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Abstract: Rapeseed (Brassica napus L.) is rich in phenols, vitamins, carotenoids, and mineral elements,
such as selenium. Additionally, it contains the active ingredients sulforaphane and indole-3-carbinol,
which have been demonstrated to have pharmacological effects. In this study, sulforaphane and
indole-3-carbinol were extracted and quantified from rapeseeds using quick, easy, cheap, effective,
rugged and safe (QuEChERS) method coupled with ultra high performance liquid chromarography
tandem mass spectrometry (UHPLC-MS/MS). The major parameters for extraction and purification
efficiency were optimized, including the hydrolysis reaction, extraction condition and type and
amount of purification adsorbents. The limit of detection (LOD) and the limit of quantification
(LOQ) for sulforaphane were 0.05 µg/kg and 0.15 µg/kg, and for indole-3-carbinol were 5 µg/kg
and 15 µg/kg, respectively. The developed method was used to successfully analyze fifty rapeseed
samples. The QuEChERS coupled with UHPLC-MS/MS simultaneously detect sulforaphane and
indole-3-carbinol in vegetable matrix and evaluate the quality and nutrition of rapeseed samples.

Keywords: sulforaphane; indole-3-carbinol; QuEChERS; quantification; UHPLC-MS/MS

1. Introduction

Rapeseed (Brassica napus L.) is a major oilseed crop in China. China generates approximately 20%
of the world’s yield [1]. Rapeseeds not only produce edible oils, but their sprouts, seedlings, and leaves
have nutritional value for human consumption [2]. Vegetables such as Brassicaceae (Cruciferae) are
vital nutritional sources throughout the world. They contain several chemopreventive compounds,
such as glucosinolates, polyphenols, and selenium [3–5]. During plant tissue damage, glucosinolates
decompose into isothiocyanates and nitriles in the presence of the endogenous enzyme myrosinase
(EC 3.2.1.147), then undergo immediate hydrolysis of the β-thioglucoside group [6].

More than 300 glucosinolates and their hydrolytic products have been identified and evaluated
for their beneficial effects [7,8]. The phytochemicals classified as isothiocyanates have been widely
utilized to investigate their anti-tumor, anti-cancer and anti-inflammatory effects. Sulforaphane (SFN)
has been demonstrated to be the most potent compound. It is the activator of the Nrf2 pathway, which
regulates the cellular defense system and promotes various detoxifying and antioxidative effects [9,10].
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Sulforaphane has beneficial effects for diabetic complications by effectively reducing fasting blood
glucose and glycated hemoglobin levels in obese type 2 diabetic patients with poor glycemic control [11].
The bioavailability of sulforaphane in vegetables has also been studied, and could serve as a guide
for the design and implementation of SFN in clinical trials [12,13]. Indole-3-carbinol (I3C) is another
important anti-cancer chemopreventive compound that acts via further hydrolysis of isothiocyanate
(indol-3-methyl isothiocyanate), which is derived from cruciferous plants. The I3C compound has
been shown to regulate the growth of cancer cells by modulating genes involved in growth, signal
transduction and carcinogenesis [14]. It can inhibit the proliferation of cancer cells [15,16], inhibit the
expression of drug resistance genes [17], and induce apoptosis [18]. Preliminary clinical trials have
indicated that indole-3-carbinol could be used to protect against hormone dependent/independent
human cancers [19]. As shown in Figure 1, sulforaphane and indole-3-carbinol are both non-toxic,
“natural products” and are often used in combination with conventional chemotherapy to treat human
malignancies to give a lower toxicity and higher efficacy.
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An appropriate sample pretreatment method is a key step to the quantification of sulforaphane
and indole-3-carbinol in vegetables. Current pretreatment extraction techniques for sulforaphane and
indole-3-carbinol include liquid–liquid extraction [20], solid-phase extraction (SPE) [21], dispersive
liquid–liquid microextraction (DLLME) [22], high-speed countercurrent chromatography (HSCCC) [23]
and preparative HPLC [24]. However, the majority of the extraction and purification methods are
tedious and require large volumes of organic solvents or sophisticated equipment. QuEChERS
(quick, easy, cheap, effective, rugged and safe) is a comprehensive method that has been widely
used to determine target analytes in foods, agri-products, environmental substances and biological
fluids [25,26]. The QuEChERS method constitutes two key steps including liquid–liquid extraction and
dispersive solid-phase extraction clean-up. This method is simple, versatile, eco-friendly, eliminates
matrix effects and has excellent recovery. The QuEChERS is an ideal method for the extraction and
purification of sulforaphane and indole-3-carbinol in vegetable samples.

Quantitative methods for sulforaphane include thin-layer chromatography (TLC) [27], gas
chromatography (GC) [28], and gas chromatography-mass spectrometry (GC-MS) [29]. However,
high temperatures at the injection ports in the GC or GC-MS system could result in the degradation
of sulforaphane and indole-3-carbinol [30]. To measure the stability and solubility of the analytes,
liquid chromatography coupled with various detectors has been developed. These include ultraviolet
(UV) [31], diode-array (DAD) [32], evaporative light-scattering detectors (ELSD) [33], fluorescence
detectors (FLD) [34] and high-resolution mass spectrometry (HR-MS) [35]. UHPLC-MS/MS provides
high-throughput screening capability with confirmatory data. This is an important method for the
simultaneous determination of nutritional compounds in plant samples.

This study aimed to develop a fast, simple and accurate method using QuEChERS coupled with
UHPLC-MS/MS for the extraction and quantification of sulforaphane and indole-3-carbinol in rapeseed
samples. The major parameters for extraction and purification efficiency were investigated, including
the hydrolysis reaction, extraction condition and type and amount of purification adsorbents. Under
the optimized parameters, the analytes of rapeseed stem tissue were simultaneously detected.
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2. Results and Discussion

2.1. Optimization of Extraction Conditions

2.1.1. The Effect of Hydrolysis Time

The yield of sulforaphane and indole-3-carbinol extracted from rapeseed tissue samples before
and after hydrolysis were compared. The yield of sulforaphane and indole-3-carbinol extracted
without hydrolysis was 50.3%, which was 30.0% lower compared to the yield obtained after
hydrolysis. The results demonstrated that the hydrolysis step increased the yield of sulforaphane
and indole-3-carbinol. Enzymatic hydrolysis was performed for 1 to 5 h. An increase in sulforaphane
and indole-3-carbinol yields were observed with an increase in hydrolysis times (Figure 2a). Peak
yields of sulforaphane and indole-3-carbinol were observed after two hours of hydrolysis. Prolonged
hydrolysis resulted in slightly lower yields of sulforaphane. Hence, the hydrolysis time was set at 2 h
for subsequent experiments.Molecules 2020, 25, x 4 of 12 
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2.1.2. Effect of Hydrolysis Temperature

The effect of temperature was investigated from 25 ◦C to 55 ◦C for the hydrolysis reaction. Yields
for sulforaphane and indole-3-carbinol increased from 25 ◦C to 45 ◦C (Figure 2b). However, when
the temperature was at 55 ◦C the yield for indole-3-carbinol decreased. The results indicated that
endogenous myrosinase had the best catalytic activity at 45 ◦C. Hence, the hydrolysis temperature was
set at 45 ◦C for subsequent experiments.

2.1.3. Effect of Solvent Type on Extraction

Different organic solvents were evaluated to improve the extraction efficiency, such as n-hexane,
methyl tert-butyl ether, ethyl acetate, and dichloromethane [36]. As shown in Figure 2c, the high
yields for sulforaphane and indole-3-carbinol were achieved with the increased polarity from 0.519
n-hexane to 0.876 dichloromethane. Additionally, organic and aqueous phases could be separated in
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short time using high density dichloromethane, which significantly improved extraction efficiency.
Hence, dichloromethane was selected as the extraction solvent.

2.1.4. Effect of Solvent Volume on Extraction

Appropriate extraction solvent volume could improve the complete extraction of the target
compounds. Extraction yields for the two compounds at different the material–liquid ratios of 1: 4,
1:16, 1:20, and 1:24 (g/mL) are shown in Figure 2d. The extraction yields gradually increased with
larger volume of extraction solvent and the extraction yields plateaued when the ratio of material to
liquid reached 1:20 (g/mL). Based on factors such as reagent use, environmental pollution, test costs,
and other factors, the final material–liquid ratio of 1:20 (g/mL) was selected.

2.2. Type and Amount of Purification Adsorbents

Different purification adsorbents including C18, PSA, GCB were evaluated for extraction steps.
As shown in Figure 3a, using C18 for purification was the best, with optimal recovery for both
compounds. The recoveries using PSA, GCB and no purification were low for both compounds,
indicating that PSA and GCB had an adsorption effect on the target compounds. Extraction without
purification had the presence of pigments and other impurities, which significantly contaminated the
ion source of the mass spectrometer.
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Using C18, the target compound was inhibited from ionization, resulting in a decrease in MS
signal. Hence, the effects of different amounts of C18 (5, 15, 25, 35, and 45 mg) on the purification
effect of the target compounds were investigated. As shown in Figure 3b, 25 mg of C18 resulted in
recovery rates of 96.4% and 97.3% for sulforaphane and indole-3-carbinol, respectively, which satisfied
the quantitative requirements. A decrease in recovery rate was observed when greater than 25 mg of
C18 was used.

2.3. Method Validation

2.3.1. Linear Equations, Detection Lines, and Limits of Quantification

Under optimal conditions, the peak area was designated as the ordinate and the concentration
as the abscissa to establish the standard curve. The regression equation and linear range for each
compound are shown in Table 1. The limit of detection (LOD) and the limit of quantification (LOQ)
were determined using the target compound concentration corresponding to 3 and 10 times the
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signal-to-noise ratio (S/N), respectively. The LOD and LOQ for sulforaphane were 0.05 µg/kg and
0.15 µg/kg, and for indole-3-carbinol were 5 µg/kg and 15 µg/kg, respectively.

Table 1. Linear equations, correlation coefficient (R2), LODs, LOQs for sulforaphane
and indole-3-carbinol.

Compound Linear Range
(µg/kg) Regression Equation Correlation

Coefficient
LOD

(µg/kg)
LOQ

(µg/kg)

Sulforaphane 0.1–800 Y = 458,317X − 133,901 0.9999 0.05 0.15
Indole-3-carbinol 15–1000 Y = 42.3285X + 397.599 0.9986 5 15

2.3.2. Recovery, Intra-Day and Inter-Day Precision

Sulforaphane and indole-3-carbinol were spiked at different concentrations in rapeseed leaf
samples. The recoveries were calculated using the ratio between (total detected amount-original
amount) and spiked amount [37,38]. As presented in Table 2, the recoveries of sulforaphane were in
the range of 76.5%–96.4%, and indole-3-carbinol were in the range of 80.2%–97.3%. The results satisfied
the acceptance criteria for the assay. Accuracy was calculated by repeated measurements and then the
relative standard deviation (RSD, %) was calculated. Using the same conditions, different concentrations
of the spiked matrix were measured three times within one day to assess intra-day precision. They
were also measured for five consecutive days to assess inter-day precision. The intra-day and inter-day
precision for sulforaphane were less than 5.9% and 11.3%, respectively, and for indole-3-carbinol were
less than 10.3% and 10.6%, respectively. The results indicated that target compounds were stable.

Table 2. Recovery rate, intra-day and inter-day precision for sulforaphane and indole-3-carbinol.

Compound
Spiked

Concentration
(µg/kg)

Recovery
(%)

Intra-Day
Precision
(N = 3, %)

Inter-Day
Precision
(N = 5, %)

Sulforaphane 1/5/25 76.5/91.3/96.4 4.9/5.9/4.1 9.4/9.0/11.3
Indole-3-carbinol 20/50/100 80.2/92.3/97.3 10.3/8.9/7.7 9.9/10.6/9.8

2.3.3. Matrix Effect

Components other than the analytes from rapeseed tissues were considered to be matrices. These
matrices may enhance or reduce the intensity of the mass spectra. Sample spike experiments were used
to determine matrix effects (ME). Three sets of experiments were designed to evaluate the matrix effects
of the method. Matrix standard solution (A), matrix solution (B) and standard solution (C) with different
concentrations were investigated. The matrix effect was calculated using the following formula:

ME (%) = [(A − B)/C − 1] × 100%

The ME in rapeseed tissues ranged from −6.56% to 11.02%, which indicated that this extraction
and purification method was acceptable for routine UHPLC-MS/MS analysis.

2.4. Method Application

The developed synchronous quantitative method was applied for the determination of
sulforaphane and indole-3-carbinol compounds in rapeseed tissues as present in Figure 4. The summary
of sulforaphane and indole-3-carbinol in the leaves and stems derived from rapeseed are illustrated
in Table 3. The overall ranges of sulforaphane and indole-3-carbinol are presented in this validation
study for rapeseed tissues. The amount of sulforaphane varied from ND—415.3 µg/kg and
14.6 µg/kg—1621.8 µg/kg in stems and leaves, and the amount of indole-3-carbinol varied from
ND—131.3 µg/kg and 36.4—879.5 µg/kg in stems and leaves. As depicted in Figure 5, the highest
sulforaphane and indole-3-carbinol were both found in the leaf samples (p < 0.05). The difference in all
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analytes between stems and leaves could be attributed to the part, variety, geography, climate and
environment conditions, in accordance with previous studies [39–41].
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Table 3. Quantity of the detected sulforaphane and indole-3-carbinol in rapeseed samples a (µg/kg).

Rapeseed
Tissue

(N = 50)

Sulforaphane Indole-3-Carbinol

Max Min Mean Max Min Mean

Stems 415.3 ± 4.7 ND b 68.5 ± 15.9 131.3 ± 11.8 ND 41.9 ± 12.4
Leaves 1621.8 ± 28.1 14.6 ± 6.7 287.3 ± 24.8 * 879.5 ± 27.9 36.4 ± 5.9 285.4 ± 18.7 *

a Values represent the mean of the triplicate analyses ± the standard deviation. b ND, below the limit of detection.
“*” with brackets represent significant differences of SFN and I3C between the stems and leaves, p < 0.05.Molecules 2020, 25, x 7 of 12 
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Compared to previous studies, this QuEChERS-based UHPLC-MS/MS method was more rapid
and convenient than other methods (Table 4). The analysis time of SFN and I3C could be achieved in
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8 min without a complicated gradient procedure. Additionally, this is the first time that QuEChERS
was applied to extraction of SFN and I3C from vegetables, avoiding the tedious extraction step,
which completely eliminates matrix effects during the MS detection with good sensitivity and
excellent efficiency.

Table 4. Comparison of the extraction step and LOD with the previous methods.

Matrix Analytes Extraction
Step

Determination
Technique

Analyzed Time
(min)

Linear
Range

LOD
(µg/kg) Ref.

Broccoli
SFN

LLE UHPLC–HR MS 20 - 770 [20]
I3C 420

Broccoli SFN SPE HPLC-UV 20 5–100 20 [21]

Brassicaceae
SFN

DLLME LC-DAD 30 - 100 [22]
I3C 500

Broccoli SFN LLE UHPLC-MS/MS 3 1.8–897.1 0.53 [24]
Chinese cabbage,

mustard I3C LLE HPLC-DAD 65 15–1000 5 [34]

Rapeseed SFN QuEChERS UHPLC-MS/MS 8
0.1–800 0.05

This workI3C 15–1000 5

3. Materials and Methods

3.1. Chemicals and Materials

Sulforaphane and indole-3-carbinol standards were obtained from Shanghai Aladdin Technology
Co., Ltd. (Shanghai, China). Methanol, n-hexane, methyl tert-butyl ether (MTBE), ethyl acetate (EtOAc),
dichloromethane (DCM) and ammonium formate of HPLC grade were purchased from Shanghai
Aladdin Technology Co., Ltd. (Shanghai, China). C18, N-propyl ethylenediamine (PSA), graphitized
carbon black (GCB) was purchased from Agilent Technologies Co., Ltd. (Beijing, China). Anhydrous
magnesium sulfate and sodium chloride were purchased from Sinopharm Chemical Reagent Co.,
Ltd. (Beijing, China). All other chemicals and organic solvents were of analytical reagent grade.
Ultra-pure water (18 mΩ) was obtained from a Milli-Q water purification system from Millipore
Co., Ltd. (Milford, CT, USA). Rapeseed was obtained from the Oil Crop Research Institute, Chinese
Academy of Agricultural Sciences (Wuhan, China).

Sulforaphane and indole-3-carbinol standard (10.0 mg (accuracy to 0.01 mg)) were dissolved with
10 mL of methanol, for a stock solution of 1.0 mg/mL. A series of standard solutions were diluted with
methanol to appropriate concentrations for the calibration curves, and all the standard solutions were
stored at 4 ◦C in darkness.

3.2. Sample Preparation

The leaves and stems from rapeseed (N = 50) samples were crushed, pounded and processed
separately. Each sample 0.50 g (accurate to 0.01 g) was placed in a 50 mL centrifuge tube and
vortexed for 1 min with 10 mL of water, and immediately incubated at 45 ◦C for 2 h. Sodium chloride
(200 mg) was added to the sample, then 5 mL × 2 of dichloromethane was vortexed for 1 min and
ultrasound-assisted extraction was performed for 10 min. We then added 25 mg of C18 and 80 mg
anhydrous magnesium sulfate to a 50 mL centrifuge tube, and then 5 mL of the extracted supernatants
were combined with vortex for 5 min. After centrifugation at 4500 rpm for 5 min, the supernatant was
transferred and dried using nitrogen stream. Finally, the residual was reconstituted using 1 mL of
methanol, and filtered with 0.22 µm organic microporous membrane for UHPLC-MS/MS analysis.

3.3. UHPLC-MS/MS Analysis

3.3.1. Liquid Chromatography

The UHPLC-MS/MS system consisted of Shimadzu UHPLC-30AD and MS-8060 mass spectrometer
(Kyoto, Japan). Selective quantification of compounds was performed using the multiple reaction
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monitoring (MRM) mode. Two compounds were separated by UHPLC using a solvent system
consisting of 10 mM ammonium formate-methanol (solvent A; v/v) and water (solvent B) along with
an ACQUITY UHPLC ® BEH C18 (100 mm × 2.1 mm, 1.7 µm) column. The gradient elution program
for UHPLC-MS/MS analysis was as follows: 0 min, 40% A; 2.5 min, 45% A; 3 min, 50% A; 3.5 min,
95% A; 4 min, 45% A; 8 min, 40% A. The injection volume was 1 µL, and the flow rate was 200 µL/min.
The column temperature was held at 40 ◦C.

3.3.2. MS Analysis

Sulforaphane and indole-3-carbinol were optimized using 1 mg/L standard solution on a Shimadzu
MS-8060 triple quadrupole tandem mass spectrometer. The collision energy (CE) and the appropriate
atomization gas flow rate and drying gas flow rate were optimized. The ion source used an electrospray
ion source (ESI), with a temperature of 300 ◦C. The ion transfer capillary temperature was 275 ◦C,
the spray gas flow rate was 2.5 L/min, the dry gas flow rate was 10 L/min, and the heated gas flow rate
was 10 L/min. The heating block temperature was 400 ◦C, the DL temperature was 250 ◦C and the
scanning was performed in the positive ion mode. The MS/MS parameters for compound analysis
were shown in Table 5. The MRM chromatogram of SFN and I3C were identified by comparing the
retention time, as well as parent and product ions with the standard solutions. As shown in Figure 6,
the most abundant product ions were selected as identification points (IPs), and the other product ions
were utilized for qualitative detection.

Table 5. Mass scan parameters and retention time for sulforaphane and indole-3-carbinol.

Compound R.T
(min)

Quantitative
Ion Pair CE (eV) Qualitative

Ion pairs CE (eV) I.P. a

Sulforaphane 3.014 178.3 > 114.2 19 178.3 > 72.1 20 4
Indole-3-carbinol 2.017 148.2 > 118.2 15 148.2 > 91.1 30 4

a Identification points (IPs) are followed Commission Decision 2002/657/EC.
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3.4. Statistical Analysis

Results were expressed as average values with three replicates. Data acquisition and processing
were performed using the labSolutions software (Kyoto, Japan). Statistical analyses were performed
using the @Risk 5.5.1 software package from Palisade Co. (Palisade, Australia). Significant differences
were determined by the Student t-test at a significance level of 0.05 (p < 0.05).

4. Conclusions

In the present study, the QuEChERS-based UHPLC-MS/MS method was developed for the
simultaneous determination of sulforaphane and indole-3-carbinol in rapeseed tissues, which
achieves simplicity of the extraction and purification procedure and reduces the entire analysis
time. The recoveries for sulforaphane and indole-3-carbinol were 96.4% and 97.3%, respectively.
The LOD and LOQ for sulforaphane were 0.05 µg/kg and 0.15 µg/kg, and for indole-3-carbinol were
5µg/kg and 15µg/kg, respectively. The amount of sulforaphane and indole-3-carbinol in the leaves were
higher compared to the stems, which could be attributed to the part, variety, geography, climate and
environment conditions. The developed method is valuable for monitoring levels of sulforaphane and
indole-3-carbinol in vegetable samples. This analytic method is valuable for studying the nutritional
active ingredients of rapeseeds and the breeding of high-quality rapeseed varieties.
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