SUPPLEMENTARY

Figure S1: Biosynthetic gene cluster of rishirilide B

Figure S2: HPLC analysis of extracts of mutants obtained in this study. Rishirilide B (20,8 min) (1); RSH-O10a (17,3 min) (2); RSH-O10b (21,0 min) (4); RSH-O3 (18,5 min) (3); Galvaquinone A (26,5 min) (5); Galvaquinone B (27,8 min) (6); RSH-K4a (18,2 min) (7); RSH-K4b (19,6 min) (8). $\lambda = 254$ nm

Figure S3: Primers used in this study

A: Primer used for Red/ET-mediated recombination

(FR-H) 5'-TGCGGTGGTCTGGGCAACTACTGACGGTGGCCGGCCCATGGCTAGCGGAGCGTAGCGACCGAGTG -3' (RR-H) 5'- CTCGGGCCTCTCACGATGTTCGAGGGCCGCCCTCGCTCAGCTAGCGGCCATTTAACGACCCTGC -3' (FR-K4) 5'- TGGTTCCCCTGACGGCCGGTGAAAGGGCATCGGGACATGGCTAGCGGAGCGTAGCGACCGAGTG -3' (FR-O1) 5'-ACACCGTCCGTCCAGCCATCACATCGAGAGGACCCCATGGCTAGCGGAGCGTAGCGACCGAGTG -3' (RR-O1) 5'-GCTCGGTGCGCAAGGAAACCATCGGCGGTCCGTCCCTCAGCTAGCGGCTATTTAACGACCCTGC -3' (RR-02) 5'-GGTGTGTGCGTCGCGGGCGGGGGGCCGCGGGCTGCCGGCTAAGCTAGCGGCTATTTAACGACCCTGC-3' (FR-O3) 5'-CGGCGAAGTTGCGAAGCCGATGCTGTGGAGGAGGAGAGATGGCTAGCGGAGCGTAGCGACCGAGTG -3' (RR-O3) 5'-CACGCGCCGGCCCGCGATCGCCCGAGGGGGACGCGCTCAGCTAGCGGCTATTTAACGACCCTG -3' (FR-O4) 5'-CCACCCGCGTACGAACATCCACCCGAGGAGACCACCATGGCTAGCGGAGCGTAGCGACCGAGTG -3' (RR-04) 5'-GCGTGGTGTACGTGCCGGCCCGCGGTCCGCTCCGGCTCAGCTAGCGGCTATTTAACGACCCTGC -3' (FR-O6) 5'-CCCCTCCTTTCGGCCCTGTCCGTGAAGGAGACCAGCGTGGCTAGCGGAGCGTAGCGACCGAGTG -3' (RR-06) 5'-GTTCCGGACATTCTTCGGCAGGCCGTCCGCTCCGCTTCAGCTAGCGGCTATTTAACGACCCTGC -3' (FR-O10) 5'-CGCACCTCCCCGAACGTCATGGCGAAAGGATCCGCAATGGCTAGCGGAGCGTAGCGACCGAGT-3' (RR-010) 5'-CGCTCCTGGACTGGGGGGCCTCATGGGCCGGCCACCGTCAGCTAGCGGCTATTTAACGACCCTGC -3'

B: Primer used to verify gene deletion ((F-Hver) 5'- ATTATCACCCGCGAGGTGCTG -3' (R-Hver) 5'- AGTCGTTCGGGTTCACCATGC -3' F-K4ver) 5'-ATGAGGTTCGAGGAC -3' (R-K4ver) 5'-CGGATCCCGTCTCTC -3' (F-O1ver) 5'-CCAGCCACGGGCCGTCGGGCTTCACG -3' (R-O1ver) 5'-GTCCTCCTGGCAGCACAACCGCAGC -3' (F-O2ver) 5'-TGAAGACGGGCAGTACG -3' (F-O3ver) 5'-TGCTCGACTGGGAGATG -3' (F-O3ver) 5'-AGCTGATCCATCCCGGTGTG -3' (F-O4ver) 5'-CGGGGTGACCGTGAACTGCG-3' (R-O4ver) 5'-TCGTCAACCTCGGCACCGGA- 3' (F-O6)ver 5'-GGAGACCAGCGTGAAACTG- 3' (R-O6ver) 5'-GTCCGCTCCGCTTCACGCG -3'

(F-O10ver) 5'-GGAAGGAGCGTTCTCCACCG -3'

(R-O10ver) 5'-CGGACGCGTACACCGAGAC -3'

C: Pimers used for the amplification of genes for complementation and coexpression experiments

- (F-H) 5'- TAAAGCTTACGACCTCGCCGCCTCC -3'
- (R-H) 5'- CATACTAGTCGTTCGGGTTCACCATGC -3'
- (F-K4) 5'-CCATCGATGGAGGCGGGGACATGAGGTTCGAGGAC -3'
- (R-K4) 5'-CCACTAGTCATCCGGATCCCGTCTCTC -3'
- (F-O1) 5'-CTATCGATGGAGGACCCCATGAAGTTCGGC -3'
- (R-O1) 5'-GCACTAGTCCCTCAGTCGTTCGCTGC- 3'
- (F-O2) 5'-GCCAAGCTTATGGCGATCGATGACGAACTG -3'
- (R-O2) 5'-TATTGGATCCCGGCTAGTCGGCCGTCAC-3'
- (F-O3) 5'-ATAAGCTTTGCGCGAGATGGTC -3'
- (R-O3) 5'-ATACTAGTGCGAACCGCACCTG -3'
- (F-O4) 5'-CCATCGATAAGTCCGCCCACGTACCCGC -3'
- (R-O4) 5'-GGACTAGTGCGGTCCGCTCCGGCTCAGA-3'
- (F-O6) 5'-TCATCGATGAAGGAGACCAGCGTGAAACTG -3'
- (R-O6) 5'-GGACTAGTCCGCTCCGCTTCACGCG -3'
- (F-O10) 5'-TATATCTGCAGCGGCCCGCGCACTGAAC -3'
- (R-O10) 5'-TACTGTCTAGAGACCGCGCCCAGGATG -3'
- (FbO3) 5'-ATATGCTCGGCGAAGTTGCG -3'
- (RbO3) 5'-ATATCCGGCACGTACACCAC -3'
- (O10bF) 5'-ATATCCCGAACGTCATGGC -3'
- (O10bR) 5'-TASTACGCTCCTGGACTGGG -3'
- (F-R1) 5'-CCCATCGATTCTCTTAAGGACCACGGAAGCCGCACC -3'
- (R-R1) 5'-GAACAGAAGCTTACGGCCGGCGCCGG -3'
- (F-R2) 5'-ATTCCGAAGCTTCAAGCCAGCCCTGGAGG -3'
- (R-R2) 5'-AACACTGCAGAGCTAGCGGGGGTCAGCCGGCC -3'
- (F-R3) 5'-TACGAATTCTCGCTAGCGGAGCGGACGGCCTC -3'
- (R-R3) 5'-GGACTAGTCACTGCTCCCGCCACCGT-3'
- (F-C1) 5'-CGGGGTACCTAACCCCCACTTTT-3'
- (R-C1) 5'-CCAAGCTTCGTCGACCTGGTCAACTC-3'

(F-C2) 5'-CCCAAGCTTATGGTGGATCCTCTCTC-3'
(R-C2) 5'-CCGGAATTCGCAGATCCATCTCTCCTCE-3'
(F-C3) 5'-CGCGGATCCCACCTTCAGCACCGAAC-3'
(R-C3) 5'-GCTCTAGATGGCCTCGCTGATGATGAGTCC-3'
(F-C123) 5'-GCTCTAGAACCCCCCACTTTTCATGGAC-3'

Pos.	Pos. $\delta_{\rm C}$ [ppm] $\delta_{\rm H}$ (<i>J</i> Hz)	
		[ppm]
1	197.1	
2	47.9	2.99 q (6.8)
3	83.6	
4	76.9	
4a	140.0	
5	153.0	
6	109.9	6.93 d (7.6)
7	126.3	7.28 dd (8.3, 7.6)
8	119.7	7.46 d (8.3)
8a	132.3	
9	125.7	8.29 s
9a	129.9	
10	119.6	8.28 s
10a	126.1	
11	35.0	11-H _a : 2.23 dt (13.1, 3.9)
		11-H _b : 1.61 ddd (13.3, 12.8, 4.7)
12	31.1	12-H _a : 1.38 m
		12-H _b : 0.78 m
13	27.8	1.30 m
14	22.4	0.66 d (6.5)
15	22.6	0.77 d (6.5)
16	174.0	· /
17	10.1	1.19 d (6.8)
OH		10.2 s br

Figure S4: ¹H and ¹³C NMR and ESI-MS data

Pos	δ_{C}	$\delta_{\rm H} \left(J {\rm Hz} \right)$	COSY	HMBC
	[ppm]	[ppm]		
1	200.0			2-H, 9-H, 15-H ₃
2	49.3ª	3.05 q (6.8)	15-H ₃	15-H ₃
3	84.5			2-H, 15-H ₃
4	78.9			10-H, 11-H _a
4a	140.8			
5	154.6			7-H, 10-H
6	111.2	6.89 d (8.0)	7-H	
7	127.6	7.28 t (8.0)	6-H, 8-H	
8	121.5	7.43 d (8.0)	7-H	9-H
8a	131.3			7-H
9	127.9	8.39 s		
9a	131.4			10-H
10	121.1	8.43 s		
10a	128.2			8-H
11	41.0	H _a : 2.30 m	11-H _b , 12-H _a , 12-H _b	
		H _b : 1.68 m	11-H _a , 12-H _a , 12-H _b	
12	17.2	H _a : 1.55 m	11-H _a , 11-H _b , 12-H _b , 13-H ₃	
		H _b : 1.05 m	11-H _a , 11-H _b , 12-H _a , 13-H ₃	
13	14.7	0.80 t (7.2)	12-Ha, 12-Hb	$11-H_2$, $12-H_2$
14	178.0 ^b			2-H
15	10.5	1.30 d (6.8)	2-H	2-H

Figure S4b: NMR data of RSH-K4a (400/100MHz, CD₃OD, 25 °C)

^acovered from solvent signal ^btaken from HMBC

 ^1H NMR spectrum of RSH-K4a (400MHz, CD₃OD, 25 °C).

Figure	S4c: NMR	data of RSH-01	0a (600/1	50MHz.	DMSO-d ₆ ,	35 °C)
0				,		/

Pos.	δ _C [ppm]	$\delta_{\rm H} (J {\rm Hz})$	COSY	HMBC
		[ppm]		
1	171.1			2-Н, 4-Н
2	88.1	5.09 d (2.0)	4-H	4-H
3	163.8			2-Н
4	101.4	5.61 d (2.0)	2-H	2-H, 6-H ₂
5	164.4			4-H, $6-H_2$
6	36.7	3.55 s		4-H, 8-H
7	118.8			6-H ₂ , 8-H, 10-H
8	110.1	6.14 d (2.2)	10-H	6-H ₂ , 10-H
9	161.2			8-H, 10-H
10	101.6	6.21 d (2.2)	8-H	8-H
11	162.5			10-H
12	138.5			6-H ₂
13	200.0			10-Н, 16-Н
14	120.5			16-Н, 18-Н, 20-Н
15	156.4			16-H
16	100.1	6.09 d (2.0)	18-H	18-H
17	159.7			16-H, 18-H
18	104.0	6.20 d (2.0)	16-H	16-Н, 20-Н
19	149.2			20-H, 21-H ₃ , 22-H ₃
20	29.7	2.77 hept (6.8)	21-H3, 22-H3	18-H, 21-H ₃ , 22-H ₃
21	23.8	1.02 d (6.8)	20-Н	20-H, ¹ J, 22-H ₃
22	23.8	1.02 d (6.8)	20-Н	20-H, ¹ J, 21-H3
OH		11.35 br s		

Pos	$\delta_{\rm C}$	$\delta_{\rm H} (J {\rm Hz})$	COSY	HMBC ^b
	[ppm]	[ppm]		
1	159.4			-
2	126.7			4-H,12-H, 16-H
3	156.2			4-H, 16-H, 17-H3, 18-H ₃
4	115.6	7.71 s		16-H
4a	134.9 ^a			-
5	109.7	7.13 d (2.3)	7-H	7-H
6	164.6			7-H
7	108.0	6.55 d (2.3)	5-H	5-H
8	166.8			7-H
8a	108.4			7-H
9	188.5			(4-H)
9a	113.8			4-H
10	181.1			4-H, 5-H
10a	133.8 ^a			-
11	155.4			12-Н
12	106.1	6.19 d (1.9)	14-H	14-H
13	171.3			-
14	89.1	5.26 d (1.9)	12-H	12-Н
15	163.9			14-H
16	30.8	2.99 hept (6.9)	17-H ₃ , 18-H ₃	4-H
17	22.9	1.24 d (6.9)	16-H	16-H, 18-H ₃
18	22.9	1.24 d (6.9)	16-H	16-H, 17-H ₃
OH		12.59 br s		
		11.89 br s		

Figure S4d: NMR data of RSH-O10b (600/150MHz, DMSO-d₆, 35 °C)

^asignals exchangeable ^aweak signals in brackets

¹³C NMR spectrum of RSH-O10b (150MHz, DMSO-d₆, 35 °C).

Figure S4e: NMR data of RSH-O3 (500/125MHz, DMSO-d₆, 25 °C)

Pos.	δ _C [ppm]	$\delta_{\rm H} (J {\rm Hz})$	COSY	HMBC
		[ppm]		
1	164.0			2-Н
2	88.0	5.10 d (1.6)	4-H	¹ J, 4-H
3	171.4			2-H, 4-H, (6-H ₂)
4	101.5	5.62 d (1.6)	2-H	2-H, 6-H ₂
5	164.6			4-H, 6-H ₂ , (8-H)
6	36.6	3.64 s		4-H, ¹ J, 8-H
7	134.4			4-H, 8-H, 9-H
8	120.8	6.70 d	9-H	6-H ₂ , ¹ J, 9-H, 10-H
9	130.1	7.17 t (8.0)	8-H, 10-H	${}^{1}\mathbf{J}$
10	114.7	6.72 d	9-H	8-H, (9-H), ¹ J
11	155.1			6-H ₂ , 9-H, 10-H
12	130.7			6-H ₂ , 9-H, 10-H
13	199.8			10-H, 16-H, (18-H)
14	119.3			16-Н, 18-Н, 20-Н
15	158.9			16-H
16	99.9	6.04 d (2.2)	18-H	¹ J, 18-H
17	160.7			16-Н, 18-Н
18	104.7	6.24 d (2.2)	16-H	16-Н, ¹ Ј, 20-Н
19	151.9			20-H, 21-H ₃ , 22-H ₃
20	29.1	3.00 hept (6.8)	21-H3, 22-H3	18-H, 21-H ₃ , 22-H ₃
21	24.0	1.04 d (6.8)	20-Н	20-H, ¹ J, 22-H ₃
22	24.0	1.04 d (6.8)	20-Н	20-H, 21-H ₃ , ¹ J
OH		10.21 br s		
		9.71 br s		

¹H NMR spectrum of RSH-O3 (500MHz, DMSO-d₆, 25 °C).

Pos.	δ _C	$\delta_{\rm H} (J {\rm Hz})$	COSY	HMBC ^a
	[ppm]	[ppm]		
1	121.1	7.60 s	17-H ₃	17-H ₃
2	144.2			1-H, 17-H ₃
3	136.0			1-H, 17-H ₃
4	157.7			(1-H), 17-H ₃
4a	114.2			1-H, 17-H ₃
5	161.3			6-H, 7-H, (8-H)
6	124.4	7.39 dd (8.2, 1.0)	7-H, 8-H	(7-H), 8-H
7	137.5	7.83 dd (8.2, 7.4)	6-H, 8-H	1 J
8	119.4	7.72 dd (7.4, 1.0)	6-H, 7-H	6-H
8a	133.2			7-H
9	180.9			1-H, 8-H
9a	132.6			
10	191.5			(1-H, 8-H)
10a	115.8			6-H, (7-H), 8-H
11	205.2			12-H, 13-H ₂
12	41.5	2.86 t (7.4)	13-H ₂	13-H ₂ , 14-H
13	31.5	1.54 m	12-H ₂ , 14-H	12-H ₂ , 14-H ₂ , 15-H ₃ , 16-H ₃
14	26.9	1.61 m	13-H ₂ , 15-H ₃ , 16-H ₃	12-H ₂ , 13-H ₂ , 15-H ₃ , 16-H ₃
15	22.2	0.90 d (6.8)	14-H	13-H ₂ , 14-H, 16-H ₃
16	22.2	0.90 d (6.8)	14-H	13-H ₂ , 14-H, 15-H ₃
17	19.2	2.31 s	1-H	1-H, ¹ J
OH		11.94 br		

Figure S4f: NMR data of galvaquinone A (600/150MHz, DMSO-d₆, 35 °C)

^aweak signals in brackets

Pos.	δ _C	$\delta_{\rm H} \left(J {\rm Hz} \right)$	COSY	HMBC
	[ppm]	[ppm]		
1	157.8			17-H ₃
2	137.1			17-H ₃
3	144.1			17-H ₃
4	а			
4a	112.0 ^b			
5	163.3			7-H
6	125.5	7.40 dd (8.0, 1.2)	7-H	7-H, 8-H
7	138.3	7.88 dd (8.0, 7.6)	6-H, 8-H	6-H
8	120.2	7.90 dd (7.6, 1.2)	7-H	6-H
8a	134.4			7-H
9	187.3			8-H
9a	112.7 ^b			
10	а			
10a	117.1			6-H, 8-H
11	204.7			$12-H_2$, $13-H_2$
12	42.7	2.92 t (7.4)	$13-H_2$	13-H ₂
13	32.6	1.62 m	12-H ₂ , 14-H	12-H ₂ , 14-H, 15-H ₃ , 16-H ₃
14	28.3	1.67 m	13-H ₂ , 15-H ₃ , 16-H ₃	12-H ₂ , 13-H ₂ , 15-H ₃ , 16-H ₃
15	22.6	0.94 d (6.4)	14-H	14-H, 16-H ₃
16	22.6	0.94 d (6.4)	14-H	14-H, 15-H ₃
17	13.0	2.21 s		

Figure S4g: NMR data of galvaquinone B (600/150MHz, Acetone-d₆, 25 °C)

^amissing signal ^bassignment not sure

Figure 5: Plasmid maps used for the generation of constructis 1-6

Figure S5a: Plasmids used for the construction of *S. albus* J1074 x pUWLR1R2R3 x construct 1 and *S. albus* J1074 x pUWLR1R2R3 x construct 2.

Figure S5b: Plasmids used for the construction of *S. albus* J1074 x pUWLR1R2R3 x construct 3 and *S. albus* J1074 x pUWLR1R2R3 x construct 4. The gene *rslO10* was integrated via pTOSz.

Figure S5c: Plasmids used for the construction of *S. albus* J1074 x pUWLR1R2R3 x construct 5 and *S. albus* J1074 x pUWLR1R2R3 x construct 6. The genes *rslO10* and *rslO3* were integrated via pTOSz.

construct 6