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Abstract: There is only a small acreage of planted soybeans in northern Europe, as the global
production of this crop is mainly dictated by the warmer temperatures needed for bountiful yields.
The defense response of soybean plants to a cold climate entails the secretion of specific compounds
which help mitigate oxidative stress, i.e., antioxidants, including phenolic compounds. The objective
of this study was to examine differences in the concentrations of phenolic compounds, their antioxidant
properties, and the concentration of key isoflavones (namely genistein, daidzein, malonyl daidzein,
malonyl genistein, and daidzin) in the seeds of six soybean cultivars from two different regions
of Europe, namely Poland and France. The total phenolic contents, isoflavone levels, and in vitro
antioxidant capacities of soybean seeds from most of the investigated cultivars of northeast Europe
were found to be greater than those from southwest Europe. The phenolic compounds of seed
extracts are primarily responsible for the free-radical scavenging of soybeans. Factors regulating
the production of phenolic compounds in the seeds have not been thoroughly elucidated. Hence,
the results presented in this paper can be useful in the selection of soybean cultivars with higher
levels of seed phenolics, because of their beneficial impact on human health and on the soybean’s
defense mechanism against plant stresses.
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1. Introduction

With respect to the carbon endoskeleton, phenolic compounds can be divided into four basic
groups. One group consists of hydroxybenzoic acids (C6–C1), the second comprises phenylpropionic
acids (C6–C3), the third is made up of flavonoids (including isoflavones) based on the carbon skeleton
type C6–C3–C6, and the final group is phenolics with the carbon skeleton (C15)n, which forms
tannins [1,2].

Isoflavones can be found in all plant parts, but their greatest concentration is in the seeds. Currently,
12 isoflavones have been identified in soybean seeds [3]. The most commonly reported soybean
isoflavones in literature are two aglycones (daidzein, genistein), their glucosides (daidzin, genistein),
and their malonylglysosides (malonyldaidzein, malonylgenistein) [4]. Since the 1990s, there has
been an increasing interest in the bioactive properties of isoflavones. Many studies have shown that
phenolic compounds, including isoflavones, bestow marked antioxidant properties, and that they
are an important component of the plant’s non-enzymatic defense system towards abiotic and biotic
stresses [5], e.g., thermal stress [6] or pathogens [3]. Furthermore, isoflavones have a positive effect
on human health. Soybean isoflavones have effectively reduced lipid peroxidation in low density
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lipoprotein (LDL) cholesterol molecules, significantly reduced the risk of type II diabetes [7], and may
also possess anti-cancer efficacy [8].

Under stress conditions, phenolic compounds are often synthesized in plants at elevated quantities.
Studies have implied the induction of their synthesis by stress factors, which belong to biotic impacts,
such as pathogens or lesions, and abiotic ones, like UV radiation, oxidative stress, water deficiency,
and low temperatures [9–12]. Phenolic compounds can act as antioxidants, helping to support the
endogenous enzymatic antioxidant systems in cells and to scavenge free radicals such as reactive
oxygen species [13–15]. Different plant varieties often have varying tolerance to adverse environmental
conditions. Phenolic compounds that are an important element of the plant’s defense system may
have roles as biochemical markers of stress responses [16].

As an illustration, take into account the cold Polish climate and the important role of phenolic
compounds in the protection of plants against various stresses. A possible solution is to plant cultivars
that can better adapt to the unfavorable climate; in other words, which are less sensitive to chill stress.
The purpose of this study was to compare the compositional profile and quantities of isoflavones found
in soybean seeds from cultivars bred in Poland and France (the later grown in a much warmer climate)
as well as reporting the antioxidant properties of the phenolic extracts so obtained from these seeds.

Common soybean (Glycine max L. Merr.) is an annual plant from Fabaceae (the bean family).
Soybean seeds are a valuable source of nutrients: they contain roughly 40% protein, with their amino
acid composition beneficial to human health, 20% cholesterol-free oil, including a high percentage
of lipids rich in unsaturated fatty acids, and 33% carbohydrates as well as important macrominerals
such as calcium and iron [17]. Soybean seeds also comprise functional components or bioactives,
like oligosaccharides, phytosterols, anthocyanins, phytic acid, saponins, and isoflavones [18]. According
to FOA statistics, 241 million tons of soybean seeds were produced worldwide in 2012. In northern
Europe, however, soybeans are grown on a relatively small scale due to the cooler climate. The most
favorable conditions for soybean cultivation in Europe are in the southeast, where the climate is
temperate, and in the southwest, where the growing season for crops is longest [19].

It is common knowledge that interactions of plants with their environment will impact the
biosynthesis of various secondary plant metabolites. Several years ago, phenolic compounds,
an element of the secondary metabolism, were thought to be just metabolic by-products and practically
worthless [20]. More recent studies have now demonstrated that phenolics play a significant signaling
and protective role in plants. Furthermore, they can have a broad influence on the health of humans
and animals eating these pulses [21].

2. Results

2.1. Total Phenolics Content (TPC)

The TPC results are shown in Table 1. The analysis revealed TPC values in seed extracts ranging
from 10.3 to 13.7 mg/g of extract. Among the analyzed cultivars, cv. Mazowia possessed the highest
content of phenolic compounds (13.07 mg/g of extract). Lower concentrations of phenolics were found
in the cultivars Satina (12.5 mg/g of extract), Augusta (12.4 mg/g of extract), and Progres (12.04 mg/g of
extract). The seed extract from Polish cv. Aldana contained even less phenolics (11.7 mg/g extract).
Of all cultivars examined, the lowest TPC was determined in the French variety Isidor (10.3 mg/g of
extract). In this work, the TPCs of all analyzed seeds were calculated per 100 g of fresh weight (FW)
and dry weight (DW) of the seeds, as well as per seed (Table 1).
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Table 1. The total phenolics contents (TPCs) in soybean seeds.

Variety mg/g Extract mg/100g FW mg/100g DW

Aldana 11.7 ± 0.2 c 2.13 ± 0.04 b,c 2.32 ± 0.03 b

Augusta 12.4 ± 0.1 b 2.13 ± 0.02 b 2.26 ± 0.02 c

Mazowia 13.7 ± 0.1 a 2.48 ± 0.02 a 3.01 ± 0.03 a

Progres 12.04 ± 0.2 c 2.07 ± 0.02 c 2.34 ± 0.02 b

Isidor * 10.3 ± 0.3 d 1.71 ± 0.05 d 1.77 ± 0.02 e

Satina * 12.5 ± 0.1 b 2.06 ± 0.02 c 2.16 ± 0.02 d

Means with the different letters (a,b,c,d,e) in the column are significantly different (p < 0.05). Data represent
the mean ± SD of four replicates Varieties from France are marked with an asterisk (*), the other varieties come
from Poland.

2.2. Scavening Activity and Reducing Power of Extracts

The capability of prepared extracts from different soybean seed types to scavenge free radicals
was determined by in vitro assays using two types of radicals: DPPH• and ABTS•+. The extracts
from all soybean cultivars demonstrated the capability to scavenge both of these free-radical species.
The capability of extracts to scavenge DPPH• is depicted in Figure 1A. Samples possessing the
greatest antioxidant power were characterized by the lowest absorbance reading at 517 nm (Figure 1A).
Considerable free-radical scavenging activity, at the highest extract concentration tested, was observed
by extracts from seeds of the following varieties: Aldana (A517 – 0.62), Mazowia (A517 – 0.67), Progres
(A517 – 0.68), Satina (A517 – 0.70), and Isidor (A517 – 0.73). The weakest free-radical scavenging capacity
was identified in the extract from seeds of cv. Augusta (A517 – 0.74). The capability of soybean extracts
to scavenge DPPH• is expressed in half maximal effective concentrations (i.e., EC50 values), and the
results are displayed in Figure 1B. Superior radical scavenging capacity is denoted by smaller EC50

values. The best EC50 value was observed in extracts from the variety Aldana (45.9 mg of extract/mL).
EC50 values of other extracts were as follows: Mazowia (50.2 mg of extract/mL), Progres (55.3 mg of
extract/mL), and the French variety Satina (56.1 mg of extract/mL). The weakest EC50 values were
noted in extracts from seeds of the French variety Isidor (58.7 mg of extract/mL) and Polish variety
Augusta (59.5 mg of extract/mL).
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Figure 1. The capability to scavenge the free radical DPPH• by extracts from soybean seeds (A).
Half-maximal effective concentration (EC50) of extracts from soybean seeds to scavenge DPPH• (B).
Means with the same letters (a,b,c,d,e,f) are not significantly different (p < 0.05). Data represent the
mean ± SD of four replicates. Varieties from France are marked with an asterisk (*), while the other
varieties come from Poland.

Seeds extracts for most of the analyzed cultivars exhibited a similar propensity to scavenge ABTS•+

(Table 2). Extracts prepared from seeds of the Polish cultivars Progres and Mazowia (50.6 and 50.0 µmol
Trolox/g of extract, respectively) demonstrated the best capacity at quenching ABTS•+. Lower values
were obtained for the following cultivars: Satina, Augusta, and Aldana (48.1, 46.2, and 45.4 µmol
Trolox/g of extract, respectively). The lowest antioxidant capacity of seed extracts was determined for



Molecules 2020, 25, 2075 4 of 11

the French cultivar Isidor (44.1 µmol Trolox/g of extract). The reducing power of extracts obtained from
seeds of different soybean cultivars was determined according to their capability to reduce trivalent
iron ions (Fe3+) to divalent ones (Fe2+)—this was monitored via the ferric reducing antioxidant power
(FRAP) assay. The results of these experiments are given in Table 2. Seed extracts from all analyzed
soybean cultivars were able to reduce Fe3+. The greatest capacity to do so was observed in extracts
from seeds of the cultivar Progres – 104.8 µmol Fe2+/g of extract. A weaker reducing power was
determined in extracts from seeds of the following cultivars: Satina, Augusta, and Aldana (96.8, 94.7,
and 92.2 µmol Fe2+/g of extract, respectively). Extracts from seeds of cv. Mazowia (91.2 µmol Fe2+/g of
extract) and Isidor (90.3 µmol Fe2+/g of extract) exhibited the lowest reducing power of all soybean
seed extracts tested.

Table 2. Trolox equivalent antioxidant capacity (TEAC) and ferric-reducing antioxidant power (FRAP)
in soybean seed extracts.

Variety TEAC FRAP

µmol Trolox/g of Extract µmol Fe2+/g of Extract

Aldana 45.4 ± 0.3 c,d,e 92.2 ± 6.7 a,b

Augusta 46.2 ± 1.1 d 94.7 ± 6.4 a,b

Mazowia 50.0 ± 0.3 bc 91.2 ± 4.1 b

Progres 50.6 ± 0.2 a 104.8 ± 4.8 a

Isidor * 44.1 ± 0.4 e,d 90.3 ± 5.6 b

Satina * 48.1 ± 1.4 c 96.8 ± 4.8 a

Means with the different letters (a,b,c,d,e) in the column are significantly different (p < 0.05). Data represent the
mean ± SD of four replicates. Varieties from France are marked with an asterisk (*), the other varieties come
from Poland.

2.3. Isoflavones Composition

Separation of the phenolic compounds in the seed extracts from the six soybean cultivars was
achieved by reversed-phase high performance liquid chromatography (RP-HPLC). This procedure
enabled us to identify the main phenolic compounds, which were found to be isoflavones. Figure 2
illustrates a typical chromatogram for the separation of the isoflavones in one of the soybean extracts,
with retention times and absorbances for identified compounds. The following compounds were
chromatographed and elucidated: daidzein, genistein, malonyldaidzein, malonylgenistein, daidzin,
and genistin.
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Figure 2. Chromatogram of resolved isoflavones in seed extracts of the soybean cultivar Aldana.
The retention times of identified compounds were as follows: 1-daidzein-26 min; 2-genistein-33 min;
3-malonyldaidzein-34 min; 4-malonylgenistein-39 min; 5-daidzin-42 min; and 6-genistin-48 min.
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LC-QTOF analyses confirmed that malonyldaidzein and malonylgenistein were present in all
analyzed extracts. The concentrations of isoflavones in seed extracts from the six investigated soybean
cultivars are given in Table 3. Marked quantities of daidzein were detected in seed extracts from
the cultivars: Mazowia, Progres, Satina, and Augusta (3.03, 2.66, 2.51, and 2.33 mg/g of extract,
respectively), whereas significantly lower quantities of daidzein were determined in seed extracts from
the cultivars: Aldana (2.44 mg/g of extract) and Isidor (1.73 mg/g extract). Considerable and similar
amounts of genistein were determined in seed extracts from the cultivars: Progres, Mazowia, Augusta,
and Satina (4.48, 4.3, 3.72, and 3.6 mg/g of extract), whereas markedly less of this isoflavone was
detected in seed extracts from the soybean cultivars: Aldana (3.33 mg/g of extract) and Isidor (2.68 mg/g
of extract). Another identified isoflavone derivative was malonyldaidzein: it occurred in large and
similar concentrations in extracts from seeds of the following soybean cultivars: Mazowia, Aldana,
Progres, Satina, Augusta (6.30, 5.90, 5.41, 5.23, and 5.15 mg/g of extract, respectively). On the other
hand, less of this particular isoflavone was determined in the seed extract from cv. Isidor (3.83 mg/g
of extract). The compound that appeared in the highest concentration in all analyzed samples was
malonylgenistein. It occurred in similar concentrations in soybean seed extracts from the varieties:
Augusta, Progres, Mazowia, Aldana and Satina (7.96, 7.28, 7.23, 7.04, and 6.52 mg/g of extract).
Markedly less malonylgenistein was found in extracts from seeds of cv. Isidor (5.81 mg/g of extract).
Another analyzed compound, daidzin, was detected in substantial concentrations in seed extracts
from cv. Satina (0.3 mg/g of extract). In contrast, it was detected in markedly lower levels in extracts
from seeds of the cultivars: Mazowia, Augusta, Progres, Aldana, and Isidor (0.21, 0.19, 0.19, 0.18, and
0.16 mg/g of extract). One final identifiable isoflavone was chromatographed, namely geistin. Its high
and similar content was detected in extracts from seeds of the cultivars: Satina, Progres, and Mazowia
(0.26, 0.25, 0.2 mg g−1 of extract, respectively). Markedly less genistin was found in soybean seed
extracts from the cultivars Aldana, Augusta, and Isidor (0.18, 0.17 and 0.1 mg/g of extract). Finally,
it should be mentioned that a high and comparable total content of isoflavones was characteristic for
seed extracts from the cultivars Mazowia, Progres, Augusta, Aldana, and Isidor (21.3, 20.27, 19.52,
18.87, and 18.42 mg/g of extract). Conversely, a lower total content of isoflavones was determined in
extracts from soybean seeds of cv. Isidor (14.31 mg/g of extract).

Table 3. Content of isoflavones in extracts from soybean seeds.

Variety Isoflavones (mg/g-of Extract)

Daidzein Genistein Malonyldaidzein Malonylgenistein Daidzin Genistin Total

Aldana 2.24 ± 0.13 d 3.33 ± 0.19 c 5.91 ±0.34 a,b 7.04 ± 0.44 a 0.18 ± 0.03 b 0.18 ± 0.02 c 18.87 ± 2.23 a,b

Augusta 2.33 ± 0.22 c,d 3.72 ± 0.21 b,c 5.15 ± 0.21 c 7.96 ± 0.69 a 0.19 ± 0.01 b 0.17 ± 0.03 c 19.52 ± 2.17 a,b

Mazowia 3.05 ± 0.16 a 4.31 ± 0.31 a,b 6.33 ± 0.34 a 7.23 ± 0.89 b 0.21 ± 0.02 b 0.21 ± 0.01 b,c 21.3 ± 1.74 a

Progres 2.66 ± 0.14 b 4.48 ± 0.33 a 5.41 ± 0.53 c 7.28 ± 1.03 b 0.19 ± 0.02 b,c 0.25 ± 0.03 b 20.27 ± 1.59 a,b

Isidor * 1.73 ± 0.05 e 2.68 ± 0.14 d 3.83 ± 0.39 d 5.81 ± 0.12 b 0.16 ± 0.01 c 0.11 ± 0.01 d 14.31 ± 1.14 c

Satina * 2.51 ± 0.06 b,c 3.62 ± 0.19 b,c 5.23 ± 0.31 b,c 6.52 ± 0.62 b 0.30 ± 0.03 a 0.26 ± 0.01 a 18.42 ± 1.33 b

Means with different letters (a,b,c,d,e) in the column are significantly different (p < 0.05). Data represent the
mean ± SD of three replicates. Varieties from France are marked with an asterisk (*), the other varieties come
from Poland.

3. Discussion

Soybeans are grown mostly in the USA, Brazil, China, and India. This pattern of global distribution
is mainly dictated by the high thermal and soil requirements of this plant [22,23]. Under northern
Europe conditions, soybean seeds are often sown in chilled soil, and during spring, the emerging plants
are often exposed to short spells of cold. This is the main cause for the plant’s uneven emergence, seed
setting, delayed flowering, and often low yields [24]. The Polish register of crops, COBOR, contains
eight soybean cultivars, namely Aldana, Augusta, Jutro, Mazowia, Nowiko, Progres, Pripyat, and
Yanina. Of the varieties compared herein, it was only cv. Aldana that yielded above the average (104%
of the model), whereas Augusta and Nowiko achieved 98% and 96% of the model yield. Regarding the
other cultivars, there are no comparative data available to discuss their yields [25]. Kozak et al. [26]
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verified that the main determinants of seed yield are the minimum air temperature, amplitude of
temperatures, and mean daily air temperature.

The main purpose of this study was to compare the quantities and composition of phenolic
compounds in seeds of Polish and foreign (i.e., French) soybean cultivars. It is rather uncertain what
factors regulate the production and distribution of phenolic compounds in soybean seeds. It is believed
that an elevated level of phenolics in seeds protects them better from the harmful impact of both biotic
and abiotic stresses. It is also claimed that these compounds can bestow beneficial effects on the human
health. The present study found that the content of phenolic compounds in soybean seeds from most
of the Polish cultivars analyzed (Aldana, Mazowia, and Progres) was higher than those in the French
varieties (Isidor and Satina), thereby possibly indicating an important role of phenolic compounds in
the adaptation of Polish cultivars to the local climatic conditions. Seeds of the Polish cultivar Augusta
possessed a much lower content of phenolic compounds than any of the other Polish varieties. In fact,
similar to the levels detected in the French cultivars. Furthermore, it was noted that this cultivar was
characterized by a low yield based on the climatic conditions of Poland [25]. Phenolic extracts from
these seeds were also distinguished by a low free-radical scavenging capacity.

Prakash et al. [27] analyzed 30 soybean cultivars from India, of which the highest content of
phenolic compounds was determined for cv. Kalitur, whose seeds are black. In another study, it was
shown that the phenolic compounds were partitioned differently between the top and bottom seed
nodes [28]. Another finding indicated that the average TPC in green soybean sprouts was higher
than in yellow counterparts when grown under dark conditions [29]. Other researchers have noted
that phenolic metabolism in germinating soybean seeds is much more intensive in response to low
temperature and osmotic stress, and remains at a high level during recovery after this stress [30].
Under stress conditions, the amount and composition of identified phenolic acids and isoflavones
changes. This indicates the important role of phenolic compounds in alleviating the effects of abiotic
stress during the germination of soybean seeds, and offers new perspectives for further investigation.
Of particular note are phytoalexins, which are synthesized intensively when a plant is invaded by fungi
following a bacterial or viral infection. Pisatin is the most thoroughly investigated phenolic phytoalexin.
It is an isoflavonoid synthesized in pea pods after an infection with brown-rot fungus. The latest
proteomic research has shown that 6a-hydroxymaackian-3-O-methyltransferase, which is involved in
the synthesis of pisatin, was present, but only under osmotic stress conditions, thereby denoting its key
role in the acquisition of stress tolerance by plants [31]. The identified protein, 6a-hydroxymaackian
methyltransferase, can serve as an object for an engineering strategy, involved in certain new plant
varieties that will be more resistant to unfavorable environmental conditions.

Isoflavones, a class of flavonoid in soybean seeds, have been found to possess important secondary
compounds with many chemical actions. Especially useful seems to be their antioxidant and anticancer
actions [29]. Numerous studies have demonstrated a correlation between isoflavone contents and the
soybeans cultivation environment [28,32,33].

The soybean phenolic extracts analyzed in this study by RP-HPLC contained the following
six isoflavonoids: daidzein, genistein, daidzin, genistin, malonyldadzein, and malonylgenistein.
These are the major soybean flavonoids, as has been reported by numerous researchers [4,33–37].
These isoflavonoids were detected in high concentrations in the seed extracts, and ranged from 14.31
to 21.3 mg/g of extract. This study indicates that, despite differences in quantities of individual
compounds in the various seed extracts, only extracts from the seeds of the French cultivar Isidor were
characterized by a significantly lower total content of isoflavones than any others. The total content of
isoflavones in seed extracts from all analyzed cultivars here is within the range of the levels determined
for seeds of different soybean cultivars [13,32,38,39]. According to Seo and Morr [40], the content of
isoflavonoids constitutes about 72% of all phenolic compounds in soybean seeds. Isoflavones are very
powerful antioxidants, especially those occurring in their free form, such as genistein and dadzein,
which possess the highest antioxidant power of all isoflavones in foodstuffs [33]. Depending on the
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quantity and composition of isoflavones, different types of soybean and soybean products demonstrate
varied antioxidant activity [41].

The research findings reported in this paper show that seed extracts from the analyzed soybean
varieties have a high capacity to reduce the DPPH radical and the ABTS radical cation. The weakest
power to scavenge free radicals was observed for cv. Augusta, while the other cultivars, namely
Aldana, Mazowia, Progres, Isidor, and Satina, demonstrated a similar or greater scavenging power.
Seed phenolic extracts from the aforementioned cultivars from India are highly varied in their capacity
to scavenge free radicals. Analogous to our investigation, a correlation was determined between the
content of phenolic compounds and their capability to scavenge free radicals by extracts prepared
from these seeds [26]. Malencic et al. [42] also demonstrated a linear dependence between the content
of phenolic compounds in seeds and the capacity of extracts isolated from these seeds to scavenge
free radicals.

4. Materials and Methods

4.1. Chemicals

Folin-Ciocalteu’s phenol reagent (FCR), (+)-catechin, sodium carbonate, gallic acid,
2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS),
2,4,6-tri(2-pyridyl)-S-triazine (TPTZ), 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (Trolox),
trifluoroaceitc acid, daidzein, genistein, malonyldaidzein, malonylgenistein, daidzin, and genistin
were obtained from the Sigma-Aldrich Chemical Company (St. Louis, MO, USA). Methanol, acetone,
hexane, acetonitrile, acetic acid, ferric chloride, and potassium persulfate were acquired from Chempur
(Piekary Śląskie, Poland).

4.2. Plant Material

The biological material used in these experiments comprised seeds of six cultivars of common
soybeans (Glycine max L.), four Polish cultivars, namely Aldana, Augusta, Mazowia, and Progres,
and two French ones, namely Isidor and Satina. The Polish cultivars originated from the Central
Research Station on Crop Cultivars in Słupia Wielka, while the French ones were supplied by Actisem
(le Jardin, Francescas, France). The dry matter of seeds was determined by drying at 105 ◦C for 24 h.

4.3. Phenolic Compounds Extraction

Seeds from six varieties of soybeans were ground in a coffee mill and defatted with hexanes
using a Soxhlet apparatus for 6–8 h. Phenolic compounds were extracted from the defatted raw seeds
with 80% (v/v) acetone and 80% (v/v) methanol at a solids-to-solvent ratio of 1:10 (w/v) at 50 ◦C for
30 min [43]. The extraction was carried out in glass bottles in a shaking water bath (Elpan 357, Wrocław,
Poland). The extraction was repeated two more times, the supernatants were filtered and combined.
The organic solvent was then evaporated under vacuum using a Büchi rotary evaporator (Flawil,
Switzerland) and water bath set at 40 ◦C. The resultant aqueous solutions was frozen and lyophilized.

4.4. Total Phenolics Content (TPC)

The TPC in extracts was determined using Folin–Ciocalteu’s phenol reagent (FCR), Sigma-Aldrich
Chemical Company (St. Louis, MO, USA) [44]. To 0.25 mL of a methanolic solution of phenolic extract
(containing between 0.1 to 0.2 mg of extract) was added 0.25 mL of a saturated sodium carbonate
solution, 0.25 mL Folin–Ciocalteu’s phenol reagent, and 4 mL of deionized water. The mixture was
vortexed and then incubated at room temperature in dark for 0.5 h. After this period, the absorbance
was read at 725 nm using a spectrophotometer. (+)-Catechin was employed as the standard.
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4.5. Scavenging of the DPPH Radical

The scavenging effect of phenolic compounds from the extracts was measured accordance to Yen
and Chen [45]. Briefly, 0.1 mL of a methanolic solution of phenolic extract (containing 0.05 to 0.1 mg of
extract) was mixed with 2 mL of deionized water, to which a freshly prepared methanolic solution of
DPPH• (1 mM, 0.25 mL), Sigma-Aldrich Chemical Company (St. Louis, MO, USA) was then added.
The mixture was vortexed and incubated at room temperature for 20 min. The absorbance was read at
517 nm using a spectrophotometer. The results were presented as half maximal effective concentrations
to quench the DPPH• (EC50) in units of mg of extract/mL.

4.6. Trolox Equivalent Antioxidant Capacity (TEAC)

The TEAC assay was carried out in accordance with Huang et al. [46]. Briefly, 0.1 mL of a
methanolic solution of phenolic extract (containing 0.1 to 0.5 mg of extract) was added to 0.1 mL
of methanol (Chempur (Piekary Śląskie, Poland)) and 2 mL of ABTS•+ (Sigma-Aldrich Chemical
Company (St. Louis, MO, USA)). The mixture was vortexed and incubated in the dark at 32 ◦C for
20 min. The absorbance was read at 734 nm using a spectrophotometer. A calibration curve was
prepared using Trolox (Sigma-Aldrich Chemical Company (St. Louis, MO, USA)) as the standard.
Results were reported as µmol Trolox equivalents/g of extract.

4.7. Ferric-Reducing Antioxidant Power

Reducing powers of the phenolic extracts were determined using the FRAP assay [47]. Briefly, 0.1
to 0.5 mg of phenolic extract was dissolved in 0.1 mL of deionized water, to which 3 mL of freshly
prepared FRAP reagent (acetic acid buffer of pH 3.6 TPTZ (2,4,6-tris(2-pyridyl)-S-triazine) was added.
The mixture was incubated for 30 min at ambient temperature. After incubation, the absorbance was
read at 593 nm. The results were expressed as µmol Fe2+/g of extract.

4.8. Isoflavones Analysis

An RP-HPLC Shimadzu system (Shimadzu, Kyoto, Japan) was used to analyze the isoflavones in
the extracts from the soybean seeds. The phenolic extracts were dissolved in 80% (v/v) methanol and
passed through a 0.45 µm nylon filter prior to injection [48]. The separation was carried out using a
gradient elution. The A solvent consisted of a mixture of water, acetonitrile, and trifluoroaciteic acid
(95:5:1 v:v:v), while the B solvent comprised acetonitrile and trifluoroaceitc acid (Chempur (Piekary
Śląskie, Poland, 100:1 v:v)). The flow of solvent B in the linear gradient was from 0% to 40% over
60 min. The analysis of each phenolic extract was performed in triplicate. Linearity of the detector
responses was determined for daidzin and genistein (range of 0.05 to 0.15 mg/mL), daidzein (range of
0.01 to 0.04 mg/mL), and genistin (range of 0.02 to 0.08 mg/mL). The relation between area under a
peak and standard concentrations was characterized by a correlation coefficient of 0.997 for genistein,
and 0.998 for daidzin, daidzein, and genistein.

Next, the analysis of soybean isoflavones were continued using a micro-HPLC system (LC200,
Eksigent, Framingham, MA, USA) consisting of a dual-channel pump, column oven, autosampler, and
system controller. The micro-HPLC was coupled to a 5600 QTOF mass spectrometer (SCIEX, Ontario,
Canada). Five µL of each sample were injected onto the chromatography column, HALO C18, 2.7 µm,
0.5 × 50 mm (Eksigent, Framingham, MA, USA). All chromatographic determinations were performed
at 45 ◦C, at a mobile phase flow rate of 15 µL/min, using the following gradient: 5–5–90–90–5–5% B
in 0–0.5–1.8–2.8–3–5 min (phase A: water/formic acid, 99.1/0.9 (v/v) phase B: acetonitrile/formic acid,
99.1/0.9 (v/v)).

QTOF conditions in the negative-ion mode were as follows: nitrogen curtain gas, 25 L/min;
ion-spray source voltage, −4500 V NEG; temperature, 350 ◦C; nebulizer gas 1, 35 L/min; turbo gas,
30 L/min; Q1/Q2, DP −90/−80 V; CE −10/−10 V (CE10/30); and CES 15 V.
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QTOF conditions in the positive-ion mode were as follows: nitrogen curtain gas, 25 L/min;
ion-spray source voltage, 5500V POS; temperature, 350 ◦C; nebulizer gas 1, 35 L/min; turbo gas,
30 L/min; Q1/Q2, DP 90/80 V; CE 10/10 V (CE10/30); and CES 15 V.

4.9. Statistical Analysis

Antioxidant assays and HPLC separations and identification of isoflavones were performed for at
least three repetitions. All results were presented as means ± standard deviations (SD). Significance of
differences among mean values were analyzed using a nonparametric test (Friedman and Wilcoxon
test) at a level of p < 0.05 in software Statistica.

5. Conclusions

The research presented in this paper has demonstrated that the total content of phenolic compounds
and antioxidant capacities in extracts of soybean seeds for most of the examined Polish cultivars was
higher than those of the French varieties. Thus, it can be concluded that it is the phenolic compounds
enclosed in seed extracts that are mostly responsible for the free-radical scavenging capacity in soybean
seeds. Isoflavones were determined in all investigated soybean extracts: genistein, daidzein, malonyl
daidzein, malonyl genistein, and daidzin were detected. Noteworthy is that the factors regulating
the production of phenolic compounds in seeds have not been thoroughly recognized in literature.
Consequently, many teams of researchers conduct experiments in order to select soybean seeds with
higher levels of seed phenolics, because of their beneficial impact on human health and on soybean’s
defense mechanism against both biotic and abiotic stresses.

Author Contributions: Conceptualization, A.K.-G. and R.A.; methodology, R.A.; software and validation, A.K.-G.;
formal analysis, A.K.-G. and R.A.; investigation, A.K.-G. and R.A.; writing—original draft preparation, A.K.-G.;
supervision, R.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dixon, R.A.; Summer, L.W. Legume natural products: Understanding and manipulating complex pathways
for human and animal health. Plant Physiol. 2003, 131, 878–885. [CrossRef] [PubMed]

2. Muchaweity, M.; Ndhlala, A.R.; Ksiamhuru, A. Analysis of phenolic compounds including tannins,
gallotannins and flavanols of Uapaca kirkiana fruit. Food Chem. 2006, 94, 415–419. [CrossRef]

3. Deng, J.; Qin, W.; Yang, C.; Iqbal, N.; Takpah, D.; Zhang, J.; Yang, W.; Liu, J. Seed quality deterioration
dynamics for isoflavones biosynthesis in soybean (Glycine max L. Merr.) seeds against field mildew stress.
Acta Physiol. Plant. 2019. [CrossRef]

4. Kalaiselvan, V.; Kalaivani, M.; Vijayakumar, A.; Sureshkumar, K.; Venkateskumar, K. Current knowledge and
future direction of research on soy isoflavones as a therapeutic agents. Pharmacogn. Rev. 2010, 4, 111–117.
[CrossRef] [PubMed]

5. Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid
pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [CrossRef]

6. Carrera, C.S.; Dardanelli, J.L. Changes in the relationship between temperature during the seed-filling
period and soya bean seed isoflavones under water-deficit conditions. J. Agron. Crop Sci. 2016, 202, 421–432.
[CrossRef]

7. Villegas, R.; Gao, Y.T.; Yang, G.; Li, H.L.; Elasy, T.A.; Zheng, W. Legume and soy food intake and the incidence
of type 2 diabetes in the Shanghai Women’s Health study. Am. J. Clin. Nutr. 2008, 87, 162–167. [CrossRef]

8. Santell, R.C.; Kieu, N.; Helferich, W.G. Genistein Inhibits Growth of Estrogen-Independent Human Breast
Cancer Cells in Culture but Not in Athymic Mice. J. Nutr. 2000, 130, 1665–1669. [CrossRef]

9. Rivero, R.M.; Ruiz, J.M.; Garcia, P.C.; Lopez-Lefebre, L.R.; Sanchez, E.; Romero, L. Resistance to cold and heat
stress: Accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci. 2001, 160, 315–321.
[CrossRef]

http://dx.doi.org/10.1104/pp.102.017319
http://www.ncbi.nlm.nih.gov/pubmed/12644640
http://dx.doi.org/10.1016/j.foodchem.2004.11.030
http://dx.doi.org/10.1007/s11738-019-2845-6
http://dx.doi.org/10.4103/0973-7847.70900
http://www.ncbi.nlm.nih.gov/pubmed/22228950
http://dx.doi.org/10.3390/molecules24132452
http://dx.doi.org/10.1111/jac.12147
http://dx.doi.org/10.1093/ajcn/87.1.162
http://dx.doi.org/10.1093/jn/130.7.1665
http://dx.doi.org/10.1016/S0168-9452(00)00395-2


Molecules 2020, 25, 2075 10 of 11

10. Dixon, R.A.; Achnine, L.; Kota, P.; Liu, C.J.; Srinivasa, M.S.; Wang, L. The phenylpropanoid pathway and
plant defence a genomics perspective. Mol. Plant Pathol. 2002, 3, 371–390. [CrossRef]

11. Król, A.; Amarowicz, R.; Weidner, S. Changes in the composition of phenolic compound and antioxidant
properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress.
Acta Physiol. Plant. 2014, 36, 1491–1499. [CrossRef]

12. Król, A.; Amarowicz, R.; Weidner, S. The effects of cold stress on the phenolic compounds and antioxidant
capacity of grapevine (Vitis vinifera L.) leaves. J. Plant Physiol. 2015, 189, 97–104. [CrossRef]

13. Heim, K.E.; Tagliaferro, A.R.; Boblya, D.J. Flavonoid antioxidants: Chemistry, metabolism and
structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [CrossRef]

14. Filip, V.; Plockova, M.; Smidkral, J.; Spickova, Z.; Melzoch, K.; Schmidt, S. Resveratrol and its antioxidant
and antimicrobial effctiveness. Food Chem. 2003, 83, 585–593. [CrossRef]

15. Oh, M.M.; Trick, H.N.; Rajashekar, C.B. Secondary metabolism and antioxidants are involved in environmental
adaptation and stress tolerance in lettuce. J. Plant Physiol. 2009, 166, 180–191. [CrossRef]

16. Boscaiu, M.; Sánchez, M.; Bautista, I.; Donat, P.; Lidón, A.; Llinares, J.; Llul, C.; Mayoral, O.; Vicente, O.
Phenolic Compounds as Stress Markers in Plants from Gypsum Habitats. Bull. Univ. Agric. Sci. Vet. Med.
2010, 67, 1843–5394.

17. Crouse, J.R.; Morgan, T.; Terry, J.G. A randomized trial comparing the effect of casein with that of soya
protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoproteins.
Arch. Intern. Med. 1999, 159, 2070–2076. [CrossRef]

18. Kwak, C.S.; Lee, M.S.; Park, S.C. Higher antioxidant properties of chungkookjang, a fermented soybean
paste, may be due to increased aglycone and malonyl glycoside isoflavone during fermentation. Nutr. Res.
2007, 27, 719–727. [CrossRef]
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