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Abstract: Salvia mltiorrhiza Bunge (SMB) is native to China, whose dried root has been used
as medicine. A few chromatographic- or spectrometric-based methods have already been used
to analyze the lipid-soluble components in SMB. However, the methodology of qNMR on the
extracts of fresh SMB root has not been verified so far. The purpose of this study was to
establish a fast and simple method to quantify the tanshinone I, tanshinone IIA, dihydrotanshinone,
and cryptotanshinone in fresh Salvia Miltiorrhiza Bunge root without any pre-purification steps
using 1H-NMR spectroscopy. The process is as follows: first, 70% methanol aqueous extracts of
fresh Salvia Miltiorrhiza Bunge roots were quantitatively analyzed for tanshinone I, tanshinone IIA,
dihydrotanshinone, and cryptotanshinone using 1H-NMR spectroscopy. Different internal standards
were tested and the validated method was compared with HPLC. 3,4,5-trichloropyridine was chosen
as the internal standard. Twelve samples of Salvia Miltiorrhiza Bunge were quantitatively analyzed
by qNMR and HPLC respectively. Then, the results were analyzed by chemometric approaches.
This NMR method offers a fast, stable, and accurate analysis of four ketones: tanshinone I, tanshinone
IIA, dihydrotanshinone, and cryptotanshinone in fresh roots of Salvia Miltiorrhiza Bunge.

Keywords: qNMR; Salvia Miltiorrhiza Bunge; tanshinone I; tanshinone IIA; dihydrotanshinone;
cryptotanshinone

1. Introduction

Salvia miltiorrhiza Bunge (SMB, danshen in Chinese), belonging to the Labiate family [1,2], is an
important traditional Chinese herbal plant with a long history as a medicine as well as a health
food [3]. The active ingredients of SMB can be divided into two major groups: lipid-soluble (lipophilic)
tanshinones including tanshinone I (Tan I), tanshinone IIA (Tan IIA), tanshinone IIB (Tan IIB),
dihydrotanshinone (DTS) and cryptotanshinone (CTS) [4,5], and water-soluble (hydrophilic) phenolic
acids such as danshensu (DSU), caffeic acid (CA), rosmarinic acid (RA), salvianolic acid A (Sal A) and
salvianolic acid B (Sal B) [6].

Modern pharmacological studies have shown that tanshinones have many pharmacological
activities such as (1) antioxidation: CTS has antioxidant in vivo and in vitro pharmacological
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activities [7,8]; Tan IIA can effectively inhibit the interaction of intracellular lipid peroxidation
products with DNA, eliminate the lipid free radicals produced by the lipid peroxidation pathway in
the mitochondrial membrane of the myocardium, thus protecting the respiration of mitochondria [9].
(2) Anti-atherosclerosis: Tan IIA can promote cholesterol efflux, ameliorate lipid accumulation
in macrophages, and reduce the development of aortic atherosclerosis [10]. (3) Antibacterial:
Gram-positive bacteria can be significantly inhibited by tanshinones such as CTS and DTS. (4) Antitumor:
DTS, Tan I, Tan IIA and CTS in blood can inhibit growth and induce the apoptosis of malignant tumor
cells [11]; Tan I exhibits anti-cancer activity on various human cancers which significantly inhibits
osteosarcoma (OS) cancer cell proliferation, migration, invasion and induced cell apoptosis in vitro [12];
CTS shows significant antitumor effects by inducing apoptosis of tumor cells [13]; DTS exerts an
effective antitumor effect by inhibiting tumor cell proliferation and promoting tumor cell apoptosis [14];
Tan IIA inhibits cell proliferation and induces cell differentiation by affecting the cell cycle; on the
other hand, it increases the expression of bax/bcl-2 protein by the Fas pathway to induce apoptosis.
In addition, Tan IIA can also choose to activate members of the Caspase family to exert its anti-cancer
effect [15].

With the increasing research on regulation pathways of tanshinones, it is necessary to develop
an accurate and sensitive quantitative method for content determination of the tanshinones. A few
analytical techniques including HPLC, UHPLC-Q-Exactive Orbitrap mass spectrometry, LC-MS/MS
and NMR have been successfully applied for lipid-soluble ketone determinations [16–19]. However,
to the best of our knowledge, the methodology of quantitative NMR on the extract of SMB fresh
roots has not been verified so far. qNMR method is very efficient for the simultaneous detection and
identification of several metabolites in crude extracts or samples [20–22]. Compared with traditional
quantitative methods, qNMR spectroscopy has the following advantages: (1) no calibration standard
of the analyte is needed; (2) only an inexpensive internal standard is needed; (3) high selectivity can be
achieved under appropriate acquisition conditions; (4) more than one analyte can be determined at one
time; (5) reduced measuring time. Thus, establishing a reliable qNMR-based method for measuring
lipid-soluble ketone content in SMB is desirable. Furthermore, a quality evaluation model of SMB
may be established by combining NMR profiles with chemometrics. Here, we quantified the levels
of IS as well as Tan I, Tan IIA, CTS and DTS from fresh SMB root samples using 1H-NMR (Figure 1).
Specifically, 12 batches of SMB were profiled using 1H-NMR. Next, a principal components analysis
(PCA) and cluster analysis were conducted to determine the sample correlation. To validate our
results, the levels of four ketones were determined using HPLC. We found that the 1H-NMR technique
provided a reliable means of quantifying SMB-derived ketones and may be used as a supplementary
tool for HPLC-based analyses.
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2. Results and Discussion 
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The sample solutions were optimized to obtain the best separation and stability for all the 
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tube adapter at 298 K. Prior to all the measurements, the analyte and IS were qualitatively analyzed 
using routine 1H experiments to determine the longest spin-lattice relaxation time (usually at least 5 
times the T1, thus the optimized relaxation delay of 25 s was obtained). The 3,4,5-trichloropyridine 
was chosen as the IS due to its good solubility and stability. 

Two basic requirements for an IS should be met.; one is that the signal of the IS and the target 
signal from the analyte should not overlap, and the other is that the resonance of the IS and the 
selected compound should not occur in crowded spectral regions. 3,4,5-trichloropyridine was chosen 
as an IS for the quantitative analysis. 

2.2. Validation of qNMR Analytical Method 

2.2.1. Specificity and Selectivity 

Specificity and selectivity are key prerequisites that must be evaluated to avoid possible 
interference from other components in the sample solution. We thus compared the 1H-NMR spectra 
of the standard references and sample solution with IS, and IS and solvent individually (Figure 2). 
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Figure 1. Chemical structures of Tan I (a), Tan IIA (b), DTS (c), CTS (d) and 3,4,5-trichloropyridine
(e) in SMB. (The numbers in the figure represent the chemical shifts of the marked peaks of the NMR
spectrum of each compound, unit is ppm).

2. Results and Discussion

2.1. Quantitative Analysis of SMB Using 1H-qNMR

The sample solutions were optimized to obtain the best separation and stability for all the integrated
signals in the 1H-NMR spectrogram. Quantitation was performed using an NMR sample-tube adapter
at 298 K. Prior to all the measurements, the analyte and IS were qualitatively analyzed using routine
1H experiments to determine the longest spin-lattice relaxation time (usually at least 5 times the T1,
thus the optimized relaxation delay of 25 s was obtained). The 3,4,5-trichloropyridine was chosen as
the IS due to its good solubility and stability.

Two basic requirements for an IS should be met.; one is that the signal of the IS and the target
signal from the analyte should not overlap, and the other is that the resonance of the IS and the selected
compound should not occur in crowded spectral regions. 3,4,5-trichloropyridine was chosen as an IS
for the quantitative analysis.

2.2. Validation of qNMR Analytical Method

2.2.1. Specificity and Selectivity

Specificity and selectivity are key prerequisites that must be evaluated to avoid possible interference
from other components in the sample solution. We thus compared the 1H-NMR spectra of the standard
references and sample solution with IS, and IS and solvent individually (Figure 2). We found that
the resonances assigned to these protons are quite separated from the others, such as to have a good
integration without interferences (Figure 3), compared with the data reported in the literature [19],
signals for Tan I at 7.81 ppm (dd,1H), Tan IIA at 7.36 ppm (d,1H), DTS at 8.36 ppm (d,1H), CTS at
4.38 ppm (dd,1H) were selected as the quantitation signals.
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Figure 3. Representative 1H-NMR spectra for Tan I (a), Tan IIA (b), DTS (c) and CTS (d) with IS
in the full range of 0 to 12.0 ppm. (Material is PS02, a, b, c, and d respectively represent the local
magnifications of the four signal peaks).

2.2.2. Linearity, LOD and LOQ

The intensity of the response signal is directly proportional to the amount of nuclei, as described in
Equation (1). Consequently, the linearity regression yielded a good correlation coefficient (r2 > 0.985).
The concentration ratios of the four references ranged between 0.02 and 0.18 mg/mL (CTS), 0.02 and
0.24 mg/mL (Tan I), 0.03 and 0.33 mg/mL (Tan IIA) and 0.02 and 0.24 mg/mL (DTS), respectively.

The limit of detection (LOD) presents the lowest detectable analyte concentration, whilst the
limit of quantitation (LOQ) represents the lowest quantifiable analyte concentration. These are
two fundamental elements of method validation defining the limitations of an analytical method.
In qNMR, the LOD and LOQ cannot be determined by means of SNR (signal noise ratio) as the NMR
response signals are Lorentzian lines. Hence, the LOD and LOQ were determined using the standard
deviation of the response σ and the slope S of a calibration curve obtained in the linearity study by
Equations (1) and (2):

LOD =
3.3σ

s
(1)
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LOQ =
10σ

s
(2)

The results for linearity, LOD and LOQ are shown in Table 1.

Table 1. Linearity, LOD and LOQ of four lipid-soluble ketones.

Reference Calibration Curves Range (mg/mL) r2 LOD (mg/mL) LOQ (mg/mL)

Cryptotanshinone Y = 0.926X − 0.006 0.02–0.18 0.999 0.02 0.05

Tanshinone I Y = 1.231X − 0.003 0.02–0.24 0.997 0.04 0.11

Tanshinone IIA Y = 0.715X − 0.018 0.03–0.33 0.992 0.09 0.28

Dihydrotanshinone Y = 0.740X − 0.001 0.02–0.24 0.985 0.04 0.11

2.2.3. Stability

To determine the optimal time window between sample collection and analysis, it is crucial to
conduct a sample stability test. A solution with an RSD (relative standard deviation) value of less than
3.0% is considered stable. We analyzed the stability of the sample solution with IS of PS07 at room
temperature (~25 ◦C) at 0, 6, 12, 18 and 24 h intervals and determined their RSD values. The content
difference and RSD values of the sample solution are shown in Table 2.

Table 2. Results for the stability study.

Tanshinone I Tanshinone IIA Dihydrotanshinone Cryptotanshinone

Times (h) Content
(mg/g)

Difference
(mg/g)

Content
(mg/g)

Difference
(mg/g)

Content
(mg/g)

Difference
(mg/g)

Content
(mg/g)

Difference
(mg/g)

0 0.65 NA 1.75 NA 0.37 NA 0.98 NA

6 0.69 0.04 1.79 0.04 0.40 0.03 0.97 0.01

12 0.67 0.02 1.76 0.01 0.39 0.02 1.02 0.04

18 0.67 0.02 1.70 0.05 0.39 0.02 1.02 0.04

24 0.67 0.02 1.77 0.02 0.39 0.02 1.02 0.04

RSD% 2.11 1.92 2.82 2.49

2.2.4. Accuracy

The accuracy of an analytical method is determined by measuring the correlation of theoretical
value and the value found. To study the accuracy of our method, we carried out a recovery study by
adding a known amount of Tan I, Tan IIA, DTS and CTS into the SMB extraction system, respectively.
Each concentration level was repeated in triplicate. The accuracy was estimated by measuring the
mean recovery and relative standard deviation (RSD). The recovery was determined by comparing the
calculated value of added reference material and true value according to Equation (3):

Recovery =
mx −mo

ms
× 100% (3)

where mx is the calculated mass of analyte after reference addition, mo is the calculated mass of original
analyte before reference addition and ms is the true mass of the reference addition. The results are
summarized in Table 3.

2.2.5. Precision and Intermediate Precision

ICH guidelines recommend that precision is assessed using six repeated determinations. In this
study, the intermediate precision was evaluated by a second analyst on an alternative probe (5 mm
PABBO 600S3 BBF-H-D-05 Z SP (Z114607)). The calculated content of each analyte and statistical result
were shown in Table 4. There were no significant differences in precision and intermediate precision
between the results.
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Table 3. Accuracy test results.

Compounds Tanshinone I Tanshinone IIA Dihydrotanshinone Cryptotanshinone

Level 1 (mean/%, n = 3) 65.16 74.09 121.08 71.13

RSD/%, n = 3 0.98 0.98 0.52 0.80

Level 2 (mean/%, n = 3) 96.30 85.37 102.27 123.21

RSD/%, n = 3 0.89 1.08 1.29 0.59

Level 3 (mean/%, n = 3) 85.85 114.01 145.81 93.50

RSD/%, n = 3 0.53 0.39 0.19 0.72

Table 4. Precision and intermediate precision test results a.

Study Precision Intermediate precision

Tanshinone I
(mg/g)

Tanshinone IIA
(mg/g)

Dihydrotanshinone
(mg/g)

Cryptotanshinone
(mg/g)

Tanshinone I
(mg/g)

Tanshinone IIA
(mg/g)

Dihydrotanshinone
(mg/g)

Cryptotanshinone
(mg/g)

1 0.63 1.72 0.36 0.95 0.68 1.76 0.38 1.00

2 0.66 1.73 0.38 1.00 0.65 1.75 0.38 0.98

3 0.65 1.71 0.38 1.02 0.69 1.72 0.40 0.98

4 0.63 1.72 0.36 0.95 0.69 1.76 0.40 0.99

5 0.67 1.76 0.38 0.98 0.66 1.73 0.38 1.00

6 0.65 1.75 0.37 0.98 0.67 1.77 0.39 1.02

RSD% 2.47 1.12 2.65 2.81 2.81 2.43 1.11 1.52
a Precision studies were determined on 5 mm ID probe, and intermediate precision studies were tested on an alternative NMR probe (5 mm PABBO 600S3 BBF-H-D-05 Z SP (Z114607)),
by a different analyst on different days.
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2.2.6. Robustness

The robustness of an analytical procedure is measured in terms of its capacity to remain unaffected
by small, but deliberate variations in method parameters listed in the procedure documentation,
which indicates suitability during normal routine usage. In this study, PS07 was used to test for
robustness. Three parameters were varied independently: (1) number of scans; (2) relaxation delay;
(3) acquisition time. We observed that our method was largely unaffected by variations in all of the
tested parameters (Table 5).

Table 5. Results for robustness study.

Parameters Tanshinone I
(mg/g)

Tanshinone
IIA (mg/g)

Dihydrotanshinone
(mg/g)

Cryptotanshinone
(mg/g)

Number of scans 6 0.65 1.75 0.37 1.08
32 0.67 1.70 0.39 1.11
48 0.65 1.74 0.38 1.06
64 0.67 1.77 0.39 1.06

RSD% 1.75 1.69 2.50 2.19

Relaxing delay 15 0.67 1.70 0.39 1.02
20 0.65 1.68 0.38 0.99
25 0.67 1.70 0.39 1.02
30 0.67 1.70 0.39 1.02

RSD% 1.50 0.59 1.29 1.48

Acquisition time 2s 0.65 1.67 0.37 0.98
4s 0.67 1.64 0.39 0.93
6s 0.64 1.65 0.36 0.95

RSD% 2.24 0.92 2.63 2.64

2.3. Quantitative Analysis of SMB by HPLC

A set of standard solutions of Tanshinone IIA (10.9, 109, 163, 217, 326 µg/mL), Dihydrotanshinone
(7.9, 23.6, 118, 157, 236 µg/mL), Tanshinone I (7.7, 23.2, 116, 155, 232 µg/mL) and Cryptotanshinone (4.5,
13.6, 68, 90.7, 136 µg/mL) were used to prepare the calibration curve. The content of the four ketones in
12 batches of crude SMB extract determined by HPLC is shown in Table 6.

2.4. Real Sample Determination

2.4.1. Quantitative NMR Analysis of Real Samples

PS01-PS12 were also analyzed using qNMR, and the results obtained from the two methods were
compared. We observed no significant differences between the results obtained using HPLC and
qNMR (Table 6). Therefore, qNMR represents an alternative method of quantifying compounds within
complex matrices.

2.4.2. Sample Representation

PCA is often used to reveal the clustering behavior of samples. We observed different clustering
behaviors for sample extracts obtained from different areas (PC1: 51.9%, PC2: 32.3%). As shown in the
PCA scores plot (Figure 4), most samples clustered to the middle of the plot. However, PS07 clustered
different from the other samples. The samples of PS08 and PS10 are relatively concentrated.
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Table 6. Assay (%) of four lipid-soluble ketones acid in the 12 different origins crude extract of SMB determined by the 1H NMR and HPLC methods.

Samples Methods
Cryptotanshinone Tanshinone I Tanshinone IIA Dihydrotanshinone

Content (mg/g) ± SD RSD% Content (mg/g) ± SD RSD% Content (mg/g) ± SD RSD% Content (mg/g) ± SD RSD%

PS01
HPLC 0.29 ± 0.00 0.01 0.33 ± 0.00 0.01 1.21 ± 0.00 0.00 0.10 ± 0.00 0.01

NMR 0.29 ± 0.03 0.10 0.30 ± 0.05 0.17 1.19 ± 0.08 0.06 0.15 ± 0.03 0.18

PS02
HPLC 0.68 ± 0.00 0.00 0.44 ± 0.01 0.01 1.39 ± 0.00 0.00 0.42 ± 0.00 0.00

NMR 0.66 ± 0.03 0.05 0.40 ± 0.00 0.03 1.36 ± 0.09 0.06 0.44 ± 0.01 0.02

PS03
HPLC 0.61 ± 0.01 0.01 0.46 ± 0.00 0.01 1.51 ± 0.00 0.00 0.40 ± 0.00 0.01

NMR 0.69 ± 0.02 0.02 0.49 ± 0.03 0.06 1.51 ± 0.03 0.02 0.37 ± 0.02 0.04

PS04
HPLC 0.68 ± 0.00 0.01 0.54 ± 0.00 0.01 1.62 ± 0.00 0.00 0.47 ± 0.00 0.00

NMR 0.67 ± 0.01 0.02 0.54 ± 0.02 0.04 1.60 ± 0.10 0.06 0.45 ± 0.01 0.01

PS05
HPLC 0.31 ± 0.00 0.01 0.30 ± 0.00 0.01 0.87 ± 0.00 0.00 0.23 ± 0.00 0.00

NMR 0.37 ± 0.03 0.09 0.32 ± 0.02 0.06 0.88 ± 0.03 0.03 0.29 ± 0.03 0.11

PS06
HPLC 0.31 ± 0.00 0.00 0.30 ± 0.00 0.00 0.95 ± 0.00 0.00 0.14 ± 0.00 0.01

NMR 0.30 ± 0.01 0.05 0.32 ± 0.02 0.05 1.01 ± 0.09 0.09 0.12 ± 0.02 0.18

PS07
HPLC 1.06 ± 0.01 0.01 0.67 ± 0.00 0.00 1.84 ± 0.01 0.00 0.49 ± 0.00 0.00

NMR 1.03 ± 0.06 0.05 0.66 ± 0.01 0.01 1.83 ± 0.07 0.04 0.42 ± 0.06 0.15

PS08
HPLC 0.37 ± 0.00 0.00 0.38 ± 0.00 0.01 1.34 ± 0.24 0.00 0.20 ± 0.00 0.00

NMR 0.38 ± 0.02 0.05 0.38 ± 0.02 0.04 1.25 ± 0.00 0.18 0.23 ± 0.01 0.06

PS09
HPLC 0.82 ± 0.01 0.00 0.59 ± 0.00 0.00 1.99 ± 0.00 0.00 0.34 ± 0.00 0.00

NMR 0.76 ± 0.03 0.04 0.57 ± 0.04 0.06 1.91 ± 0.09 0.04 0.36 ± 0.02 0.06

PS10
HPLC 0.38 ± 0.00 0.01 0.45 ± 0.01 0.01 1.38 ± 0.00 0.00 0.21 ± 0.00 0.01

NMR 0.39 ± 0.07 0.19 0.42 ± 0.02 0.04 1.24 ± 0.07 0.05 0.23 ± 0.01 0.05

PS11
HPLC 0.63 ± 0.00 0.00 0.38 ± 0.00 0.01 1.36 ± 0.00 0.00 0.34 ± 0.03 0.00

NMR 0.68 ± 0.03 0.05 0.38 ± 0.03 0.08 1.19 ± 0.12 0.10 0.30 ± 0.00 0.09

PS12
HPLC 1.08 ± 0.01 0.00 0.50 ± 0.00 0.00 2.02 ± 0.00 0.00 0.49 ± 0.01 0.00

NMR 1.18 ± 0.02 0.01 0.50 ± 0.03 0.05 1.97 ± 0.03 0.02 0.47 ± 0.01 0.01
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Our results were consistent with the geographic information of these samples (Figure 6). Among
them, the collection area of PS07 has the highest latitude, while the collection areas of PS08 and PS10
have similar latitudes, which indicates that the latitude of the collection area may have some impact on
the cluster results of some sample.Molecules 2019, 24, x FOR PEER REVIEW 3 of 16 
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3. Materials and Methods

3.1. Plant Material and Reagents

Fresh SMB roots (PS01–PS12) were obtained from Mianchi (Henan, China), Fengxiang, Baoji,
Shangnan, Luonan, Linyou, Baishui, Shanyang, Shangzhou, Tongguan, Huayin (Shaanxi, China)
from Shaanxi Tasly Pharmaceutical Co. Ltd. Reference standards Tan I (HPLC ≥ 98%), Tan IIA
(HPLC ≥ 98%), CTS (HPLC ≥ 98%) and DTS (HPLC ≥ 98%) were obtained from the Shanghai Yuanye
Biotechnology Co. Ltd. (China). Chloroform-D (CDCl3) were purchased from Qingdao Asfirst
Science Co. Ltd. (D, 99.8%, Qingdao, China), 3,4,5-trichloropyridine were purchased from Shanghai
Aladdin Bio-chemical Technology Co. Ltd. (GC, 98%, Shanghai, China), in which CDCl3 was used as
solvent and 3,4,5-trichloropyridine was used as the internal standard (IS). Methanol and acetonitrile
of chromatographic grade (TEDIA) were used for extraction and HPLC analysis. Analytical grade
phosphoric acid (Damao Chemical Reagent Factory, Tianjin, China) was used for the HPLC analysis.
The pure water used in this study was obtained using a Barnstead TII Super Pure Water System
(Thermo Fisher Scientific, Boston, MA, USA).

3.2. Instruments and Parameters

Fresh SMB roots samples were milled using a Q-250B1mill (Shanghai, China). A KH5200DE
ultrasonic bath (Nanjing, China) was used for extraction.

The samples for qNMR analysis were measured on a 600 MHz Avance III HD spectrometer with a
TXI probe at 298K (Bruker Corporation, Faellanden, Switzerland). 1H-NMR experimental parameters
were shown as follows: zg30 pulse sequence with 32 scans of 32 K data points in a spectral width
of 12019.2 (20 ppm), acquisition time 5.0 s, relaxation delay 25 s. All of the data processing was
performed by using MestReNova11.0 and SPSS21.0: first, we use MestReNova’s superposition function
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to superimpose the internal standard, solvent, sample, and 4 standards, and select the appropriate
signal peak. Then, the sample is integrated according to the selected signal peak, and the content of the
four components in the sample is calculated by combining with the standard curve. After the above
process is completed, SPSS is used for principal component analysis and cluster analysis.

3.3. Preparation of Sample Solution

Approximately 2.0 g of the SMB root powder was added into 20 mL 70% methanol aqueous
solution and settled for 12 h at room temperature, then extracted for 45 min in an ultrasonic bath.
The supernatant was cooled to room temperature and filtered. Next, 1500 µL of filtered liquor was
transferred into a clean Eppendorf tube and nitrogen at 35 ◦C. The 600 µL of CDCl3 (containing 0.03%
v/v TMS) was then added to dissolve the sample for NMR analysis. The NMR sample tube was
assembled for analysis at 298 K and sealed prior to the 1H-NMR measurement. For HPLC analysis,
the filter liquor was directly injected into the HPLC system. All of the extractions and subsequent
NMR measurements were performed in triplicate.

3.4. Internal Standards

The extracted sample PS02 with 600 µL CDCl3, containing 0.13 mg 3,4,5-trichloropyridine was
analyzed as IS.

3.5. Quantitative NMR Analysis

The most important fundamental relation of qNMR is the signal response (integrated signal area)
Ix in a spectrum that is directly proportional to the number of nuclei Nx generating the corresponding
resonance line [27,28]:

Ix = KsNx (4)

Ks is an unknown spectrometer constant, which is a constant for all resonance lines in the same
1H single-pulse NMR spectrum. Accordingly, the determination of the relative area ratios Ix/Iy is the
most efficient way to obtain quantitative results by using Equation (5) when Ks cancels for the ratio:

Ix

Iy
=

Nx

Ny
(5)

For the purity determination of a substance, an internal standard with known purity is
needed. Based on Equation (5), the component purity can be calculated from the NMR intensity via
Equations (6) and (7):

Wx =
Ix ×NStd ×Mx ×mStd

IStd ×Nx ×MStd
(6)

Px =
Ix ×NStd ×Mx ×mStd × PStd

IStd ×Nx ×MStd ×m
(7)

Wx and Px represent the mass and purity of the analyte. Mx and MStd are the molar masses of
the analyte and the standard (3,4,5-trichloropyridine: 182.44 g/mol). m is the weighed mass of the
investigated sample. mStd and PStd are the weighed mass and the purity (99.5%) of the standard.
NStd and IStd correspond to the number of protons for the standard (in this experiment is 2) and the
integrated signal area of a typical NMR line (which was 2 in this experiment). Nx and Ix correspond to
the number of protons for the analyte 1H.

3.6. HPLC Analysis

The qNMR results were verified using HPLC. The HPLC experiments were performed using
an Agilent 1260 HPLC system (Agilent, Palo Alto, CA, USA) equipped with a Diode-array detector
and a Sunfire C18 column (5 µm, 250 mm × 4.6 mm i.d., Waters, Milford, MA, USA). The mobile
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phase consisted of 0.02% phosphoric acid aqueous solution (A) and acetonitrile (B), programmed
as follows: 0–10 min, 5–20% B; 10–15 min, 20–25% B; 20–25 min, 25–20% B; 25–28 min, 20–30% B;
28–40 min, 30% B; 40–45 min, 30–45% B; 45–58 min, 45–58% B; 58–67 min, 58–50% B; 67–70 min, 50–60%
B; 70–80 min, 60–65% B; 80–85 min, 65–95% B; 85–95 min, 95–95% B; 85–96 min, 95–5% B. The detection
wavelength was set at 270 nm and flow rate was 1 mL/min. The content of DTS, Tan IIA, Tan I and
CTS in each sample was determined the external standard method and the calibration curve of the
corresponding standards.

3.7. Chemometrics Methods

Principal component analysis (PCA) and hierarchical cluster analysis were used to analyze the
NMR data.

4. Conclusions

A selective and accurate qNMR method was established for quantitatively determining and
validating four lipid-soluble ketones in SMB extracts. The results of the analysis of linearity, precision,
stability, accuracy, LOD and LOQ demonstrated that 1H-NMR can be used to accurately determine the
content of ketones. We found that the results generated using the qNMR method were consistent with
those obtained using HPLC analysis. Whilst HPLC took more than 60 min to complete, qNMR took
only 19 min for each sample. Due to the good linearity between IS and the references, qNMR can be
performed without any standard references. Although future studies will be required to maximize its
application potential, NMR profiles can be combined with chemometric approaches to give insights
into the relationship between the quality, properties and geographic origins of plant-based materials.
In summary, qNMR presents a rapid and effective method of analyzing various plant extracts and
their by-products.
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