(Table 1) exhibited characteristic signals for two tertiary methyls at δH 1.07 and 1.39 (each 3H, s), a
secondary methyl at δH 1.06 (3H, d, J = 7.0 Hz), and two olefinic methyls at δH 1.71 and 1.88 (each 3H,
s), which showed correlations in the DQF-COSY spectrum with two olefinic protons at δH 5.57 (1H, d,
J = 2.5 Hz) and 5.69 (1H, br s), respectively, indicating the presence of two trisubstituted double bonds.
The spectrum also showed two oxomehine protons at δH 4.11 (1H, br d, J =2.7) and δH 4.18 (1H, br d,
J = 10.3 Hz), as well as two protons of an oxymethylen at δH 4.61 (1H br dd, J = 16.5, 10.3) and δH 4.29
(1H, br d, J = 14.4 Hz). The COSY spectrum exhibited four spin systems associated with ring A, ring B,
and the side chain (Figure 2).

The 1H and 13C NMR spectra as well as the 2D NMR data, including DQF-COSY, HMQC and
HMBC (Figure 2), clearly established that we are dealing with a structure almost identical to that of
stachyaegyptin C (3), previously isolated from this species [41]. The distinct differences observed in
the 1H NMR spectrum of 4 showed a slightly higher-field position chemical shift of CH3-17 (δH 1.06)
in 4 than that in 3 (δH 1.13), also H-8 was shifted at higher field (δH 1.69) in 4 than that of 3 (δH 2.06). In
contrary, the chemical shift of H-1β was at lower field value (δH 2.80) in 4 than 3 (δH 2.32). The results
of the 2D NMR experiments achieved an indistinguishable planar structure to that of 3. The NOESY
and coupling contacts analysis clearly indicated that 4 had identical relative stereochemistry with 3 in
the bicyclic system. All the above data and differences between 4 and 3 established that compound
4 should be an isomer of 3 epimerized at C-12 (S configuration). This result was supported by the
NOESY experiment with inspection of the 3D molecular model (Figure 3).

The strong correlations of H-12 with H-10β, H-8β, and CH3-16, and the correlation between
CH3-17 with H-11a (1.42) and CH3-16, as well as the absence of a NOESY correlation between H-12 and
H-1β, confirmed the S configuration at C-12 instead of 12R in 3. Further confirmation was given by the
relative downfield shift of H-1β at δH 2.80 in 4, instead of that at δH 2.11 in 3, which was attributed
to the presence of H-1β in a close proximity to the cyclic peroxide ring. On the other hand, H-8β
and CH3-17 were slightly shifted at higher field (δH 1.69 and δH 1.06, respectively) than those of 3



Molecules 2020, 25, 2172 7 of 13

at δH 2.32 (H-8β) and δH 1.13 (CH3-17) [61,63–66]. Accordingly, the structure of 4 was established
as 12(S)-12,15-peroxy-7α-hydroxy-neo-cleroda-3,13-diene-2-one, and was named as stachaegyptin H.
Compounds 3 and 4 have 6 stereocenters, and only one center (C-12) was inverted from 12R to 12S.
Accordingly, 3 and 4 are diastereomers.

To the best of our knowledge, these new diterpenes hydroperoxides (1 and 2) and the cyclic
peroxide (4) are rare secondary metabolites.

3. Proposed Biosynthetic Pathway of the Isolated Compounds

Biosynthetically, diterpenoids classes in plant catalyze a proton-initiated cationic
cycloisomerization of geranylgeranyl diphosphate (GGPP), generating a labdane-type intermediate [63].
Subsequently, labdane as precursor can undergo a stepwise migration process of methyl and
hydride shift, yielding a halimane-type intermediate, which can then progress to either cis or trans
clerodanes [31]. Compound 5 is proposed to go through simply enzymatic hydroxylation and oxidation
of clerodane-type intermediate [64]. Based on Capon’s model for biosynthesis of endoperoxides,
compound 5 is subjected to enzymatic hydroperoxidation at C-12 to generate compound 1, which
then undergoes oxa-Michael cyclization to produce compound 3 [65]. In addition, both compound 1
and 3 can generate their corresponding epimers 2 and 4, respectively, by further rearrangement and
isomerization reactions (Figure 4).

Table 2. The 13C NMR data assignments for compounds 1-4 (150 MHz, in CDCl3) a.

C 1 2 3 a 4

δC δC DEPT δC δC DEPT

1 35.3 35.5 CH2 35.4 35.3 CH2
2 199.8 200.9 C=O 199.8 200.7 C=O
3 125.1 125.2 CH 125.0 125.5 CH
4 172.9 172.7 C 173.1 172.2 C
5 39.6 39.0 C 38.8 38.8 C
6 41.9 42.0 CH2 41.2 41.4 CH2
7 73.2 73.2 CH 73.3 73.3 CH
8 39.8 39.6 CH 39.7 38.8 CH
9 39.6 39.5 C 39.6 39.2 C

10 46.4 46.6 CH 45.9 46.4 CH
11 41.2 41.3 CH2 38.0 38.0 CH2
12 83.7 82.6 CH 79.2 79.0 CH
13 146.3 146.9 C 134.7 134.2 C
14 134.8 135.3 CH 118.7 119.1 CH
15 116.4 * 115.5 CH2 69.9 69.8 CH2
16 116.5 * 115.6 CH2 19.1 19.0 CH3
17 12.8 12.7 CH3 12.5 12.6 CH3
18 19.4 19.2 CH3 19.7 19.4 CH3
19 20.2 20.4 CH3 20.3 20.6 CH3
20 19.1 19.1 CH3 19.4 19.3 CH3

a Data are given for comparison with the new compound 4. * Overlapping signals.

4. Chemosystematic Significance

Different diterpenoids types of ent-clerodane, kaurane, labdane, and rosane were isolated
from about 27 species of Stachys including the present one that is known to produce around 35
compounds/classes of terpenes. The kaurane, labdane, ent-labdane, and rosane types of diterpenoids
were rare, while only the neo-clerodane ones were common. The 2,7 di-substituted neo-clerodane
derivatives were reported as annuanone, which was isolated from three species, S. annua, S.
inflate, and S. Sylvatica [66]; stachysolone from S. recta [37], S. annua [66], and S. lavandulifolia [67];
7-mono-acetyl-stachysolone in S. recta [37] and S. annua [66]; diacetyl-stachysolone from S. aegyptiaca [41];
stachone and stachylone in S. inflate, S. atherocalyx, S. annua, and S. palustris [66]. The 2,3,4 tri-substituted
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neo-clerodane as reseostetrol was isolated from S. rosea [68] and 3α,4α-epoxy rosestachenol from in
S. glutinosa besides the mono-substituted neo-clerodanes as roseostachone and roseostachenol in
S. rosea [55]. However, the kaurane-type diterpenoids were represented only in peroxide form as
stachyperoxide from S. aegyptiaca [41].Molecules 2020, x, x FOR PEER REVIEW 8 of 13 
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In addition, four hydroxylated kaurane derivatives, i.e., 3α,19-dihydroxy-ent-kaur-16-ene,
3α-hydroxyl-19-kaur-16-en-oic acid from S. lanata, and 6β-hydroxyl-ent-kaur-16-ene, and
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6β,18-dihydroxy ent-kaur-16-ene from S. sylvatica [64] were isolated. Rare labdane diterpenoids
were found only in one species as (+)-13-epi-Jabugodiol, (+)-6-deoxy-andalusol, and (+)-plumosol
from S. plumose [42]. Also, only two ent-labdane diterpenoids, namely ribenone and ribenol in
S. mucronata [39], as well as only three rosane diterpenoids, were reported from S. paraviflora as
stachyrosane, stachyrosane 1, and 2 [38,69]. In the present study, five neo-clerodane diterpenoids
including four ent-neo-clerodane peroxides were isolated from S. aegyptiaca. The comparative study
of previous data revealed that S. aegyptiaca is characterized by having the capability to produce
neo-clerodane peroxides, which are different than other reported diterpenoids from other Stachys
species. This proved that the S. aegyptiaca has a unique biosynthetic pathway to generate neo-clerodane
peroxides recognized as rare types of clerodanes. Those are known for their significant biological
activities as anticancer, antimitotic, and antifungal [70,71] and used in treatment of various inflammation
and metabolic disorders [72].

5. Materials and Methods

5.1. General Procedures

The 1H NMR (600 MHz, CDCl3), 13C NMR (150 MHz, CDCl3), and the 2D NMR spectra were
recorded on a JEOL JNM-ECA 600 spectrometer (JEOL Ltd., Tokyo, Japan). All chemical shifts (δ) are
given in ppm units with reference to TMS as an internal standard, and coupling constants (J) are reported
in Hz. The IR spectra were taken on a Shimadzu FT-IR-8100 spectrometer. Specific rotations were
measured on a Horiba SEPA-300 digital polarimeter (l = 5 cm). FAB-MS and HR-FAB-MS were recorded
on a JEOL JMS-GC-MATE mass spectrometer. For chromatographic separations COSMOSIL-Pack type
(C18-MS-II) (Inc., Cambridge, MA 02138, USA, 250 × 4.6 mm i.d.) and (250 × 20 mm i.d.) columns were
used for analytical and preparative separations, respectively, with compound detection via a Shimadzu
RID-10 A refractive index detector. For open silica gel column separations, normal-phase column
chromatography employed BW-200 (Fuji Silysia, Aichi, Japan, 150–350 mesh) and reversed-phase
column chromatography employed Chromatorex ODS DM1020 T (Fuji Silysia, Aichi, Japan, 100–200
mesh). TLC separations used precoated plates with silica gel 60 F254 (Merck, Pfizer, Sanofi, 0.25 mm)
(ordinary phase) or reversed-phase precoated plates with silica gel RP-18 WF254S (Merck, Pfizer, Sanofi,
0.25 mm) with compounds observed by spraying with H2SO4-MeOH (1:9) followed by heating.

5.2. Plant Material

The aerial parts of S. aegyptiaca were collected from Southern Sinai in Egypt during May 2016.
A voucher specimen (SK-1055) has been deposited in the Herbarium of Saint Katherine protectorate,
Egypt, with collection permission granted for scientific purposes by the Saint Katherine protectorate.

5.3. Extraction and Isolation

Extraction and fractionation of the air-dried aerial parts of S. aegyptiaca (1.5 kg) were previously
described [40]. The n-hexane-CH2Cl2 (1:3) fraction (14.0 g) and 100% CH2Cl2 (7.0 g) were added
together due to same chromatographic system then chromatographed on a ODS column (3 × 90 cm)
eluted with 80%, 90% (MeOH:H2O) then washed with 100% MeOH. Fractions were obtained as two
main portions: A (6.0 g) and B (7.0 g). Subfraction A was re-purified by reversed-phase HPLC using
MeOH/H2O (65–35% 500 mL) to afford 5 (20 mg). Subfraction B was re-purified by reversed-phase
HPLC using MeOH:H2O (70:30%, 1000 mL) to afford 3 (10 mg) and 4 (12 mg). The 5% MeOH fraction
(8.5 g) was chromatographed on ODS column (3 × 90 cm) eluted with 80%, 90% (MeOH:H2O) then
washed with MeOH. Fractions were obtained as one main portion (2.5 g), which was re-purified by
reversed-phase HPLC using MeOH:H2O (80:20%, 1000 mL) to afford 2 (9 mg) and 3 (11 mg).

The 12(R)-12-hydroperoxy-7α-hydroxy-neo-cleroda-3,13(16),14-triene-2-one (stachaegyptin F, 1).
Colorless oil, [α]25

D +30 (c, 0.001, MeOH), 1H (CDCl3, 600 MHz), and 13C (CDCl3, 150 MHz) NMR, see
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Tables 1 and 2; FAB-MS m/z 335 [M + H]+ HR-FAB-MS m/z 357.2045 (calcd. for C20H30O4Na, 357.2044);
IR (νmax cm−1): 3445, 1665 and 1615 cm−1.

The 12(S)-12-Hydroperoxy-7α-Hydroxy-neo-cleroda-3,13(16),14-triene-2-one (stachaegyptin G, 2).
Colorless oil, [α]25

D -29 (c, 0.005, MeOH), 1H (CDCl3, 600 MHz), and 13C (CDCl3, 150 MHz) NMR, see
Tables 1 and 2; FAB-MS m/z 335 [M + H]+ HR-FAB-MS m/z 357.2042 (calcd. for C20H30O4, 357.2044);
and m/z 357.2044 (calcd. for C20H30O4Na, 335.2042); IR (νmax cm−1): 3445, 1665, and 1615 cm−1.

The 12(S)-12,15-peroxy-7α-Hydroxy-neo-cleroda-3,13-diene-2-one (stachaegyptin H, 4).
Colorless oil, [α]25

D -10 (c, 0.005, MeOH), 1H (CDCl3, 600 MHz), and 13C (CDCl3, 150 MHz) NMR,
see Tables 1 and 2; FAB-MS m/z 335 [M + H]+ HR-FAB-MS m/z 357.2044 (calcd. for C20H30O4Na,
357.2042); IR (νmax cm−1): 3450, 1660, and 1620 cm−1.

Supplementary Materials: Supplementary data relating to this article is available online.
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