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Abstract: Microspheres containing absorption enhancer (sodium N-[8-(2-hydroxybenzoyl)
amino]caprylate, SNAC) were developed to enhance the oral bioavailability of berberine
hydrochloride (BER) with poor intestinal membrane permeability. Microspheres were prepared and
characterized by particle size measurements, scanning electron microscopy, differential scanning
calorimetry, BER payload and release, Caco-2 cell monolayer transport, and rat pharmacokinetics.
The microspheres were spherical and had uniform size, high encapsulation efficiency and high loading
capacity. In vitro release studies showed that BER-loaded microspheres had good sustained release
characteristics. The Caco-2 cell monolayer transport study proved that SNAC could significantly
enhance permeability of BER 2–3-fold. Pharmacokinetic studies demonstrated a 9.87-fold increase
in area under the curve (AUC) of BER mixed with SNAC and a 14.14-fold increase in AUC of
microspheres compared with BER alone. These findings indicate that SNAC is a promising absorption
enhancer for oral delivery of BER in the form of both solution and microspheres.

Keywords: sodium N-[8-(2-hydroxybenzoyl)amino]caprylate; permeation enhancement; berberine
hydrochloride; microspheres; oral bioavailability

1. Introduction

Berberine hydrochloride (BER) is a kind of quaternary ammonium type isoquinoline alkaloid; it is
extracted from Coptis chinensis, a kind of plant, as both medicine and food. BER shows a curative effect
in the medication of various diseases. For example, BER shows a good effect in clinical treatment of
type 2 diabetes mellitus and improves glucose and lipid utility [1,2]; provides neuroprotective effects
in TgCRND8 mice [3]; prevents kidney damage by protecting the structure and function of the kidney
and inhibiting the proliferation and secretion of mesangial cells [4]; ameliorates acute endotoxemia [5];
and shows good effect in treatment of endometritis [6].

BER is easily adsorbed by protein, which makes it difficult to achieve effective concentrations [7–11].
Furthermore, as BER is slightly soluble in water and has poor biological membrane permeability,
it shows poor intestinal absorption and very low oral bioavailability [12,13]. The conventional dosage
forms of BER for oral administration cannot reach the therapeutic concentration with only a few
administration times; it usually takes several months to take therapeutic effect [14]. A high dosage
of BER can bring toxicity and side effects to the bodies of patients [15,16]. Obviously, developing
an efficient drug delivery system for enhancing oral bioavailability of BER is a potential strategy for
extending the clinical application of BER.
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Microspheres are small spherical particles, usually with a particle size between 1 and 250 µm.
They are produced as a kind of natural or synthetic polymer material encapsulating drugs. As a new
drug delivery technology, microsphere technology can achieve the long-term effect of sustained release
by adjusting and controlling the release rate of drugs [17–19]. At the same time, it can protect drugs
from degradation to improve drug stability; improve drug bioavailability to improve efficacy; and
reduce drug administration times and drug stimulation to reduce toxicity and side effects [20].

To overcome BER’s poor permeability and adherence to the mucus, the effective and safe absorption
enhancer sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC) is used with BER to enhance its
membrane permeation, and they are loaded into microspheres to decrease their adherence to the mucus.
A previous study showed that SNAC could significantly increase the oral bioavailability of salvianolic
acids and notoginsenoside R1 without any serious mucosal damage [21]. SNAC is widely used in the
oral absorption of different kinds of drugs, including proteins and other macromolecules, such as insulin,
calcitonin and heparin [22–24]. SNAC has been applied to the enhancement of oral bioavailability
for long-acting GLP-1 analog (semaglutide) to treat type 2 diabetes [25]. Oral semaglutide approved
for oral administration has been granted in the USA by FDA [26,27]. A product that uses SNAC
co-administration with vitamin B12 for improving its oral absorption is already on the market [28].

Therefore, this study aimed to develop a microsphere drug delivery system with an absorption
enhancer for oral administration of BER, and SNAC was used as the absorption enhancer. The release
profiles in vitro, transport across Caco-2 cell monolayer and rat pharmacokinetics of BER were
investigated. The drug delivery system may be a potential carrier, providing a higher level of intestinal
membrane permeation and sustained release.

2. Results and Discussion

2.1. Sodium N-[8-(2-hydroxybenzoyl)amino]caprylate Determination

The HPLC chromatogram result demonstrated the purity of SNAC was 99.76%. The LCMS
chromatogram result indicated that the purity of SNAC was 98.86%. The synthesis process is shown in
Figure 1.
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Figure 1. The synthesis process of N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC).

2.2. Cytotoxicity Assay by MTT Test

The viability of Caco-2 cells after incubation with BER for 24 h was calculated. The experimental
concentration range of drugs that kept more than 90% cells still alive was considered the safe
concentration for study. When the concentration of BER was equal or lower than 100 µg·mL−1, the cell
survival rate was higher than 90%. Therefore, the safe concentration for study of BER was equal
or lower than 100 µg·mL−1. The safe concentration for study of SNAC was equal or lower than
200 µg·mL−1 [21].

2.3. Caco-2 Cell Monolayer Transport

As shown in Figure 2A, the TEER showed no significant change before and after transport
across the Caco-2 cell monolayer, which suggests that BER might not transport across the Caco-2
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cell monolayer by the paracellular route. Then, after re-incubation for 2 h and 24 h with complete
medium, TEER restored to its original state, which indicates the drugs had no toxicity to cells. Figure 2B
displays the Papp values of BER mixed with SNAC at different ratios for transport across the Caco-2
cell monolayer; compared with the Papp of BER solution, the Papp of BER mixed with SNAC (2:1)
showed no significant difference, and the Papp of BER mixed with SNAC (1:1) and BER mixed with
SNAC (2:3) improved by 2.11-fold and 2.64-fold. SNAC promoted drug transmembrane transport
in a dose-dependent manner. The more SNAC was used, the stronger the enhancement effect on
BER transport. The Papp of BER mixed with SNAC (1:1) and BER mixed with SNAC (2:3) had no
significant difference, which indicates that BER mixed with SNAC (1:1) can be chosen for enhancing
the transport of BER. The mechanisms by which absorption enhancers promote oral absorption of
drugs mainly include transcellular pathways and paracellular pathways via opening tight junctions of
gastrointestinal epithelial cells [29,30]. BER mixed with SNAC did not transport across the Caco-2 cell
monolayer by opening tight junctions.
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Figure 2. Transport across the Caco-2 cell monolayer. (A) Transepithelial electrical resistance (TEER)
of Caco-2 cell monolayer before and after treatment with berberine hydrochloride (BER) and BER
mixed with sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC). (B) Papp of BER transport
across Caco-2 cell monolayer treatment with BER and BER mixed with SNAC. Data were represented
as mean ± SD (n = 3, each group). * p < 0.05 vs. BER group.

2.4. Characterization of Microspheres

There are many methods for preparing microspheres. In this experiment, ethyl cellulose was used
as the carrier material and acetone was used as the solvent with suitable polarity. To dissolve the drug
in the organic solvent of the carrier material, the organic phase is added to the water phase to emulsify,
the water–oil emulsion is obtained, then the emulsion is slowly poured over the water. The organic
solvent diffusion extraction, as a result of the solubility of the carrier material reduced, results in the
formation of microspheres. The solvent volatilization method is simple and easy to operate, which is
also a common method to prepare microspheres.

Microspheres’ morphology was investigated (Figure 3A); the particle sizes were measured
(Figure 3B). The results showed that the preparation repeatability was good, microspheres was
spherical, and the volume median diameter of microsphere particles (D (v, 0.5)) was (275.92 ± 14.02) µm.
The LC was 21.90% ± 1.50%. The EE was 65.52% ± 2.45%. The results indicated that microspheres
could load a large amount of BER, and BER-loaded microspheres had high EE.

2.5. Differential Scanning Calorimetry (DSC) Measurements

DSC curves of BER-SNAC-loaded microspheres were drawn in comparison with SNAC-loaded
microspheres, BER, and their physical mixture (BER/SNAC-loaded microspheres MIX) Figure 4.
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The DSC endotherm of the BER sample showed three endothermal peaks. The DSC endotherm of the
SNAC-loaded microspheres sample showed no melting endotherm. BER/SNAC-loaded microspheres
MIX also showed the same three endothermal peaks as BER, which were the endothermal peaks
of BER. However, the typical endothermic peaks of BER were not observed in the curve of the
BER-SNAC-loaded microspheres, which illustrates the molecular encapsulation of BER inside the
microspheres and the high EE of BER.
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Figure 4. Differential scanning calorimetry (DSC) study. DSC endothermal curves of berberine
hydrochloride (BER) (A), N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC)-loaded microspheres (B),
physical mixture of BER/SNAC-loaded microspheres (C), and BER-SNAC-loaded microspheres (D).

2.6. In Vitro Release

In vitro release profile is shown in Figure 5; the microspheres exhibited a sustained release
properties, and the accumulative release rate of BER for 48 h was less than 40%, which is promising for
reducing the frequency of drug administration, improving the therapeutic efficacy and reducing side
effects caused by frequent administration of BER.

2.7. Berberine Hydrochloride (BER) Chromatogram and Calibration Curve

The UPLC/MS/MS ion chromatogram condition was investigated to get a high separation and
sensitivity peak [31]. The UPLC/MS/MS ion chromatogram of BER is shown in Figure 6A,B. The total
ion chromatogram and product ion chromatogram of BER were 336.1 and 292.1, respectively. The total
ion chromatogram and product ion chromatogram of nuciferine were 296.2 and 265.1, respectively.
Figure 6C–E display the chromatogram of blank blood, blank-blood-spiked BER and nuciferine,
and processed sample after the administration of BER, respectively. The peaks of nuciferine and BER
could be separated well. There was no peak in blank blood at the same retention time.
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Figure 5. In vitro release study of berberine hydrochloride-loaded microspheres. Data are represented
as mean ± SD (n = 3, each group).
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Figure 6. UPLC/MS/MS ion chromatogram of nuciferine (A) a.) Total ion chromatogram b.) Product
ion chromatogram. UPLC/MS/MS ion chromatogram of berberine hydrochloride (BER) (B) a.) Total ion
chromatogram b.) Product ion chromatogram. Rat blank plasma (C). Rat plasma was added with the
corresponding standard. (D) Blood sample with administration of BER (E), 1. nuciferine; 2. BER.

2.8. Method Validation

Calibration curves of BER showed that good linearity was achieved over a range of concentrations
from 1.0 ng·mL−1 to 100.0 ng·mL−1 for BER (correlation coefficient > 0.98). The standard curve
equation was y = 0.5313x − 0.0020; y represents peak area of BER/peak area of nuciferine, x represents
concentration of BER/concentration of nuciferine.
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The result for precision was less than 10%, which met the required criteria. The results for recovery
were found in a range from 85% to 115%, which met analytical requirements. The matrix effect was
observed and was in the acceptable range from 95% to 105%. The LOQ that could be detected in
plasma was 0.1 ng·mL−1, which displayed that instrument detection sensitivity was high enough.

2.9. Pharmacokinetics

The concentration–time curve of BER in plasma is shown in Figure 7. It was evident that area under
the curve (AUC) of BER after administration of BER mixed with SNAC was 9.87-times higher than after
administration of BER. Moreover, AUC of BER after administration of BER/SNAC-loaded microspheres
was 14.14-times higher than after administration of BER. The results displayed significant absorption
enhancement after administration of BER mixed with SNAC. Tmax of BER after administration of BER
mixed with SNAC was significantly larger than after administration of BER (p < 0.05), which displayed
significant slow release after administration of BER mixed with SNAC. The possible mechanism
was that BER may produce dipole–dipole non-covalent interactions with SNAC, which caused
conformational change to expose hydrophobic regions. This interaction complex could easily permeate
gastrointestinal epithelial cell membranes. The complex then dissociated into BER and SNAC [21].
Thereby, SNAC could promote ionized molecules’ membrane permeability and could prolong retention
times in blood. Tmax of BER/SNAC-loaded microspheres in blood was prolonged, with significant
differences compared to BER mixed with SNAC and BER (p < 0.05), which showed that microspheres
had sustained release properties.
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Figure 7. Pharmacokinetic profile for total berberine hydrochloride (BER) content vs. time in rats after
oral administration of BER, BER mixed with sodium N-[8-(2-hydroxybenzoyl)amino]caprylate (SNAC),
and BER-SNAC-loaded microspheres. Means ± S.D., n = 6.

In this study, BER/SNAC-loaded microspheres were developed to enhance the oral bioavailability
of BER. SNAC may promote permeation through the gastrointestinal epithelial cell membrane of BER
via a transcellular pathway, which significantly improves the absorption of BER and enhances oral
bioavailability. Microspheres could prolong the retention time of BER in blood and improve the oral
bioavailability of BER more substantially.

3. Materials and Methods

3.1. Materials

Berberine hydrochloride and Nuciferine were both supplied by the National Institute of the Control
of Pharmaceutical and Biological Products (Beijing, China). N-[8-(2-Hydroxybenzoyl)amino]caprylate
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(SNAC) was provided by Shanghai Synmedia Chemical Co., Ltd. (Shanghai, China). Ethyl cellulose
was provided by Aladdin Industrial Corporation (Shanghai, China).

Specific pathogen-free grade Sprague–Dawley male rats with body mass (250 ± 20 g) were bought
from Vital River Laboratories, Beijing, China. Rats were maintained in accordance with the Guide for
the Care and Use of Laboratory Animals, and the study was approved by the Ethical Committee of the
Experimental Animal Center of the Institute of Medicinal Plant Development, Chinese Academy of
Medical Sciences and Peking Union Medical College.

3.2. SNAC Synthesis and Determination

The synthesis process of SNAC followed a previous report [21]; 8-aminooctanoic acid was dissolved
in methanol containing thionyl chloride, stirred overnight. Then, triethylamine (TEA) dissolved into
dichloromethane (DCM) was added, then acetylsalicylate dissolved into DCM containing oxalylchloride
and TEA was added. The above products were dissolved into methanol and added to sodium hydroxide
solution. The ester was hydrolyzed to get the carboxyl acid. Then it was dissolved into ethanol and
sodium hydroxide solution was accurately added to produce the sodium salt. The purity of SNAC
was analyzed with HPLC-UV (Agilent 1260) and HPLC-MS/MS (Agilent 1200-6130).

3.3. MTT Study

The Caco-2 cells concentration was adjusted to 5 × 104 /mL and cultured in a 96-well plate with
200 µL/ hole for 24 h. The experiment was conducted when the confluence of cells reached 80%. BER of
different concentrations was diluted in the medium (8 concentration gradients, six replicates for each
concentration) 200 µL was added in each hole. The control group (medium containing 10% FBS serum
and cells) and the blank group (medium containing 10% FBS serum) were set. They were incubated for
24 h, washed twice with d-hanks solution, and added to 200 µL fresh medium and 20 µL MTT solution
(0.5 mg·mL−1), incubating for 4 h. They were washed twice with d-hanks solution, added to with
150 µL DMSO, and oscillated on a plate oscillator for 10 min. The optical density (OD) value of each
hole was measured at wavelength 570 nm by MQX200 microplate reader (Bio-Tek, USA). The formula
of relative cell survival rate was as follows:

Relative cell survival rate (%) = OD of the drugs group/OD of the control group × 100%

3.4. Caco-2 Cell Monolayer Transport

Caco-2 cells were inoculated into Transwell plate at a concentration of 2.0× 105 /mL for conventional
culture. After incubation for 21 days, they were washed three times with D-Hanks. The apical (AP) side
was added to with a certain concentration of 0.5 mL BER, mixed with SNAC (2:1, 1:1, 2:3) (D-Hank’s
solution, pH = 7.4), and the basolateral (BL) side was added to with 1.5 mL D-Hanks, then incubated
in at 37 ◦C water bath oscillator for 2 h. Trans epithellal electric resistance (TEER) was determined
using a Millicell-ER system (Millipore Corporation, Bedford, MA, USA) before and after the transport
experiment. In addition, after the transport experiment, the cells were washed 3 times with d-hanks
and cultured in complete medium for 2 h and 24 h. TEER values were determined again to investigate
the toxicity of drugs to cells and cell membrane regeneration. The sample from BL was injected into
the HPLC system for measuring BER content. The formula of apparent permeability coeffcient (Papp)
was as follows:

Papp= dQ/dt × 1/(AC0), where dQ/dt is the permeability rate, C0 is the initial concentration at the
apical (AP) side, and A is the surface area of a monolayer.

3.5. Microspheres Preparation

BER and SNAC (ratio = 1:1) was evenly dispersed in an acetone solution of ethyl cellulose in
a beaker. Under the condition of room temperature and mechanical stirring (the stirring speed is
800 rpm), the solution was slowly added into liquid paraffin with sorbitan oleate (span 80) as an
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emulsifier. After emulsification for a certain time, acetone was removed by evaporation. After the
acetone was exhausted, the microspheres were filtered and collected. The microspheres were washed
with petroleum ether and dried in vacuum at room temperature.

3.6. Loading Capacity and Encapsulation Efficiency

The microspheres were washed 3 times with 95% methanol, and the washing liquid was discarded.
The microsphere was ground 3 times with 95% methanol. The supernatant was filtered, and the
content of BER encapsulated in microspheres was determined by HPLC-UV. The loading capacity
(LC) and encapsulation efficiency (EE) of BER were subsequently determined using Equations (1) and
(2), respectively.

LC (%) = Mass of BER in microsphere/total mass of microsphere × 100% (1)

EE (%) = Mass of BER in microsphere/total mass of input BER × 100% (2)

3.7. Microsphere Characterization

Size was determined by a Mastersizer 2000 particle analyzer (Malvern Instruments Ltd.,
Worcestershire, UK). Appearance was determined by scanning electron microscope (SEM) (JSM-6510LV,
JEOL, Tokyo, JAPAN). The microspheres were analyzed by differential scanning calorimetery (DSC)
evaluation (Q200, TA Instruments, New Castle, DE, USA), with a heating rate of 10 ◦C·min−1 from 0 to
250 ◦C.

3.8. In Vitro Release

Microspheres of BER were placed in a dialysis bag with in particular amounts, and phosphate
buffer solution (PBS, PH 7.4) was added to the dialysis bag. Then, the dialysis bag was placed in
50 mL PBS and placed over an orbital shaking bath (SHA-B (A), Jintankexi apparatus Co. Ltd., Jiangsu,
China). The rotation speed was 100 rpm. The temperature was 37 ◦C. A quantity of 1.0 mL of sample
solution was withdrawn from the medium at 0.5, 1, 2, 4, 6, 8, 12, 24, 48 h; then, the sample was filtered
and determined by HPLC-UV. Equal volume of fresh medium was replaced. The measurement was
carried out three times, and the cumulative release % of BER from microspheres was calculated as the
following formula:

Cumulative release % = amount of BER released/amount of initial BER × 100%

3.9. Pharmacokinetics Sample Analysis

3.9.1. Chromatographic System and Conditions

The analytical column C18 was Phenomenex Kinetex® EVO C18 (2.1× 50 mm; 2.6 µm). The mobile
phase consisted of acetonitrile (containing 0.1% formic acid) (A) and water (containing 0.1% formic
acid) (B). The flow rate was 0.3 mL·min−1. The column temperature was 25 ◦C. The elution was carried
out as follows: 20% A at 0−2.0 min; 20–100% A at 2.0−4.0 min; 100% A at 4.0−5.0 min; 100–20% A
at 5.0−5.1 min; 20% A at 5.1−8.0 min. The injection volume was 10 µL. The mass spectrometer
operation was in positive ionization mode to assess the BER and nuciferine: m/z 336.1/292.1 for BER,
m/z 296.2/265.1 for nuciferine (interior label, IS). The optimized fragmentor and collision energy were
160 V and 40 eV for BER, 100 V and 20 eV for nuciferine, respectively. Gas temp. was 325 ◦C. Nebulizer
was 45 psi. Gas flow was 8 L·min−1. Capillary was 4000 V. Nozzle voltage was 1000 V. Data acquisition
and processing were accomplished on a 1290/6460 triple quadrupole mass spectrometer (Agilent
Technologies Inc., CA, USA).
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3.9.2. Preparation of Serum Samples

The 100 µL of serum sample with nuciferine was added to 790 µL acetonitrile, whirled on a vortex
for 5 min and centrifuged at 14,000 rpm for 10 min. The supernatant was collected and transferred
to a clean centrifuge tube. The sediment was whirled on a vortex with 800 µL acetonitrile for 5 min
and centrifuged at 14,000 rpm for 10 min. The supernatant was transferred to the first supernatant.
The solution was evaporated at room temperature to dryness by a vacuum centrifugal thickener
(Centrivap, LABCONCO, Kansas, MO, USA). The residue was dissolved in 100 µL of 20% aqueous
acetonitrile solution, whirled on a vortex for 3 min and centrifuged at 14,000 rpm for 10 min for twice,
and determined using the condition as 3.9.1.

3.9.3. Method Validation

The selectivity, linearity, method recovery, precision, matrix effects, and lower limit of quantitation
(LOQ) were determined for the validation of the bio-analytical method.

The blank serum, blank serum spiked with BER, and serum samples after administration of BER
were taken, and the samples were processed according to the method “3.9.2”. The chromatograms of
the three samples were compared to assess the specificity of the method.

The blank serum was obtained from the blank rats and added with different concentrations of
BER standard solutions, whirling and adding the appropriate amount of nuciferine standard solution.
The samples were processed as “3.9.2.”. Linear regression was conducted based on the abscissa of the
ratio of BER content and IS content and the ordinate of the ratio of BER peak area and IS peak area.

BER standard solutions was taken in centrifugal tube. A quantity of 100 µL of blank serum
was added to obtain serum with a concentration of 3, 30 and 80 ng·mL−1. Samples were processed
according to method “3.9.2” and analysis. BER content was calculated according to the standard curve.
The content values were compared with the theoretical values to calculate the method recovery.

Serum with 3, 30 and 80 ng·mL−1 of BER was processed according to method “3.9.2” and analyzed
in six replicates with the same analytical run to assess the precision.

Blank serum spiked with 3, 30 and 80 ng·mL−1 of BER standard sample was taken and processed
according to method “3.9.2”. Acetonitrile spiked with 3, 30 and 80 ng·mL−1 of BER standard sample
was also processed with the same method. Then, the two sets of samples were compared. The ratio
was calculated to assess the matrix effect.

The LOQ of BER under the chromatographic conditions was determined at a signal/noise value of
about 10.

3.10. Administration of BER

Male sprague dawley (SD) rats with a weight range of 250 ± 20 g were used as the animal model.
The rats were divided into three groups, 6 rats in each group. The rats were orally administered with the
equivalent 200 mg/kg of BER (BER solution group, BER mixed with SNAC group, BER/SNAC-loaded
microspheres). A quantity of 500 µL of the blood of the rats in each group was withdrawn from the rat
orbital vein at specific time-points. The blood samples were immediately centrifuged at 1000 rpm for
10 min and 4 ◦C, and the supernatant plasma was transferred to a new centrifuge tube. The serum
samples were processed with method “3.9.2” and stored at 20 ◦C for analysis.

3.11. Data Processing

A Phoenix WinNonlin 6.0 (Pharsight, CA, USA) was used to calculate pharmacokinetics parameters.
The statistical method of two-way ANOVA was used to judge data statistical differences by the SPSS16.0
Software. The p < 0.05 level was considered as statistical significance.
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4. Conclusions

In this study, microspheres containing SNAC were used to enhance the oral bioavailability of
BER. SNAC was synthesized with a purity of about 99%. A caco-2 cell transport experiment was
conducted to preliminarily investigate the mechanism of SNAC to enhance the absorption of BER
via the gastrointestinal tract. SNAC promoted the transmembrane absorption of BER, which was
not a mechanism regulating tight junction permeability. BER-loaded microspheres containing SNAC
were developed, and the particle size and electron microscopy of the microspheres were investigated
and characterized. The results showed that the microspheres were spherical with high entrapment
efficiency. DSC results showed that BER was encapsulated in microspheres. Pharmacokinetics was
conducted to investigate the oral absorption of BER, BER mixed with SNAC and BER-SNAC-loaded
microspheres; the results indicated that SNAC promoted the oral absorption of BER; microspheres
had a certain sustained release effect, and the AUC was further improved over that of BER mixed
with SNAC.
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