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Abstract: Sn(II) binds to kaempferol (HKaem, 3,4′,5,7-tetrahydroxy-2-(4-hydroxyphenyl)-4H-1-
benzopyran-4-one) at the 3,4-site forming [Sn(II)(Kaem)2] complex in ethanol. DPPH• scavenging
efficiency of HKaem is dramatically decreased by SnCl2 coordination due to formation of acid
inhibiting deprotonation of HKaem as ligands and thus reduces the radical scavenging activity of
the complex via a sequential proton-loss electron transfer (SPLET) mechanism. Moderate decreases
in the radical scavenging of HKaem are observed by Sn(CH3COO)2 coordination and by contact
between Sn and HKaem, in agreement with the increase in the oxidation potential of the complex
compared to HKaem, leading to a decrease in antioxidant efficiency for fruits and vegetables with Sn
as package materials.
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1. Introduction

Flavonoids are a group of natural products with a variety of biological activities such as antioxidant,
anti-inflammatory and anti-cancer [1–6]. Antioxidant activities of most flavonoids have recently been
found to be enhanced by coordination of metal ions as reported by us [7,8] and by other authors [9–15].
In some cases, the presence of metal ions have been found to reduce the antioxidant activities of
flavonoids depending on solvent, pH and the nature of flavonoids and metal ions [16,17]. The detailed
mechanism behind the effect of metal ions on antioxidative efficiency at the molecular level is far from
well established.

Sn plates are very commonly used in packaging for vegetables, fruits and beverages [18,19].
The total for food packaging is approximately 80,000 million cans worldwide every year [20]. Sn cans
may protect natural flavor and appearance of food through oxidation of Sn itself in preference to
oxidative degradation of the food [20]. Sn used for food and beverage packaging may partly dissolve
into the food preservatives and react with organic components like flavonoids [20]. Sn has been found
to have a rich coordination chemistry with flavonoids including anthocyanin, quercetin and the more
water soluble glucoside, rutin, as evidenced by the decrease in phenolic content of fruits canned in
Sn [16,17,21]. Sn(II) coordination has been found to decrease the antioxidant effect of flavonoids [14,15].
However, molecular mechanism on radical scavenging activity of flavonoids decreased by Sn(II)
coordination is still not clear.

Kaempferol (HKaem, Scheme 1a), 3,4′,5,7-tetrahydroxyflavone, a flavone derivative, is widely
distributed in plants and plant products [22]. Antioxidant effects of HKaem have been reported to
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be increased by the presence of copper (II), iron (III), and zinc (II) by other authors and our recent
studies [7,8,23–26]. In the present study, HKaem was selected as a typical flavonoid with two possible
chelation sites (3,4 and 4,5) for metal ions, and complex formation by Sn(II) coordination to HKaem
was investigated together with the complex as a radical scavenger. The effect on radical scavenging
efficiency of HKaem by Sn(II) coordination is of relevance as Sn is used for packaging of food, and
accordingly deserves more attention.
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2. Results and Discussions

2.1. Formation and Stability of [Sn(II)(Kaem)2] Complex

As seen in Figure 1a, HKaem in ethanol was found to react with SnCl2 slower than luteolin
reacting with Cu(II) reaching equilibrium on a millisecond timescale [8]. The peak of UV-Vis absorption
spectra red shifts gradually from 366 nm for HKaem to 433 nm by addition of SnCl2. The kinetics was
measured every 30 s with a total time of 30 min as shown in Figure 1b. The increase at 366 nm and the
decrease at 433 nm in absorbance both giving the same first-order rate constant of 0.12 ± 0.01 min−1.
In contrast, apigenin (Scheme 1b) without 3-OH does not react with SnCl2 (Figure 1c), which indirectly
supports that Kaem chelate to SnCl2 at 3-OH and 4-C=O excluding the possibility of Sn(II) chelating at
4-C=O and 5-OH [7,27,28]. This chelating mode is frequently found in metal-Kaem complexes like
zinc(II) and ruthenium(II) [7,29,30].

UV-Vis absorption spectra of HKaem and Sn(II) in ratios ranging from 1:0.2 to 1:5 are seen in
Figure 2a. Job’s-Plots of the spectra shown in Figure 2a at 430 nm against molar fractions of Sn(II), FSn(II),
(Figure 2b) shows the stoichiometry of Kaem with Sn(II) is 2:1. The composition of the complex in
ethanol is proposed to be a five-coordinate structure [Sn(II)(Kaem)2(EtOH)] containing a solvent ligand
as shown in Scheme 1c, which is supported by mass spectrometry in methanol [23,31] (Table 1 and
Figure 3). For simplicity, five-coordinate structure Sn(II)(Kaem)2(EtOH) is written as [Sn(II)(Kaem)2]
in the following. The reaction of Sn(II) with HKaem in ethanol is thus written as Equation (1):

Sn2+ + 2HKaem + nEtOH
 Sn(II)(Kaem)2 (EtOH)n + 2H+ (1)

The stability constant was calculated as 8.2 × 1010 L2
·mol−2, which is closed to the stability

constants, 1.1 × 1011 L2 mol−2 for 1:2 Cu(II)–genistein complex [23] and 1.1 × 1011 L2 mol−2 for 1:2
Zn(II)–kaempferol complex [7].

The stability of the [Sn(II)(Kaem)2] complex was investigated by addition of water, HCl and
NaOH, and the corresponding absorption spectra are shown in Figure 4a–c. Figure 4a,b shows that the
complex gradually decomposes with increasing addition of water or hydrochloric acid. Water may
react with Sn(II) in complex to form Sn(OH)2 causing the dissociation of the complex as shown in
Equation (2) [28,32]. The chemical equilibrium of the reaction shown in Equation (1) moves backwards
by the addition of hydrochloric acid to release the parent HKaem from the [Sn(II)(Kaem)2] complex.

Sn(II)(Kaem)2 + H2O
 Sn(OH)2 + 2HKaem (2)
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Sn(II)(Kaem)2 + 2H+ 
 Sn2+ + 2HKaem (3)

Table 1. Mass spectra (m/z) of 100 µM Kaem with 50 µM SnCl2 in methanol.

m/z Kaem:Sn(II) = 2:1

717.00 2(Kaem)− + CH3OH + 114Sn2+ + H+

718.00 2(Kaem)− + CH3OH + 115Sn2+ + H+

719.00 2(Kaem)− + CH3OH + 116Sn2+ + H+

720.00 2(Kaem)− + CH3OH + 117Sn2+ + H+

720.95 2(Kaem)− + CH3OH + 118Sn2+ + H+

721.95 2(Kaem)− + CH3OH + 119Sn2+ + H+

722.95 2(Kaem)− + CH3OH + 120Sn2+ + H+

724.95 2(Kaem)− + CH3OH + 122Sn2+ + H+

726.95 2(Kaem)− + CH3OH + 124Sn2+ + H+
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1 and Figure 3). For simplicity, five-coordinate structure Sn(II)(Kaem)2 (EtOH)  is written as 

[Sn(II)(Kaem)2] in the following. The reaction of Sn(II) with HKaem in ethanol is thus written as 

Equation (1): 

Sn2+ + 2HKaem + nEtOH ⇌ Sn(II)(Kaem)2 (EtOH)n + 2H+ (1) (1) 

Figure 1. Slow reaction of tin chloride (SnCl2) with HHHHhhKaem and no reaction of SnCl2 with
apigenin (HApi). (a) Absorption spectra of 50 µM SnCl2 and 50 µM kaempferol (HKaem) in ethanol
measured every 30 s for total time of 30 min. (b) Time evolutions at 433 and 366 nm from Figure 1a
corresponding to the transformation of HKaem into the [Sn(II)(Kaem)2] complex. (c) Absorption
spectra of 50 µM HApi and solutions of 50 µM HApi and 50 µM SnCl2 in ethanol at 30 min and 24 h
after mixing.
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Figure 2. Determination of the Sn:Kaem ratio. (a) Absorption spectra of 50 µM HKaem, 50 µM SnCl2,
and solutions of 50 µM HKaem addition of SnCl2 in varying ratio (1:0.2–1:5) in ethanol. (b) Job’s plots
of absorbance at 430 nm obtained by mixing solutions of HKaem and SnCl2 with total concentration of
50 µM in HKaem:Sn(II) molar ratios varying from 9:1 to 1:9.
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Figure 3. Mass spectra of solutions of 100 µM HKaem with 50 µM SnCl2 in methanol.

In addition, the [Sn(II)(Kaem)2] complex was also found to dissociate into deprotonated Kaem
in the presence of excessive sodium hydroxide in ethanol in the reaction shown in Equation (4).
The dissociation was confirmed spectrally by the similar absorption spectra of [Sn(II)(Kaem)2] and the
parent HKaem in basic condition as seen in Figure 4c.

Sn(II)(Kaem)2 + 2OH− 
 Sn(OH)2 + 2Kaem− (4)
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Figure 4. Effects of addition of water, acid, and base on the stability of the [Sn(II)(Kaem)2] complex. 

Absorption spectra of solution of 50 µM HKaem and 50 µM SnCl2 measured (a) in water:ethanol = 1:1, 
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2.2. Radical Scavenging Kinetics  

Figure 4. Effects of addition of water, acid, and base on the stability of the [Sn(II)(Kaem)2] complex.
Absorption spectra of solution of 50 µM HKaem and 50 µM SnCl2 measured (a) in water:ethanol = 1:1,
v/v, and in ethanol by addition of (b) 50, 500, and 5000 µM hydrochloric acid and (c) 1 mM sodium
hydroxide. Absorption spectra of 50 µM HKaem alone under the same conditions is indicated by
a dashed line for comparison.

2.2. Radical Scavenging Kinetics

The reaction between the semi-stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and HKaem
as well as the [Sn(II)(Kaem)2] complex was investigated by the absorbance changes at 517 nm in ethanol
by stopped-flow spectroscopy, as shown in Figure 5.

Upon addition of HKaem only with concentration increasing from 25 to 200 µM, the decay of
absorbance at 517 nm for 100 µM DPPH• gradually accelerated (Figure 5a). However, the rate of
DPPH• scavenging gradually decreased for 100 µM HKaem with increasing addition of SnCl2 in
ratios of HKaem:SnCl2 varying from 1:0.02 to 1:10 (Figure 5b). Notably, this pattern is different
from what was observed in our previous and recent work including the combination of HKaem
and Zn(II) or HKaem and alkaline rare earth ions in ethanol, and the combination of luteolin and
Cu(II) in aqueous solution for which the rate of scavenging increased [7,8,23]. According to the
method in reference [33], time evolution curves at 517 nm in Figure 5 can be fitted by the use of linear
and exponential functions, A517 = k1t + b and A517 = me−k2t + n for linear and non-linear kinetics
respectively, and the initial rates at t=0 s, ratet=0, are quantitatively obtained by differentiating the
fitting functions with respect to time t using Equations (5) and (6):

ratet=0 = −
dA517, t=0

dt
= k1t + b (t = 0) = k1 (5)

ratet=0 = −
dA517, t=0

dt
= me−k2t(t = 0) = mk2 (6)



Molecules 2020, 25, 1975 6 of 13

in which k1 and k2 represent rate constants and b, m, n are constants. The initial rates k1 for linear fitting
and k2 for exponential fitting are listed in Table 2 for comparison.
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Figure 5. Time evolution of absorbance at 517 nm for 100 µM 2,2-diphenyl-1-picrylhydrazyl (DPPH•)
scavenged by (a) 25, 50, 100, and 250 µM HKaem; (b) 100 µM HKaem, 100 µM SnCl2, and solutions of
100 µM HKaem with 2, 4, 6, 8, 10, 100, and 1000 µM SnCl2; and (c) 100 µM HKaem, and solutions of
100 µM HKaem with 100 and 200 µM Sn(OAc)2 in ethanol. The samples of DPPH• alone and solutions
of DPPH• with SnCl2 and Sn(OAc)2 are shown for comparison. Ethanol was used as the solvent.

The rate of DPPH• scavenging dramatically decreased (~10 times) by addition of SnCl2 with the
ratio of HKaem:SnCl2 changing within a small range from 1:0.02 to 1:0.08. For the ratio of HKaem:SnCl2
changing from 1:1 to 1:10, the rate of DPPH• scavenging only decreased 2.5 times. The decrease in
the DPPH• scavenging rate was obviously not only the result of an increase in the fraction of the
[Sn(II)(Kaem)2] complex.

Coordination of HKaem with Sn(OAc)2 as a salt of weak acid was compared with SnCl2 as a salt
of a strong acid. The Job’s plot and stability constant were not directly available due to the poor
solubility of Sn(OAc)2. The absorption spectra of 50 µM HKaem and 50 µM Sn(OAc)2 shown in
Figure 6 produced a peak at 433 nm in agreement with the spectra of the [Sn(II)(Kaem)2] complex
formed by SnCl2 reacting with HKaem. Absorption spectra were nicely fitted by a linear addition of
the absorption spectra of HKaem and the [Sn(II)(Kaem)2] complex formed from HKaem reacting with
SnCl2, which showed that the same [Sn(II)(Kaem)2] complex formed from both SnCl2 and Sn(OAc)2
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reacting with HKaem. The stability constant for [Sn(II)(Kaem)2] formed from HKaem and Sn(OAc)2

(Equation (7)) was calculated as 5.39 × 108 mol−2L2, lower than the 8.19 × 1010 mol−2L2 obtained for
the HKaem and SnCl2 combination.

Sn(OAc)2 + 2HKaem 
 Sn(II)(Kaem)2 + 2HOAc (7)

Table 2. Fractions (F, %) of Kaem and [Sn(II)(Kaem)2] and initial rate k (s−1, including k1 and k2 from
Equations (5) and (6)) of DPPH• scavenging by100 µM HKaem, by solutions of 100 µM HKaem and
SnCl2 at indicated varying ratios, and by a solution of 100 µM HKaem and 100 µM Sn(OAc)2 in ethanol.

Sample Kaem:Sn(II) FKaem (%) FSn(II)-Kaem2 (%) k (s−1)

Kaem 1:0 100 0 2.16× 10−2

Kaem+SnCl2

1:0.02 98.0 2.04 1.60× 10−2

1:0.04 95.8 4.17 1.45× 10−2

1:0.06 93.6 6.38 1.17× 10−2

1:0.08 91.3 8.70 1.61× 10−3

1:0.1 88.9 11.2 1.41× 10−3

1:0.2 75.2 24.8 1.12× 10−3

1:0.3 59.1 40.9 1.07× 10−3

1:0.4 44.0 56.0 9.40× 10−4

1:0.5 34.2 65.8 7.92× 10−4

1:1 19.2 80.8 6.96× 10−4

1:5 7.90 92.1 4.92× 10−4

1:10 5.60 94.4 2.77× 10−4

Kaem+SnAc2 1:1 81.5 18.5 1.50× 10−2
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Figure 6. Absorption spectra in ethanol of 50 µM HKaem alone, 50 µM HKaem plus 50 µM Sn(OAc)2,
50 µM HKaem plus 50 µM SnCl2, and the linear combination of spectra of 50 µM HKaem plus 50 µM
Sn(OAc)2, SKaem + Sn(OAc)2, using spectrum of HKaem alone, SKaem, and spectrum of 50 µM HKaem
plus 50 µM SnCl2, SKaem+SnCl2 giving the relationship of 0.59SKaem + 0.20SKaem+SnCl2.

The time evolutions of DPPH• scavenging by the combination of HKaem and Sn(OAc)2 in
Figure 5c were different from the combination of HKaem and SnCl2, and the radical scavenging rate
of HKaem slightly decreased by Sn(OAc)2 coordination compared with SnCl2 coordination. Acetic
acid, as a product formed by the reaction of HKaem and Sn(OAc)2, has an acid dissociation constant,
pKa = 10.59 [34], and the protons in solution were far less completely dissociated than the hydrochloric
acid formed in reaction of HKaem and SnCl2. Therefore, the acidic effect on DPPH• scavenging was
negligible for the complex formed from HKaem and Sn(OAc)2. The [Sn(II)(Kaem)2] complex was the
dominant DPPH• radical scavenger in a solution of HKaem and Sn(OAc)2 excluding the interference
of acid. The dramatically decreased antioxidant effect of the Sn(II)(Kaem)2 complex formed in the
reaction with SnCl2 and HKaem arose from hydrochloric acid as a side product, which decreased
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radical scavenging activity of [Sn(II)(Kaem)2]. As shown in Equations (8)–(10), the mechanism of
DPPH• radical scavenging by [Sn(II)(Kaem)2] can accordingly be described as a sequential proton loss
electron transfer (SPLET) mechanism [35]:

Sn(II)(Kaem)2 → Sn(II)(Kaem)2
− + H+ (8)

Sn(II)(Kaem)2
− + DPPH → Sn(II)(Kaem)2 + DPPH− (9)

DPPH− + H+
→ DPPHH (10)

Kaem, as a ligand in the complex, deprotonates first and then reacts with DPPH•. The deprotonated
flavonoids have higher radical scavenging capacity than the protonated flavonoids. The hydrochloric
acid formed from SnCl2 reacting with HKaem inhibited the deprotonation of HKaem in the complex and
accordingly decreased the radical scavenging reactivity of the [Sn(II)(Kaem)2] complex. The addition
of hydrochloric acid to the solution of HKaem and Sn(OAc)2 significantly decreased the rate of DPPH•

decay, as seen in Figure 5c, which further indicated the inhibition mechanism of acid on radical
scavenging of the [Sn(II)(Kaem)2] complex.

The absorption spectra of DPPH• radicals with HKaem, SnCl2/Sn(OAc)2 and equilibrated solutions
of HKaem and SnCl2/Sn(OAc)2 shown in Figure 7 also indicated that Sn(II) salts alone do not react
with DPPH•. HKaem and the combination of Kaem and Sn(OAc)2 were able to scavenge the DPPH•

radicals. The spectral characteristics of DPPH• are not affected by combination of HKaem and SnCl2,
which excludes the possibility of DPPH• protonation in the radical scavenging [36,37].
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plus 100 µM SnCl2/Sn(OAc)2, and 100 µM DPPH• plus 100 µM HKaem + 100 µM SnCl2/Sn(OAc)2.
Ethanol was used as the solvent.

The time evolution of absorption of 50 µM DPPH• at 517 nm following addition of 100 µM HKaem
soaked in a glass vessel and in a Sn can for 48 h (Figure 8) indicated that the radical scavenging rate of
HKaem is 0.72 times lower than of the parent HKaem and is apparently decreased by reaction with Sn
as the packaging material in cans. This result implied that Sn or Sn oxide may dissolve and react with
HKaem in solution forming a complex, which causes a decrease in radical scavenging efficiency.

Decreased radical scavenging reactivity of HKaem by Sn(II) coordination is also supported by
comparisons of oxidation potential as determined for Kaem and [Sn(II)(Kaem)2] formed from Kaem
reacting with SnCl2 and Sn(OAc)2 (Figure 9a,b). Using cyclic voltammetry, HKaem was found to be
oxidized by a quasi-reversible process and to have an oxidation potential of 0.08 V versus ferrocene
corresponding to oxidation of a phenolic group [38,39]. No signal was observed for SnCl2 or Sn(OAc)2

alone within the detection range. The lowest oxidation peak of HKaem gradually increased with
the addition of SnCl2 with the ratio of HKaem:SnCl2 at 1:0.1 to 1:5. With the increase in SnCl2
relative to HKaem, a new oxidation peak appeared and moved toward a higher oxidation potential
of 0.41 V, assigned to the oxidation potential of the [Sn(II)(Kaem)2] complex formed from HKaem
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reacting with SnCl2 (Figure 9a). The oxidation potential of the Sn(II)(Kaem)2 complex formed from
HKaem reacting with Sn(OAc)2 was determined to be 0.16 V (Figure 9b). This value is higher than
the potential of HKaem of 0.08 V but lower than the potential of the [Sn(II)(Kaem)2] complex formed
from combination of Kaem and SnCl2, which had a value of 0.41 V. A higher oxidation potential for
HKaem coordination to SnCl2 than for HKaem coordination to Sn(OAc)2 confirmed that the SPLET
reaction of the [Sn(II)(Kaem)2] complex in radical scavenging also occurs at the electrode during cyclic
voltammetry. The higher oxidation potential of the [Sn(II)(Kaem)2] complex than the parent HKaem is
consistent with the decreased radical scavenging capacity of HKaem by Sn(II) coordination.
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Figure 9. Cyclic voltammograms of 100 µM HKaem alone and (a) 100 µM SnCl2 and solutions of
100 µM HKaem with 10, 50, 100, and 200 µM SnCl2, and (b) 100 µM Sn(OAc)2 and solutions of 100 µM
HKaem plus 100 µM Sn(OAc)2. All samples were in ethanol relative to 50 µM ferrocene with 0.1 M
sodium perchlorate, NaClO4.

As a main group metal element, Sn(II) often has metal–ligand covalent interactions with other
elements [40]. Cationic low-valent Sn(II) species possess a combination of electrophilicity of the
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cation with the nucleophilicity of the metal-centered lone electron pair [41]. Compared with their
parent flavonoid molecules, Sn(II) reacting with HKaem decreases the radical scavenging efficiency
and increases oxidation potential, whereas transition metal ions like Zn(II) and Cu(II) reacting with
flavonoids both increase the radical scavenging efficiencies and decrease the oxidation potentials. This
may arise from the weakened electron donation ability of HKaem by coordination of Sn(II) with the
nucleophilicity of the metal-centered lone electron pair, whereas the strong electron-withdrawing
effects of Zn(II) or Cu(II) increase the electron donation ability of flavonoids in radical scavenging.

3. Materials and Methods

3.1. Chemicals

HKaem (>98%) and HApi (>98%) from Huike Plant Exploitation Inc, (Shanxi, China), ‘stannous
chloride dihydrate, SnCl2·2H2O (>99%) from Beijing Chemical Reagents Company (China), tin
acetate (Sn(OAc)2, C4H6O4Sn, > 97%) from Energy Chemical (Shanghai, China), DPPH• (>97%) from
Zhongshengruitai Technology Inc. (Beijing, China), ferrocene (>98%) and sodium perchlorate, NaClO4

(>98%) from Sigma-Aldrich (St. Louis, MO, USA), hydrochloric acid (37%) from Sigma-Aldrich,
NaOH (>98%) from Sigma-Aldrich, and spectrophotometric grade ethanol and methanol (99.9%, Fine
Chemical Industry Research Institute, Tianjin, China) were used as received. Ultrapure water purified
on a Milli-Q purification train was used throughout. Sn cans used to keep fruits were bought from
supermarkets and were polished to remove the oxide layer before performing the experiment.

3.2. Reaction of Sn(II) with Kaempferol

All UV-Vis absorption spectra were measured on a Cary 60 spectrophotometer (Varian, Inc.,
Palo Alto, CA, USA) using 1.0 cm quartz cells in a room at a temperature of 25 ◦C. The solutions
were prepared by mixing solutions of HKaem and SnCl2 with total molar concentrations of 50 µM
in Kaem:Sn(II) molar ratios varying from 9:1 to 1:9. Stabilities of the complex were investigated by
addition of different concentrations of water, acid, and base to the solution of 50 µM SnCl2 and 50 µM
HKaem. For the reaction of HKaem with Sn(OAc)2, 100 µM HKaem was added to 100 and 200 µM
Sn(OAc)2 in ethanol. The absorption spectra to monitor the reactions were measured after 30 min
when the reactions had reached equilibrium. For the reaction of HApi with SnCl2, 100 µM HApi was
added to 100 µM SnCl2 in ethanol and stored for 30 min and 24 h. Then, UV-Vis spectroscopy was
performed for the two solutions.

3.3. Mass Spectroscopy

Mass spectra were obtained on a Thermo Scientific™ Q Exactive™HF (Waltham, MA, USA) in
positive ion mode. The [Sn(II)(Kaem)2] complexes were prepared by filtering the solutions obtained
by mixing 100 µM HKaem + 50 µM SnCl2 through a nylon membrane with 220 nm sieve pores.
The samples were analyzed by direct infusion into electron spray ionization by means of a syringe
pump (Thermo UltiMate 3000, Waltham, MA, USA) at a flow rate of 5 µL/min. Capillary temperature
was 320 ◦C and spray voltage was 3.50 kV.

3.4. DPPH• Radical Scavenging

The kinetics of DPPH• scavenging by the [Sn(II)(Kaem)2] complexes was investigated using the
same rapid mixing stopped-flow technique, performed on a RX2000 Rapid-Mixing Stopped-Flow
Unit (Applied Photophysics Ltd., Surrey, U.K.) as in our previous study [7]. One syringe contained
a solution of DPPH• dissolved in ethanol. The other syringe contained the samples to be measured.

The kinetics of DPPH• scavenging by a HKaem in ethanol soaked in a Sn can for 48 h was
compared to a similar sample under the same conditions but stored in a glass vessel covered by
aluminium foil.
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3.5. Determination of Oxidation Potentials

Cyclic voltammetry (CV) was performed on a three-electrode CHI 760D electrochemical analyzer
(ChenHua Instruments Inc., Shanghai, China). The working electrode was a glassy carbon piece (diameter
= 4 mm), the reference electrode was a silver wire and the auxiliary electrode was a platinum wire.
The supporting electrolyte, 0.10 mol L−1 NaClO4, was used. The internal standard, 5.0 × 10−5 mol L−1

ferrocene, was used. The cyclic voltammetry in ethanol was scanned in potential from −0.5 to 1.0 V on
a 0.1 V/s scan rate.

All experimental results were repeated three times and showed the same tendency.

4. Conclusions

Sn(II) reacts with HKaem forming the proposed [Sn(II)(Kaem)2] complex by coordination at the
3,4-site on a time scale of seconds, as confirmed by UV-Vis spectroscopy, mass spectroscopy, and
through a comparison with reaction of Sn(II) and apigenin. Radical scavenging reactivity of HKaem
was found to be moderately decreased by Sn(II) coordination by comparing the complexes formed from
SnCl2 and Sn(OAc)2 reacting with HKaem, in agreement with the increase in oxidation potential for the
[Sn(II)(Kaem)2] complex compared to the parent HKaem, which may be due to the electron donation
ability of Kaem as a ligand in the complex decreased by the nucleophilicity of the Sn(II)-centered
lone electron pair. These results concerning the molecular mechanism behind the radical scavenging
efficiency of HKaem as decreased by Sn(II) is relevant for Sn as food packaging in the food industry
and protection of flavonoids as natural antioxidants, which needs more attention.
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10. Říha, M.; Karlíčková, J.; Filipský, T.; Macáková, K.; Rocha, L.; Bovicelli, P.; Silvestri, I.P.; Saso, L.; Jahodář, L.;
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