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Abstract: Nucleoside analogues have proven to be highly successful chemotherapeutic agents in the 
treatment of a wide variety of cancers. Several such compounds, including gemcitabine and 
cytarabine, are the go-to option in first-line treatments. However, these materials do have 
limitations and the development of next generation compounds remains a topic of significant 
interest and necessity. Herein, we discuss recent advances in the chemical synthesis and biological 
evaluation of nucleoside analogues as potential anticancer agents. Focus is paid to 4′-heteroatom 
substitution of the furanose oxygen, 2′-, 3′-, 4′- and 5′-position ring modifications and the 
development of new prodrug strategies for these materials. 

Keywords: nucleoside analogue; anti-cancer; chemical synthesis; heteroatom replacement; 
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1. Introduction  

A significant proportion of current chemotherapeutic treatments for cancer involve the use of 
anti-metabolites, particularly modified nucleoside analogues that possess a capability to mimic 
native purine or pyrimidine nucleosides which can disrupt metabolic and regulatory pathways [1]. 
These molecules can be taken up by nucleoside transporters and then phosphorylated to their mono-, 
di- and triphosphate forms where they are able to interfere with DNA/RNA synthesis and repair; for 
example, by acting as chain terminators [2] or ribonucleotide reductase inhibitors [3]. Other notable 
modes of action include epigenetic regulation, through inhibition of DNA regulatory proteins, such 
as DNA methyltransferase [4]. Selected current examples of anticancer nucleoside analogues 
approved for chemotherapeutic treatment regimens include capecitabine, gemcitabine 1, clofarabine 
2 and cytarabine (Ara-C) 3 (Figure 1). 

 
Figure 1. Gemcitabine 1, clofarabine 2 and Ara-C 3. Modifications compared to native D-ribo-
configured purine or pyrimidine nucleosides are shown in blue. 
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Therapeutic intervention using nucleoside analogues is not without its problems and their use 
is often limited by poor cellular uptake, low conversion to the active triphosphate metabolite, rapid 
degradation or clearance and development of resistance profiles in certain cell types [5,6]. 
Consequently, research continues to develop next generations of nucleoside analogues that overcome 
some of these limitations and provide new therapeutic options.  

This class of antimetabolite also possess a proud history, and current frontline treatment, as 
antiviral [7–12] and, more recently, antibacterial agents [13]. Indeed, the development of nucleoside 
analogues has a symbiotic relationship between compound class and final therapeutic treatment. For 
example, gemcitabine 1 was developed as an antiviral, but was subsequently shown to be very toxic 
to leukaemia cells.  

In this review, we survey developments from 2010 onwards for the chemical synthesis and 
evaluation of modified nucleoside analogues for anticancer research. Specifically, focusing on 
alterations to the native furanose ring (Figure 2) and generally retaining native purine or pyrimidine 
nucleobases. Comprehensive reviews concerning hetero-base modifications and general trends in 
nucleotide synthesis have been covered elsewhere [14,15]. The review is divided into sections that 
systematically consider: i) furanose 4’-oxygen atom replacements with N, S, Se and C ii) 2′-, 3′-, 4′- or 
5′-position furanose ring modifications and iii) new prodrug approaches to deliver nucleoside 
analogues. 

 
Figure 2. General scope for nucleoside analogues covered in this review. Base = purine or pyrimidine 
(i.e., C, U, T, A, G or close derivative thereof). X = heteroatom or carbon and Y and Z = ring functional 
group or modification of native D-ribo stereochemistry. 

2. Furanose Oxygen Atom Replacements 

2.1. Azanucleosides 

Azanucleosides were originally defined as nucleoside analogues where the furanosyl oxygen is 
replaced by nitrogen, however this group of analogues has been extended to include nucleosides 
where the resultant pyrrolidine core has been replaced by other nitrogen containing rings, including 
heterocycles, heterotricycles and acyclic nitrogen-containing nucleosides [16,17]. This class of 
compound have proven successful in the treatment of cancer [18] and have also been established as 
having antiviral and antibacterial properties [19].  

2.1.1. Development of Forodesine 

Purine nucleoside phosphorylases (PNPs) are responsible for the phosphorolytic metabolism of 
purine nucleosides to ribose/deoxyribose phosphate and the corresponding nucleobase. Patients with 
abnormally low levels of PNP possess little T-cell immunity due to a severely reduced degradation 
of deoxyguanosine, which results in the accumulation of the corresponding triphosphate (dGTP). 
This then reduces the activity of ribonucleotide reductase and induces apoptosis. As such, human 
PNP inhibitors are potential treatments for T-cell lymphomas [17]. Immucillin H (forodesine) 4 
(Figure 3) is a highly potent PNP inhibitor (IC50 = 0.48–1.57 nM) which is effective against T-cell 
malignancies and was found to have excellent oral bioavailability in mice (63%) [20].  

Forodesine is a gradual onset drug which binds tightly to PNP with a high affinity (Ki = 0.023 
nM) [21]. Whilst clinical development of 4 was discontinued in the US and Europe, it was recently 
approved for use in the treatment of relapsed/refractory peripheral T-cell lymphoma (PCTL) in Japan 
(April 2017) [22].  
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Figure 3. Structure of forodesine 4. 

Forodesine is a guanosine analogue and a transition state inhibitor of PNP with 100–1000-fold 
higher potency than previously identified inhibitors [23]. Due to the combined substitution of the 
furanosyl oxygen with nitrogen and the C-glycosidic bond, 4 is not incorporated into DNA, acting 
only as a highly selective PNP inhibitor [22]. Also noteworthy is an adenosine mimetic of 4 which is 
currently under development as a broad-spectrum antiviral [24].  

In 2000, Tyler et al. described a linear synthesis of 4 in a satisfactory 39% yield over 10 steps 
(Scheme 1) [25]. Starting from 5, synthesised in nine steps by known methods from D-gulonolactone 
[26], the pyrrolidine was treated with N-chlorosuccinimide (NCS), obtaining the 1-chloro anomeric 
glycoside which subsequently underwent elimination using lithium tetramethylpiperidine (LiTMP) 
to afford imine 6. The nucleobase was next assembled via addition of lithiated acetonitrile to afford 
7, followed by protection of the furanosyl nitrogen giving 8 and treatment with Bredereck’s reagent 
to afford enamine 9. Acid-catalysed hydrolysis of 9 delivered enol 10 which was reacted with ethyl 
glycinate to obtain enamine 11. Treatment of 11 with excess benzyl chloroformate and 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) revealed 12 and subsequent hydrogenolysis of the N-Cbz 
group provided pyrrole 13. Completion of the carbocyclic nucleobase was achieved via treatment of 
13 with formamidine acetate and acidic removal of the silicon, nitrogen and isopropylidene 
protecting groups, to afford 4. 

 
Scheme 1. Reagents and conditions: (i) NCS, pentane; (ii) LiTMP, −78 °C, 36% over two steps; (iii) 
nBuLi, MeCN, THF, −78 °C then tetramethylpiperidine −78 °C, 100%; (iv) (Boc)2O, CH2Cl2; (v) 
tBuOCH(NMe2)2, DMF, 70 °C; (vi) THF, AcOH, H2O, 72% from 7; (vii) H2NCH2CO2Et.HCl, NaOAc, 
MeOH (viii) ClCO2Bn, DBU, CH2Cl2, reflux, 67% from 10; (ix) H2, Pd/C, EtOH; (x) H2NCH=NH.AcOH, 
EtOH, reflux, 91% from 12 and (xi) TFA, 81%. 

Forodesine was found to have low oral bioavailability (<11%) in primates, contrary to the case 
in mice (63% [20]) and was thus originally developed as an intravenous formulation [21]. In 2005, 
Morris, Jr et al. synthesised BCX-3040, the 2′-deoxy analogue of 4, and comparatively evaluated its 
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oral pharmacokinetic and pharmacodynamic properties in an effort to maintain potency and deliver 
oral bioavailability [27]. This was hypothesised from 2′-deoxyguanosine exhibiting tight binding to 
PNP [28] and therefore a possible redundancy for the 2′-OH. Starting from vinyl bromide 14 (Scheme 
2), the 9-deazapurine underwent bromine-lithium exchange and addition to imine 6, obtaining 
nucleoside 15 in 85% yield. Subsequent removal of 5′-O-TBS and 2′,3′-O-isopropylidene groups gave 
16, followed by 3’,5’-OTIPDS protection to afford 17. The free 2′-hydroxyl group was then converted 
to thiocarbonate 18 and deoxygenated via treatment with 1,1′-azobis(cyclohexane-1-carbonitrile) in 
excellent yield (91%) to give 19. Deprotection was completed in two steps, first cleaving the 
CH2OCH2Ph (BOM) group, followed by acidic hydrolysis and hydrochloride salt formation to obtain 
BCX-3040 in 83% yield (from 19) 

 
Scheme 2. Reagents and conditions: (i) 6, nBuLi, anisole, ether, −70 °C; (ii) (Boc)2O, CH2Cl2, 85% over 
two steps; (iii) 1M HCl, MeOH, 30 °C, 96%; (iv) 1,3-Dichloro-1,1-3,3-tetraisopropyldisiloxane, 
pyridine, 81%; (v) O-Phenyl chlorothionoformate, MeCN, 90%; (vi) 1,1′-Azobis(cyclohexane-1-
carbonitrile), toluene reflux, 91%; (vii) Pd(OH)2, H2, EtOH, conc. NH4OH, 90% and (viii) conc. HCl, 
MeOH, reflux, 83%. 

In vitro biological evaluation of BCX-3040 confirmed it to be a potent PNP inhibitor, with near 
identical IC50 values to 4 (BCX-3040 IC50 = 3.1 ± 0.50 nM and 4 IC50 = 1.2 ± 0.21 nM). Administration of 
5.0 mg of 4 had a 12.6-fold greater 2′-deoxyguanosine response than administration of 10.0 mg of 
BCX-3040, indicating a reduced bioavailability for BCX-3040. Furthermore, following IV 
administration of 5 mg/kg of BCX-3040, the plasma concentration of BCX-3040 dropped rapidly to 
3.0 ± 0.31 µg/mL. Overall, due to the observed rapid clearance and reduced bioavailability of BCX-
3040, it was concluded to be a poorer PNP inhibitor candidate in comparison to 4. 

2.2. Thionucleosides 

4′-Thiofuranoses are of known importance in biological systems, for example as chemical 
biology or biomedical tools [29], and possess chemotherapeutic activity [30,31]. Furthermore, the 
thioaminal moiety within 4′-thiofuranosyl nucleosides has been proven to be resistant to metabolic 
hydrolysis in comparison to native 4′-oxa analogues [32]. In the early 1990s, Secrist, Montgomery and 
co-workers stimulated interest in this class of molecule with their synthesis and biological evaluation 
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of 2′-deoxy-4′-thiopyrimidine nucleosides [30]. Since then, there has been a resurgence of interest in 
the synthesis and evaluation of these compounds as potential antiviral and chemotherapeutic agents. 

2.2.1. 2′-Modfied Thionucleosides 

Yoshimura et al. reported the synthesis and biological evaluation of 4’-thia-1-(2-deoxy-2-C-
methylene-β-D-erythro-pentofuranosyl)cytosine (4’-thio-DMDC) 28β and 2’-deoxy-2’-fluoro-arabino-
4’-thiacytidine 33β as potential antitumour agents [33–35]. Their synthesis of 28 started from 1,2,5,6-
diisopropylidene-D-glucose 20 and a series of protecting group manipulations delivered 3-O-benzyl 
D-xylose methyl glycoside 21 (Scheme 3). Mesylation of the 2- and 5-hydroxyl groups enabled 
reaction with sodium sulfide to afford 2,5-bicyclic intermediate 22 as a mixture of anomers. Following 
conversion of 22 to 4-thioarabinofuranose 23, the 2-position hydroxyl group was oxidised and the 
ketone homologated using a Wittig reagent to install the 2-methylene component, with this material 
then oxidised to sulfoxide 24. 

 
Scheme 3. Reagents and conditions: (i) BnBr, NaH, DMF, THF; (ii) 2M HCl, THF; (iii) NaIO4, H2O, 
MeOH; (iv) NaBH4, MeOH, 84% from 20; (v) 5% HCl/MeOH, 91%; (vi) MsCl, pyridine; (vii) Na2S, 
DMF, α-anomer 78% from 21, β-anomer 73% from 21; (viii) 4M HCl, THF; (ix) NaBH4, MeOH, 90% 
from 2; (x) TBDPSCl, imidazole, DMF, 87%; (xi) Ac2O, DMSO; (xii) Ph3PCH3Br, NaH, t-amyl alcohol, 
THF; (xiii) BCl3, CH2Cl2, −78 °C then MeOH, pyridine, 92%; (xiv) m-CPBA, CH2Cl2, −78 °C, 74% from 
23; (xv) 25, TMSOTf, ClCH2CH2Cl, 0 °C, 29%; (xvi) TBAF, THF and (xvii) aqueous NH3, MeOH then 
HPLC separation. 

The cytidine nucleobase was installed using a Pummerer-type thioglycosylation, via 
sulphenium ion 26, which afforded 27 as a mixture of anomers. These were fully deprotected to afford 
28α and 28β and the desired 28β isolated using HPLC separation. 

Additionally, 2′-deoxy-2′-fluoro-arabino-4′-thiacytidine 33 was prepared from intermediate 23 
(Scheme 4). Stereospecific DAST fluorination of 23 proceeded through epi-sulphonium intermediate 
29 which delivered the 2-deoxy-2-fluoroarabino intermediate 30 in 68% yield. m-CPBA oxidation to 
the sulfoxide 31 and subsequent Pummerer rearrangement formed anomeric acetate 32 in 77% yield 
from 30. Finally, thioglycosylation was successfully employed to access the corresponding 4’-
thionucleoside mixture 33 (54% yield). Comparatively, the group found that using 32 as a donor and 
employing silyl-Hilbert-Johnson glycosylation conditions yielded 33α/β in higher yield (93%), but 
still as a mixture of anomers (2.9:1 α/β).  
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Scheme 4. Reagents and conditions: (i) DAST, CH2Cl2, −78 °C, 77%; (ii) m-CPBA, CH2Cl2, −78 °C; (iii) 
Ac2O, 100 °C, 77% from 23; (iv) 25, SnCl4, MeCN, 93%; (v) BBr3, MeOH; (vi) NH4F, MeOH, 60 °C and 
(vii) aqueous NH3, MeOH then HPLC separation, 43% (β-anomer) and 17% (α-anomer) from 32. 

Finally, the group synthesised 2’-deoxy-2’-difluoro-1’(4’-thia-D-ribofuranose)cytosine 37, a 
thionucleoside analogue of the potent chemotherapeutic agent gemcitabine 1 (Scheme 5). 
Intermediate 23 was again utilised and oxidised using Albright-Goldman conditions to obtain ketone 
34 which was difluorinated at C2 using DAST. The 3-O-benzyl group was next removed and replaced 
with benzoate to afford 35 in 79% overall yield from 34. Oxidation to the sulfoxide afforded 36 which 
subsequently underwent Pummerer rearrangement-glycosylation, before the remaining protecting 
groups were removed to afford 37α/β (α/β = 2.4/1) in a moderate yield of 51% from 36.  

 
Scheme 5. Reagents and conditions: (i) Ac2O, DMSO; (ii) DAST, benzene, 0 °C-r.t., 48%; (iii) BCl3, 
CH2Cl2, −78 °C, then MeOH, pyridine; (iv) Bz2O, Et3N, DMAP, MeCN, 79% from 34; (v) m-CPBA, 
CH2Cl2, −78 °C; (vi) 25, TMSOTf, ClCH2CH2Cl, 0 °C, 57% from 35; (vii) TBAF, THF and (viii) aqueous 
NH3, MeOH, then HPLC separation, 36% (α-anomer) and 15% (β-anomer) from 36. 

The antineoplastic activities of 28, 33 and 37 were evaluated and compared to arabinocytidine 3 
(Ara-C) and 1-(2-deoxy-2-C-methylene-β-D-erythro-pentofuranosyl)cytosine (DMDC) (Table 1). As 
expected, all the α-anomer forms were found to be inactive against T-cell leukemia CCRF-HSB-2 cells. 
However, the β-anomers showed considerable cytotoxic activity against the same cell line. Notably, 
28β and 33β were highly potent against both T-cell leukemia CCRF-HSB-2 cells and human solid 
tumour KB cells, with IC50 values of 0.01 µg/mL (CCRF-HSB-2) and 0.05 µg/mL (CCRF-HSB-2) for 
28β and 33β, respectively. Indeed, the activity of 28β was significantly higher than that of its native 
counterpart, DMDC, against both cell lines, with an IC50 value 2.4 times lower in CCRF-HSB-2 cells 
and 3.7 times lower in KB cells. Interestingly, 4′-thiogemcitabine analogue 37β had poorer 
antineoplastic activity compared to 1, which the authors suggest may be due to a reduction in the 
phosphorylation efficacy of 37β by deoxycytidine kinase, a key enzyme which converts 2′-
deoxycytidine analogues to their corresponding monophosphates. 
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Table 1. Antineoplastic activities of 2′-modified-4′-thionucleosides. 

 Antineoplastic Activities IC50 (µg/mL) 
Compound (Anomer) 2′-substituent CCRF-HSB-2 a KB cells b 

28α CH2  >10 ND c 

28β CH2  0.01 0.12 
33α F (arabino) >10 ND 
33β F (arabino) 0.05 0.02 
37α F2 >10 ND 
37β F2 1.5 17 

Ara-C 3   0.05 0.26 
DMDC   0.02 0.44 

aMTT assay [36]; bdye uptake method [36]; cnot determined. 

2.2.2. 4’-Modfied-2’-deoxythionucleosides 

Following earlier work by Parker and colleagues, who identified 4′-thia-2′-deoxycytidine (T-
dCyd) as being able to inhibit tumour growth [37], Haraguchi and colleagues reported the synthesis 
and evaluation of a small library of 4′-position modified 4′-thia-2′-deoxycytidine nucleosides 38–41 
for their antineoplastic and antiviral activity (Figure 4) [38]. 

 
Figure 4. Structures of 2′-deoxy-4’-thiacytidine nucleosides 38–41. 

Towards analogue 38 the group started from thioglycal 42 (Scheme 6), obtained using 
established procedures from 2-deoxy-D-ribose in 12 steps [39]. This material was transformed into a 
glycosyl donor through treatment with N-iodosuccinamide (NIS) and pivalic acid, giving one 
diastereoisomer of 2-iodo derivative 43. Silylated uracil was then glycosylated with 43 using 
Vorbrüggen-type conditions to give β-4’-thiouridine 44 which was 2’-deoxygneated via a Bu3SnH 
mediated radical reduction to give 45. Subsequent TIPDS deprotection, followed by C3’ and C5’-O-
acetylation delivered 46 to enable a four-step procedure to deliver 4’,5’-unsaturated-4’-thiouridine 
derivative 47. Exo-thioglycal 47 was next converted to silyl-protected 4’-thionucleoside 48, which 
when treated with Pb(OBz)4 yielded dibenzoate 49. SN2 inversion back to the native 4’-D-ribo 
configuration and 4’-azide installation was achieved by reaction with MeSiN3 in the presence of SnCl4 

and afforded the desired 4’-α-azido derivative 50 as the major product. Finally, the nucleoside was 
converted to the cytidine form via intermediate 51 to give 38 in 7% yield over 18 steps.  
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Scheme 6. Reagents and conditions: (i) NIS, pivalic acid, MeCN/CH2Cl2, 93%; (ii) Uracil, N,O-
bis(trimethylsilyl)acetamide (BSA), TMSOTf, MeCN/CH2Cl2, 87%; (iii) Bu3SnH, Et3B, toluene, O2, −60 
°C, 98%; (iv) TBAF, Ac2O, THF, 100%; (v) NH3/MeOH; (vi) I2, PPh3, pyridine, dioxane; (vii) Ac2O, 
DMAP, DIPEA, CH2Cl2; (viii) BDN, MeCN, 65% over four steps; (ix) NH3/MeOH; (x) TBDMSCl, 
imidazole, DMF, 61% over two steps; (xi) Pb(OBz)4, toluene, 63%; (xii) TMSN3, SnCl4, CH2Cl2, 61%; 
(xiii) NaOMe, MeOH; (xiv) Ac2O, DMAP, DIPEA, MeCN, 83% over two steps; (xv) TPSCl, K2O4, 
MeCN, 60 °C; (xvi) NH4OH, THF; (xvii) TBAF, Ac2O, THF and (xviii) NaOMe, MeOH, 66% over four 
steps. 

In order to access 2′-deoxy-4’-C-fluoromethyl-4’-thiacytidine 39, alcohol 53 was prepared from 
known aldehyde 52 [40,41]. Treatment of 53 with DAST successfully installed the key 4-α-
fluoromethyl group which was then elaborated to 39 (Scheme 7). 4-α-alkynyl and nitrile analogues 
40 and 41 were synthesised from aldehyde 54 using a late-stage insertion of the key functional group 
at the 4’-position in the presence of the nucleobase. Of the four 2’-deoxy-4’-modified thionucleosides 
38-41, two analogues, 38 and 39, showed moderate cytotoxicity against human B-cell leukaemia 
(CCRF-SB; IC50 = 7.14 µM and 3.19 µM for 38 and 39 respectively) and human T-cell leukaemia cell 
lines (Molt-4; IC50 = 2.72 µM and 2.24 µM for 38 and 39 respectively).   

 
Scheme 7. Key intermediates to access 2’-deoxy-4’-thiocytidine nucleosides 39–41. 
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2.3. Selenonucleosides 

A first synthesis of pyrimidine 4’-selenonucleosides was reported by Jeong and colleagues in 
2008 (Scheme 8), [42] starting from lyxose derivative 55, synthesised from D-gulonic-γ-lactone in four 
steps using established procedures [43].  

 
Scheme 8. Reagents and conditions: (i) TBDPSCl, Et3N, DMAP, CH2Cl2, 92%; (ii) NaBH4, MeOH, 98%; 
(iii) MsCl, Et3N, DMAP, CH2Cl2, 97%; (iv) Se, NaBH4, EtOH, THF, 60 °C, 96%; (v) m-CPBA, CH2Cl2, –
78 °C, 85%; (vi) Uracil, Et3N, TMSOTf, toluene, CH2Cl2, 53%; (vii) 50% aq. TFA, 81%; (viii) N3-

benzoylcytosine, Et3N, TMSOTf, toluene, CH2Cl2, 35%; (ix) 50% Aq. TFA and (x) NH3, MeOH, 82% 
over two steps. 

Selective protection of the primary alcohol in 55 was achieved by reaction with TBDPSCl, giving 
hemiacetal 56 which was reduced with NaBH4, furnishing diol 57. Following double mesylation of 
57 to give 58, cyclisation to give 4-selenosugar 59 was achieved by treatment with selenium in the 
presence of NaBH4. Oxidation of 59 to a diastereomeric selenoxide mixture 60 then enabled either a 
uracil or cytosine nucleobase to be installed via a Pummerer-type glycosylation, furnishing the β-
anomers 61 or 63. 4’-selenouridine 62 was obtained after global deprotection of 61 with 50% aqueous 
TFA in an overall yield of 12% over 11 steps. 4’-selenocytidine 64 was similarly obtained in an overall 
yield of 9% over 11 steps. The crystal structure of 62 revealed the non-native ring adopted an unusual 
C2’-endo/C3’-exo twist (Southern confirmation), contrary to uridine, which shows a C2’-exo/C3’-endo 
twist (Northern conformation). This difference was explained by the introduction of the bulky 
selenium, whereby stereoelectronic effects observed in 4’-oxanucleosides are outweighed by the size 
of the heteroatom.  

2.3.1. 2’-Substituted-4’-selenoribofuranosyl Pyrimidines 

Building on their work in this area, Jeong and co-workers reported the synthesis and biological 
evaluation of a small library of 2’-substituted 4’-selenoarabinofuranosyl pyrimidine analogues 65–68 
(Figure 5) [44,45]. 

 
Figure 5. Structures of 2’-substituted 4’-selenoarabinofuranosyl pyrimidine analogues 65–68. 
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A 2’-fluoroarabino analogue was obtained via a 2’-position DAST fluorination of intermediate 
69, synthesised from 4’-selenouridine 61 using a four-step process [44]. At first attempt, DAST 
fluorination of 69 led to the formation of the desired 2’-fluoro product 70 as the minor product in 23% 
yield, along with a major product, 2,2’-O-anhydro nucleoside 71, in 60% yield (Scheme 9). This ratio 
was subsequently improved by instead fluorinating an N3-benzoyl derivative 72, giving 73 in 45% 
yield, now as the major product, and 71 in reduced 30% yield.  

 
Scheme 9. Reagents and conditions: (i) DAST, CH2Cl2, −78 °C, 23%; (ii) TESCl, DMAP, CH2Cl2; (iii) 
BzCl, pyridine, DIPEA, 70 °C; (iv) TBAF, THF, 0 °C, 81 % over three steps and (v) DAST, CH2Cl2, −78 
°C, 45%. 

Following global deprotection and uracil to cytosine conversion, four nucleoside analogues 65–
68 were evaluated against several human cancer cell lines (HCT116, A549, SU638, T47D, PC-3 and 
K562) and compared to the established anticancer nucleosides 1 and 3 (Table 2). From this study, it 
was found that 2’-fluoro-4’-selenoarabinocytidine 65 was the most potent analogue, showing even 
greater potency than 3, in the majority of cell lines tested. 

Table 2. Anticancer activity of 2’-modified 4’-selenoarabino nucleosides 65–69 compared to 1 and 3 
across several human cancer cell lines. 

 IC50 (μM) 
Compound HCT116a A549b   SNU638c T47Dd PC-3e K562f 

65 1.1 0.47 0.14 0.79 0.58 0.63 
66 7.13 8.83 4.72 ND ND 86.6 
67 >100 >100 >100 >100 >100 >100 
68 >100 >100 >100 >100 >100 >100 
3 5.30 1.90 0.15 2.70 55.9 0.05 
1 0.01 0.09 ND ND 0.04 ND 

Human cancer cell tissue type acolon; blung; cstomach; dbreast; eprostate; fmyelogenous leukemia. 

The group have also reported further 2’-substituted-4’-selenoribofuranosides [46], synthesising 
a series of pyrimidine 2’-substituted analogues and utilising a 2,2’-O-anhydro intermediate to enable 
regioselective nucleophilic ring opening to the desired ribo-configured products (Figure 6). Only a 2’-
fluoro riboselenocytosine derivative showed significant activity (uracil, thymine and 5-halo uracil 
derivatives showed no activity up to 100 µM), but this was less potent than the arabino-configured 
analogue previously described [45].  
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Figure 6. 2’-Substituted-4’selenoribofuranosyl nucleosides reported by Jeong. 

2.4. Carbocyclic Nucleosides 

In carbocyclic nucleosides the furanosyl oxygen is replaced by CH2, forming a cyclopentane ring. 
The lack of a hemiaminal linkage between the nucleobase and the sugar leads to an increased 
chemical stability. Furthermore, due to the lack of a glycosidic bond, these nucleosides show an 
enhanced resistance towards phosphorylases [47]. Although considered a second generation of 
nucleoside analogues, there are two naturally occurring carbocyclic nucleosides, aristeromycin 74 
and neplanocin A 75 (Figure 7), both of which exhibit substantial biological activity as antitumor 
agents [47]. 

 
Figure 7. Structures of aristeromycin, 74, and neplanocin A, 75. 

2.4.1. Fluorinated Derivatives of Neplanocin A  

In 1988, Driscoll et al. reported that a cytosine analogue (CPE-C) of 75 showed substantial 
antitumour and antiviral activity [48]. On the basis of these findings, and the continuing clinical 
success of fluorine containing nucleoside chemotherapeutics [49,50], Jeong et al. subsequently 
reported the synthesis and biological evaluation of a small library of fluorocyclcopentenyl pyrimidine 
nucleosides 76–79 (Figure 8) [51].  

 
Figure 8. Structures of fluorocyclopentenyl nucleoside analogues 76–79. 

Fluorocyclopentenyl cytosine 76 was synthesised from cyclopentenone 80 (Scheme 10), which 
was obtained from D-ribose in nine steps using established procedures [52,53]. Iodination of 80 was 
accomplished by treatment with I2 and pyridine in THF, to give 81. Stereo- and regioselective 
reduction of 76 was achieved using Luche conditions to give 82, followed by TBDPS protection of the 
resulting alcohol to deliver 83. Following lithium-halogen exchange of 83 using n-BuLi, electrophilic 
fluorination was achieved by treatment with N-fluorobenzenesulfonimide (NFSI). Anomeric 
desilylation with TBAF then gave 84 to which a uracil nucleobase was installed via condensation with 
N3-benzoyluracil under Mitsunobu conditions. Finally, global deprotection was achieved by 
sequential treatment with methanolic ammonia and BBr3, providing uracil derivate 85 which was 
converted to 76 via a standard four-step process.  
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Scheme 10. Reagents and conditions: (i) I2, pyridine, THF, 55%; (ii) NaBH4, CeCl3, MeOH, 93%; (iii) 
TBDPSCl, imidazole, DMF, 97%; (iv) NFSI, nBuLi, THF, −78 °C, 80%; (v) TBAF, THF, 80%; (vi) 
N3-benzoyluracil, DEAD, PPh3, THF; (vii) NH3/MeOH; (viii) BBr3, DCM, −78 °C, 49% over three steps; 
(ix) Ac2O, pyridine; (x) POCl3, Et3N, 1,2,3-triazole; (xi) NH4OH, 1,4-dioxane and (xii) NH3/MeOH, 40% 
over four steps.  

Of the four nucleoside analogues evaluated (Figure 8), derivative 76 showed significant potency 
against several human cancer cell lines (Table 3) [51,54,55]. Furthermore, Jeong reported that 76 also 
showed significant antitumour activity in a nude mouse xenograft model implanted with A549 
human lung cancer cells, wherein after 38 days the inhibition of tumour growth was 32% and 58% at 
3 and 10 mg/kg doses, respectively [54]. 

Table 3. Anticancer activity of 76 in human cancer cell lines. 

 Cancer Cell Line 

 HTC-116 a MDA-MB-231 b PANC-1 c MCF-7 d A549 e MKN45 f U251 g 

IC50 (μM) 0.39 0.18 0.62 0.34 0.34 0.50 0.83 

Human cancer cell tissue type acolon; bbreast; cpancreatic; dhormone-dependent breast; elung; fstomach; gbrain. 

Carbocyclic nucleoside 76 has now been evaluated in more than 100 different cell lines, as well 
as several xenograft models, showing high potencies against numerous types of cancer, including 
gemcitabine resistant cell lines [56,57]. Pharmacokinetics and oral bioavailability for 76 were 
investigated in phase 0 clinical trials, wherein a small cohort of patients were administered a single 
oral dose (50 mg or 100 mg) of 76, or a single intravenous dose (20 mg, Table 4) [58]. This study found 
that the absolute bioavailability for 76 was 56% and 33% for 50 and 100 mg doses, respectively, 
suggesting it not to be dose-proportional. However, t1/2 was found to be 14 h and 21 h for 50 and 100 
mg doses, respectively. This may suggest that 76 does exhibit some dose proportionality in some 
parameters, but not in others and it was noted that this result may be due to the small patient sample 
size. Analogue 76 is currently in phase II clinical trials for metastatic pancreatic cancer and advanced 
bladder cancer.  

Table 4. Pharmacokinetic data for 76 from phase 0 clinical studies. 

Dose (mg) Tmax (h) Cmax (ng/mL) t1/2 (h) Oral Bioavailability (%) 
 20 * 0.3 1144 - - 

50 2.2 303 14 56 
100 2.5 311 21 33 

* Intravenous. 
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2.4.2. Norbornane-Derived (C2’,C4’-bridged) Carbocyclic Nucleosides 

Nencka and colleagues reported the synthesis of norborane, C2’,C4’-bridged carbocyclic 
nucleosides [59], with a hypothesis of locking the nucleoside analogue in the 2’-exo or North 
conformation which has garnered attention in the field of carbocyclic antiviral nucleoside analogue 
development [60]. To access these compounds their synthesis started from known hydroxy ester 86 
which was stereochemically inverted at the C1 position via an oxidation-reduction sequence to 
deliver 87 (Scheme 11). This enabled the desired stereochemistry to be attained at C1 when 
subsequently inserting an azide by nucleophilic displacement of a mesylate to afford 88 which was 
reduced to give 89. With scaffold 89 in hand, the group then elaborated the amine at C1 to several 
purine and pyrimidine nucleobase forms (including C6 purine analogues) and evaluated their 
cytotoxic potential. From this series, derivatives 90 and 91 showed IC50 activities below 100 µm in 
human T-lymphocyte (CEM) cells (IC50 = 88 µM for 90 and IC50 = 78 µM for 91), but no significant 
activity was observed in murine leukemia (L1210) or HeLa cell lines.  

 
Scheme 11. Reagents and conditions: (i) PDC, CH2Cl2, 82%; (ii) NaBH4, MeOH, 88%; (iii) MsCl, 
pyridine, 99%; (iv) NaN3, DMF, 115 °C, 92% and (v) LiAlH4, THF, 59%. 

2.4.3. C3’,C5’-Bridged Carbocyclic L-Nucleosides 

Tănase and colleagues reported the synthesis of an alternative carbocyclic system based on a 
similar bicyclo[2.2.1]heptane fragment, accessing a small series of 3’-5’-linked L-nucleoside analogues 
containing C6-amino modifications (Scheme 12) [61]. Their synthesis started from known alcohol 92 
and proceeded through azide incorporation (to give 93) and reduction steps in good yields to deliver 
amine 94. The 6-chloropurine ring was then introduced using standard methods and elaborated at 
C6 with a series of amines via nucleophilic aromatic substitution. This small library was then screened 
in vitro at a single high dose (10−5 M) in the full NCI 58 human tumor cell screen panel. 
Phenethylamine derivative 95 exhibited growth inhibition of 74% on SK-MEL-5 melanoma and UO-
31 renal cancer cell lines, but was not deemed sufficiently cytotoxic for studies to proceed further. 
The group followed up this report with further synthesis of 6-position carbocyclic analogues [62], 
derived from 94, noting that a 6-(4-methoxy-phenethyl)amino group was active, but again the 
analogue was not progressed further. 
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Scheme 12. Reagents and conditions: (i) MsCl, pyridine, CH2Cl2, 98%; (ii) NaN3, DMF, 110 °C, 91% 
and (iii) Pd(OH)2/C, MeOH, 87%. 

3. 2’-, 3’- and 5’-Furanose Ring Modifications 

3.1. 2’-Furanose Modifications 

Clofarabine 2 (Figure 1) is a purine nucleoside analogue which, in its corresponding 5’-O-
triphosphate form, inhibits both ribonucleotide reductase and DNA polymerases and prevents 
effective DNA synthesis. Ultimately, this leads to cell apoptosis, particularly in rapidly proliferating 
and dormant cancer cells. The nucleoside analogue exhibits excellent cytotoxic activity in vitro, with 
an IC50 range of 0.028–0.29 µM across a variety of solid tumour and leukaemia cell lines [63], alongside 
substantial tissue distribution and a half-life of at least 24 h for the active triphosphate metabolite 
[64]. The use of 2 for treatment of paediatric patients with relapsed or refractory acute lymphoblastic 
leukaemia was approved by the food and drug administration (FDA) in 2004, the first nucleoside 
analogue of its kind to be approved in over a decade [65].  

In 2010, Sauve and colleagues reported an improved, stereoselective synthesis of 2 [66], in an 
overall yield of 38% (Scheme 13). This compared favourably to a prior report by ILEX Products Inc., 
which detailed an overall yield of 14% in six steps, starting from a fully protected ribose derivative. 
Sauve’s work began from commercially available lactone 96 with 3,5-O protection using TIPS 
affording 97, which was then diastereoselectively fluorinated at the 2-position, obtaining the arabino-
configured 98 exclusively in 72% yield. Conversion to the anomeric chloride (via hemi-acetal 99) 
delivered 100 which was condensed with 2,6-dichloropurine to afforded 101 in 66% yield over two 
steps and a β/α ratio of 3.5:1. Access to 2 was gained following diastereomeric separation of 101, 4-
position ammonolysis and deprotection. 

 
Scheme 13. Reagents and conditions: (i) TIPSCl, imidazole, DMF, 92%; (ii) NFSI, LiHMDS, THF, −78 
°C, 72%; (iii) DIBAL-H, toluene, −78 °C, 91%; (iv) MsCl, Et3N, CH2Cl2, quant.; (v) 2,6-dichloropurine, 
dichloroethane, reflux; (vi) NH3/isopropanol, sealed tube, 105 °C, 66% over two steps and (vii) Me4NF, 
AcOH, DMF, 90%. 

3.2. 2’-O,4-C’-Bridged Nucleosides 

In 2011, Nicolaou and colleagues reported the synthesis and evaluation of a small library of 2’,4’- 
and 3’,4’-bridged nucleoside analogues, presenting conformationally restrained 3’-endo (North) and 
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2’-endo (South) systems [67]. These compounds were evaluated for their antiviral, antitumour and 
antibacterial properties, with 2’,4’-bridged purines 105 and 106 showing µM inhibitory activity 
against CEM (IC50 = 0.36 µM for 105 and 7.6 µM for 106) and Raji (IC50 = 0.25 µM for 105 and 5.8 µM 
for 106) cancer cell lines. 

The synthesis of 105 and 106 derived from a common 4-disubstituted acetate 102, available using 
established chemistry from diacetone-D-glucose (Scheme 14) [68,69]. The group used Vorbrüggen 
glycosylation of either 2,6-diaminopurine or 2,6-dicholoro-9H-purine to afford 103 or 104 
respectively, with the substitution proceeding in good yields (100% for 103 and 64% for 104), but 
noting a requirement to control the amount of N,O-bis(trimethylsilyl)acetamide (BSA) used to silylate 
the purine to 2.5 equivalents. 2’,4’-bridged compound 105 was constructed via base mediated 
cyclisation between C2’ and C4’, followed by per-benzoylation of purine nitrogen and silicon 
protecting group removal. 

 
Scheme 14. Reagents and conditions: (i) 2,6-diaminopurine, BSA, TMSOTf, MeCN, 100%; (ii) 2,6-
dicholoro-9H-purine, BSA, TMSOTf, 64%; (iii) NaOH, THF, 94%; (iv) BzCl, pyridine, 52%; (v) HF, 
pyridine, 50%; (vi) Allyl(tri-n-butyl)tin, PdCl2(PPh3)2, DMF then NaOH, THF, 42%, 2 steps and (vii) 
HF, pyridine, 87%. 

To access allyl substituted 2’,4’-system, Stille couplings were completed at positions 2 and 6 of 
the purine, followed by a similar base-mediated C2’ deacetylation and intramolecular cyclisation to 
afford, after C5’-protecting group removal, 106. Isomerisation of the allyl group at C6 of the purine 
ring was observed during the palladium and base-mediated cyclisation steps. The antitumour 
activities of 105 and 106 were considerably lower than for the known anticancer nucleoside cladribine 
(CEM IC50 = 0.5 nM and Raji IC50 = 9.0 nM), as was the activity (IC50 >10 µM) of the 2’4’-bridged 
analogue of cladribine, suggesting that the inclusion of this conformational restraint or the addition 
of an extra CH2O unit was enough to remove antitumour properties. 

3.3. 3’-Modified Nucleosides 

Cheng and co-workers reported an asymmetric synthesis of 2’,3’-dideoxy-3’-boronic acid 
pyrimidine nucleosides [70]. The group used two highly diastereoselective reactions of chiral boronic 
esters with (dihalomethyl)lithium reagents to install the ultimate stereochemistry required at C3’ and 
C4’ (Scheme 15). Starting from (S,S)-1,2-dicyclohexyl-1,2-ethanediol (DICHED) derived boronate 
ester 107, homologation was completed with (dichloromethyl)lithium to afford 108, the newly 
formed stereochemistry of which was inverted to give boronate ester 109. The chiral auxiliary 
component was next switched from DICHED to a pinanediol (derived from (+)-pinene), delivering 
110. A second diastereoselective homologation was completed with (dibromomethyl)lithium, 
affording bromo boronic ester 111. Nucleophilic displacement and inversion of this bromide with 
allylmagnesium bromide followed by oxidative cleavage of the alkene afforded aldehyde 112. 
Hydrogenolysis of the C4-O-Bn group in 112, concomitant cyclisation and anomeric acetylation 
delivered the final 2-deoxy-ribo configured scaffold 113. This was divergently converted to a series of 
pyrimidine containing nucleoside analogues containing a unique C3’-boronic acid. Unfortunately, 
biological evaluation of these compounds demonstrated no significant cytotoxicity towards the 
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HepG2 cell line and all derivatives were observed to undergo gradual hydrolytic cleavage under 
biological conditions. 

 
Scheme 15. Reagents and conditions: (i) LiCHCl2, THF then ZnCl2; (ii) PhCH2ONa, 97%; (iii) 
Pinanediol, Et2O, H2O, 96%; (iv) CH2Br2, LDA, THF then ZnCl2, 83%; (v) CH2CHCH2MgBr, 86%; (vi) 
NaIO4/K2OsO4, 2,6-lutidine, dioxane/H2O, 63%; (vii) H2 Pd/C, EtOAc, 81% and (viii) Ac2O,DMAP, 
CH2Cl2, 98%. Cy = cyclohexyl, T = thymine, 5F-U = 5-fluorouracil, C = cytosine, 5I-U = 5-iodouracil. 

More recently, Borbas and colleagues reported a small library of 3’-deoxy-3’-thio substituted 
xylofuranosyl pyrimidines [71]. Utilising a photoinduced thiol-ene reaction the workers were able to 
effect addition of several different thiols to an appropriately protected 3’-exomethylene 
ribopyrimidine system. This afforded D-xylo configured products in high diastereomeric excess 
which were shown to have cytostatic activity in the low micromolar range. 

3.4. C5′-N-Cyclopropylcarboxamido-C6-amino-C2-alkynylated analogues 

In 2017, Mohan et al. synthesised and evaluated a series of C5′-N-cyclopropylcarboxamido-C6-
amino-C2-alkynylated purine nucleoside analogues (Scheme 16) [72]. Starting from guanosine, the 
group accessed C2-aryl iodide derivative 114 which was oxidised at C5’ using KMnO4, followed by 
amide coupling to install the C5′-N-cyclopropylcarboxamido group. Following 2’,3’-O-acetonide 
removal, the C2-iodide underwent a series of divergent Sonogoshira couplings to deliver a library of 
seven purine analogues. From this library, compounds 115 and 116 showed in vitro cytotoxic effects 
comparable to doxorubicin against human breast (MDA-MB-2312) and human colon (Caco2) cell 
lines. 

 
Scheme 16. Reagents and conditions: (i) KMnO4, KOH, H2O, 79%; (ii) EDC, HOBt, cyclopropylamine, 
Et3N, DMF, 70%; (iii) 50% Aq. HCO2H, 73% and (iv) Pd(PPh3)2Cl2, CuI, Et3N, DMF, MeCN, R = 115 = 
86%, R = 116 = 85%. 
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3.5. 5’-β-Hydroxyphosphonate Analogues 

In 2014, Peyrottes and co-workers reported their synthesis of a series of β-hydroxyphosphonate 
nucleosides, targeting 2’ and 3’ hydroxyl group stereochemistry changes and the introduction of 5-
position substituents to the nucleobase (Figure 9) [73]. This report built upon the group’s earlier work 
developing this class of compound as 5’-nucleotidase inhibitors (specifically the cytosolic cN-II 5’-
nucleotidase II) [74]. These enzymes catabolise nucleoside 5’-monophosphates and their expression 
level is of crucial interest for patients undergoing nucleoside analogue chemotherapy, with a higher 
expression level often associated with a worsened clinical outcome [75]. 

 
Figure 9. 5’-β-Hydroxyphosphonate analogues developed by Peyrottes and active compound 117 
from this series, Y = NH2 or OH. 

The group completed the synthesis of a library of 32 β-hydroxyphosphonate analogues which 
included D-allo, D-altro, D-manno and D-gluco configurations of the furanose 2’- and 3’-positions 
along with C2’-C3’ ring opened derivatives. They also installed alkynyl, aryl or ethenylaryl groups 
at C5 of the cytidine or uridine nucleobase using transition-metal cross-couplings of the 
corresponding C5-iodide. Biological activity data was obtained using recombinant, purified cN-II 
with inosine monophosphate as substrate. From the resultant SAR study, cytosine-based analogues 
were generally more active than their uracil counterparts, but the configurational isomers at C2’ or 
C3’ were generally less active than the parent compounds (allofuranose). Modification of the 
nucleobase was generally well tolerated with an observed Ki value of 1.14 mM for phenylethenyl 
substituted derivative 117 (Figure 9), noting that high substrate concentrations (in the mM range) are 
required for activity with cN-II. 

3.6. Ferronucleosides 

Tucker and colleagues recently described their synthesis of ferronucleosides, an important new 
development in the field of medicinal bioorganometallic chemistry [76]. Here the furanose ring was 
exchanged for the five-membered cyclopentadienyl ring of a ferrocene unit, but retained the 
nucleobase and hydroxymethyl group as key components appended in a 2,3 relationship to the 
ferrocene core (compounds 118 and 119, Figure 10). Using thymine or adenine as the nucleobase, the 
compounds were tested with a control series (where the hydroxymethyl or base component were 
absent) for their cytostatic activity and compared to established chemotherapeutic agents 5-
fluorouracil (5F-U) and cisplatin. In a proliferation activity assay on three tumour cell lines (L1210, 
HeLa and CEM), both 118 and 119 had activities in the low µM range, with 118 and 119 20 to 50-fold 
more active than 5F-U in CEM cell cultures (0.9 µM for 118, 0.35 µM for 119 versus 18 µM for 5F-U). 
The compounds also performed promisingly in cell growth inhibition (oesophageal cancer cell line) 
and cellular viability (MTT assay) studies, with the data indicating that both functional groups 
appended to the ferrocene component were required for optimum cytostatic activity.  
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Figure 10. Ferronucleosides developed by Tucker. 

4. Nucleoside Analogue Prodrugs 

4.1. Phosphorodiamidate Prodrugs 

In 2018, Slusarczyk’s team reported the synthesis of phosphorodiamidates for a series of 
established anticancer nucleoside analogues [77]. This was envisioned following the successful 
ProTide technology developed by McGuigan [78], to deliver nucleoside monophosphate analogues 
into cells and recent reports of phosphorothioamidate systems [79]. A lack of chirality at phosphorous 
in a phosphorodiamidate was envisioned to confer advantages in not having to resolve 
diastereomeric mixtures, often a requirement in earlier generations of ProTides, as SP and RP 
diastereoisomers exhibited markedly different biological activities [80]. Accordingly, seven different 
anticancer nucleosides (1, FUdR, 8-chloroadenosine, fludarabine, AraG, thioinosine and 
thioguanosine) were converted to their phosphorodiamidate form using a one-pot, two-stage 
strategy (Scheme 17). First the 5’-OH was converted to a phosphorodichloridate intermediate 120, 
followed by double phosphoramidation using an appropriate amino acid ester salt. The panel of 
analogues were then evaluated in vitro against a wide range of solid tumour and haematological cell 
lines with the potential for this approach confirmed for FUdR and 8-chloroadenosine, where similar 
or improved inhibitory activities compared to the parent nucleosides were observed. FUdR and its 
phosphorodiamidate prodrug showed activity in the sub-micromolar range with IC50 values of 
0.0046–0.073 µM for FUdR and 0.01–0.40 µM for the FUdR phosphorodiamidates against the wild-
type cell lines. Also of note was the inactivity of arabino configured analogues, suggesting conversion 
to the monophosphate might be prevented through their being poor substrates for phosphoramidase 
activity [81]. Enzymatic studies were undertaken to investigate the bioactivation pathway of this class 
of nucleoside prodrug with a carboxypeptidase Y assay and 31P-NMR confirming the hydrolysis of 
both esters followed by loss of one phosphoramidate group.  

 
Scheme 17. Reagents and conditions: (i) (Me)3PO4, POCl3 and (ii) Amino acid ester salt, DIPEA. X and 
Y represent different functional groups for analogue classes e.g. X = Y = F, Base = C = gemcitabine 
phosphorodiamidate. See Reference [77] for full list of analogues synthesised and evaluated. 

4.2. Vitamin E Phosphate Prodrugs 

Nucleoside analogue therapy can suffer from inducive and constitutive resistance, which limits 
the efficacy of the treatment. Isoforms of vitamin E, in particular δ-tocopherol and tocotrienols have 
displayed anticancer activity. As such, vitamin E phosphate nucleoside analogue prodrugs were 
envisaged to combat two mechanisms of resistance: i) downregulation of metabolic kinases 
(deoxycytidine kinase, dCK, in the case of 1) and ii) nucleoside transport [82,83]. Accordingly, 
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Daifuku and co-workers synthesised and evaluated four isoforms of vitamin E conjugated to 1 
(Figure 11, compounds 121–124) [84]. 

 
Figure 11. Structures of vitamin E-gemcitabine conjugates 121–124, highlighting changes to the 
tocopherol or tocotrienol component. . 

The in vitro GI50 of 1, vitamin E phosphate (VEP) isoforms and compounds 121–124 showed 
these VEP-gemcitabine prodrugs to exhibit anticancer activity, consistent with their catabolism to 
vitamin E and gemcitabine monophosphate. Conjugate 122 displayed the best activity with GI50 
values <5 µM in breast MDA (MB-231), non-small cell lung (NCI-H460) and colon (HCT-116) cell 
lines. The authors suggested this was due to steric hindrance, from the methyl groups proximal to 
the vitamin E-phosphate bond, reducing the rate of enzymatic cleavage to the monophosphate 
counterpart. 

Prodrugs 122 and 123 were then evaluated in the presence of an inhibitor of nucleoside transport, 
dipyridamole (DP, Table 5) with the data indicating that both were largely unaffected by the presence 
of DP in comparison to 1. This suggested that these prodrugs bypass nucleoside membrane 
transporters and may thus be beneficial in the treatment of patients with gemcitabine resistant cells.  

Table 5. GI50 values of 1, 122 and 123 in the presence or absence of dipyridamole. 

   Cancer Cell Line  

 Breast  
MDA-MB-231 (µM)  

Non-Small Cell Lung  
NCI-H460 (µM) 

Colon  
HCT-116 (µM) 

Compound DP (−) DP (20 µM) DP (−) DP (20 µM) DP (−) DP (20 μM) 
1 3.08 56.8 0.02 0.82 0.03 2.39 

122 30.3 27.8 7.16 16.0 5.55 12.6 
123 17.2 23.3 2.14 1.47 3.07 6.74 

In particular, as conjugate 123 displayed significant potency against the three DP(-) cell lines and 
moderate potency against the DP-dosed cell lines (Table 5), it was selected to further compare activity 
against 1 in in vitro wild-type leukemic CEM cells and CEM cells deficient in dCK. In dCK(−) cells 1 
is not phosphorylated, with GI50 values increasing from 0.002 µM in wild-type to 124.5 µM in dCK(−). 
For 123 the GI50 increase was significantly lower than that of 1 (from 0.59 µM to 19.2 µM). 
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Furthermore, the half-life of 123 in mice was shown to be 4 h, a 13.9-fold increase to that of 1 (0.3 h 
[85]). Overall, this study showed an interesting proof of concept for VEP-1 prodrugs against resistant 
cancer cell lines. However, further optimisation will be required to obtain promising candidate 
compounds with increased potencies. 

5. Conclusion  

Nucleoside analogues are an historically accomplished class of drugs with highly diversifiable 
scaffolds and proven potential to treat a wide range of cancer cell types. Recent synthetic trends have 
focused on furanose oxygen substitution with heteroatoms or carbon and fluorocyclopentenyl 
cytosine is proving a promising new clinical candidate in this regard. Alongside this, examples of 
templating such modifications onto established nucleoside analogue scaffolds, such as Ara-C and 
forodesine, are emerging. As further pharmacokinetic and pharmacodynamic parameters are 
evaluated for these architectures, their pharmaceutical utility will be established. Finally, the 
continued advancement of prodrug strategies to deliver these compounds more effectively and 
provide options to treat drug-resistant cancer cell types sets an exciting future for nucleoside 
analogue chemotherapeutics and the underpinning requirement of chemical synthesis in realising 
this. 
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