Supporting Information

Article

Synthesis and Cytotoxic Analysis of Novel Myrtenyl Grafted Pseudo-Peptides Revealed Potential Candidates for Anticancer Therapy

Odette Concepción ^{1,*}, Julio Belmar ¹, Alexander F. de la Torre ¹, Francisco M. Muñiz ¹, Mariano W. Pertino ², Barbara Alarcón ³, Valeska Ormazabal ⁴, Estefania Nova-Lamperti ³, Felipe A. Zúñiga ³ and Claudio A. Jiménez ^{1,*}

- ¹ Department of Organic Chemistry, Faculty of Chemical Sciences, Universidad de Concepción, Edmundo Larenas 129, Concepción, P.C. 4070371, Chile; jbelmar@udec.cl (J.B.); afernandezd@udec.cl (A.F.T.); fmunozm@udec.cl (F.M.M.)
- ² Institute of Natural Resources Chemistry, Universidad de Talca, Casilla 747, P.C. 3462227, Avenida Lircay, Talca, Chile; mwalter@utalca.cl
- ³ Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, P.C. 4070371, Concepción, Chile; balarconz@udec.cl (B.A.); enova@udec.cl (E.N.-L.); fzuniga@udec.cl (F.A.Z.)
- ⁴ Department of Pharmacology, Faculty of Biological Sciences, Universidad de Concepción, P.C. 4070371, Concepción, Chile; vormazabal@udec.cl
- * Correspondence: oconcepcion@udec.cl (O.C.); cjimenez@udec.cl (C.A.J.); Tel. +56-41-22042658 (O.C. & C.A.J.)

Table of contents

Table S1. EC ⁵⁰ and E _{max} values of derivative against different cancer cell lines	.13
FIGURE S1. 400 MHz ¹ H NMR spectra in CDCl3 of 1a (Crude mixture of diastereomers)	.13
FIGURE S2. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 1a (Crude mixture of diastereomers)	.14
FIGURE S3. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 1a	.14
FIGURE S4. 400 MHz ¹ H NMR spectra in CDCl ₃ of major diastereomer of 1a	.15
FIGURE S5. 100 MHz ¹³ C NMR spectra in CDCl ₃ of major diastereomer of 1a	.15
FIGURE S6. 400 MHz ¹ H NMR spectra in CDCl ₃ of 1b (Crude mixture of diastereomers)	.16
FIGURE S7. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 1b (Crude mixture of diastereomers)	.16
FIGURE S8. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 1b .	.17
FIGURE S9. 400 MHz ¹ H NMR spectra in CDCl ₃ of 1c (Crude mixture of diastereomers)	.17
FIGURE S10. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 1c (Crude mixture of diastereomers)	.18
FIGURE S11. 400 MHz ¹ H NMR spectra in CDCl ₃ of major diastereomer of 1c.	.18
FIGURE S12. 100 MHz ¹³ C NMR spectra in CDCl ₃ of major diastereomer of 1c.	.19
FIGURE S13. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 1c	.19
FIGURE S14. 400 MHz ¹ H NMR spectra in CDCl ₃ of 2a	.20
FIGURE S15. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 2a	.20
FIGURE S16. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 2a	.21
FIGURE S17. 400 MHz ¹ H NMR spectra in CDCl ₃ of 2b	.21
FIGURE S18. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 2b	.22
FIGURE S19. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 2b .	.22
FIGURE S20. 400 MHz ¹ H NMR spectra in CDCl ₃ of 2c	.23
FIGURE S21. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 2c	.23
FIGURE S22. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 2c	.24
FIGURE S23. 400 MHz ¹ H NMR spectra in CD ₃ OD of 3a .	.24
FIGURE S24. 100 MHz ¹³ C NMR spectra in CD ₃ OD of 3a	.25
FIGURE S25. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 3a	.25
FIGURE S26. 400 MHz ¹ H NMR spectra in CD ₃ OD of 3b	.26
FIGURE S27. 100 MHz ¹³ C NMR spectra in CD ₃ OD of 3b	.26
FIGURE S28. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 3b .	.27
FIGURE S29. 400 MHz ¹ H NMR spectra in MeOD of 3c	.27
FIGURE S30. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 3c	.28
FIGURE S31. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 3c	.28
FIGURE S32. 400 MHz ¹ H NMR spectra in CDCl ₃ of 3d	.29
FIGURE S33: 100 MHz ¹³ C NMR spectra in CDCl ₃ of 3d	.29
FIGURE S34. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 3d .	.30
FIGURE S35. 400 MHz ¹ H NMR spectra in CDCl ₃ of 3e	.30
FIGURE S36. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 3e	.31
FIGURE S37. HRMS (ESI-FT-ICR) m/z spectra of 3e	.31
FIGURE S38. 400 MHz ¹ H NMR spectra in CDCl ₃ of 4a	.32

FIGURE S39. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 4a	32
FIGURE S40. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 4a	
FIGURE S41. 400 MHz ¹ H NMR spectra in CDCl ₃ of 4b .	
FIGURE S42. 100 MHz ¹³ C NMR spectra in CDCl ₃ of 4b	34
FIGURE S43. HRMS (ESI-FT-ICR) <i>m</i> / <i>z</i> spectra of 4b .	34

Experimental section

Synthesis and Spectra data for selected products

2-(N-benzylacetamido)-N-cyclohexyl-2-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)acetamide (1a)

(1*R*)-(-)-Myrtenal (152 μL, 1.0 mmol), benzylamine (109 μL, 1.0 mmol), acetic acid (57 μL, 1.0 mmol) and cyclohexyl isocyanide (124 μL, 1.0 mmol) were reacted according to the general multicomponent procedure. Flash column chromatography purification (EtOAc/hexane = 1:3 v/v) afforded **1a** (371.5 mg, 91%) as an amorphous yellow light solid. R_t = 0.45 (EtOAc/hexane = 1:3 v/v). A mixture of diastereomers in a 1:0.6 ratio was observed by NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.27 (m, 6H), 7.26–7.22 (m, 4H), 5.78 (d, *J* = 7.9 Hz, 2H), 5.69*; 5.63 (2 x s, 1H), 5.18*; 5.04 (2 x s, 1H), 4.77; 4.72* (2 x d, J = 7.4 Hz, 1H), 3.74*; 3.70 (2 x m, 1H), 2.33–2.20 (m, 4H), 2.17–2.07 (m, 4H), 2.04, 2.02* (2 x s, 3H), 1.94–1.83 (m, 4H), 1.72–1.55 (m, 8H), 1.24* (s, 3H), 1.38–1.08 (m, 12H), 1.22 (s, 3H), 0.84* (s, 3H), 0.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.43*, 172.61, 168.74*, 168.14, 142.29*, 138.07*, 128.63*, 127.19, 126.97*, 126.22*, 124.95*, 65.30, 63.69*, 51.50, 50.32*, 48.56, 48.33*, 45.51*, 44.33, 40.35, 40.11*, 38.04*, 37.98, 36.78*, 33.06*, 32.93, 31.77*, 31.62, 31.49*, 26.13*, 26.11, 25.64*, 24.84*, 22.66*, 22.39, 21.14*, 21.05. (*Correspond to the major diastereomer). HRMS (ESI-FT-ICR) *m*/*z*: Calcd. for C₂₆H₃₆N₂O₂Na [M + Na]* 431.26745 found 431.26630.

Spectroscopic data of major diastereomer of 1a:

¹H NMR (400 MHz, CDCl₃) δ 7.30 (m, 3H), 7.24–7.20 (m, 2H), 5.92 (d, *J* = 7.9 Hz, 1H), 5.69 (s, 1H), 5.21 (d, *J* = 1.1 Hz, 1H), 4.74 (d, *J* = 6.9 Hz, 1H), 3.81–3.70 (m, 1H), 2.24–2.20 (m, 2H), 2.13–2.06 (m, 2H), 2.02 (s, 3H), 1.94–1.86 (m, 2H), 1.72–1.54 (m, 4H), 1.24 (s, 3H), 1.31–1.12 (m, 7H), 0.84 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 173.44, 168.76, 142.27, 138.07, 128.61, 126.94, 126.19, 124.92, 63.60, 50.26, 48.30, 45.54, 40.08, 38.02, 36.77, 33.03, 32.88, 31.74, 31.45, 26.12, 25.63, 24.81, 22.64, 21.12.

N-cyclohexyl-2-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-2-(N-(pyridin-3-yl)acetamido) acetamide **(1b)**

(1*R*)-(–)-Myrtenal (152 μL, 1.0 mmol), pyridin-3-amine (94 mg, 1.0 mmol), acetic acid (57 μL, 1.0 mmol) and cyclohexyl isocyanide (124 μL, 1.0 mmol) were reacted according to the general multicomponent procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **1b** (256.9 mg, 65%) as an amorphous yellow light solid. *R*^{*f*} = 0.15 (EtOAc/hexane = 1:1 v/v). A mixture of diastereomers in a 1:0.1 ratio was observed by NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 8.49 (d, *J* = 4.7 Hz, 2H), 8.13 (d, *J* = 11.2 Hz, 1H), 7.29 (dd, *J* = 8.0, 4.8 Hz, 1H), 5.71 (d, *J* = 7.9 Hz, 1H), 5.50 (s, 1H), 5.21(s, 1H), 3.86–3.77 (m, 1H), 2.07–1.93 (m, 4H), 1.88 (s, 3H), 1.75–1.52 (m, 4H), 1.40–1.29 (m, 2H), 1.19 (s, 3H), 1.26–1.09 (m, 6H), 0.77 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 171.51, 168.79, 151.02, 148.77, 140.89, 138.08, 137.82, 125.93, 123.56, 66.63, 48.84, 45.92, 39.80, 38.14, 33.18, 33.02, 31.63, 30.80, 26.05, 25.64, 24.90, 24.88, 23.49, 21.07. HRMS (ESI-FT-ICR) *m*/*z*: Calcd. For C₂₄H₃₃N₃O₂Na [M + Na]+418.24705 found 418.2459.

N-cyclohexyl-2-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)-2-(N-(prop-2-yn-1-yl)acetamido)acetamide **(1c)**

(1*R*)-(-)-Myrtenal (152 μL, 1.0 mmol), propargylamine (64.9 μL, 1.0 mmol), acetic acid (57.2 μL, 1.0 mmol) and cyclohexyl isocyanide (124.2 μL, 1.0 mmol) were reacted according to the general multicomponent procedure. Flash column chromatography purification (EtOAc/hexane = 1:3 v/v) afforded **1c** (302.8 mg, 85%) as an amorphous white solid. R_f = 0.40 (EtOAc/hexane = 1:3 v/v). A mixture of diastereomers in a 1:0.9 ratio was observed by NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 5.81 (d, *J* = 7.5 Hz, 1H), 5.67*; 5.61 (2 x s, 1H), 5.37; 5.27* (2 x d, *J* = 1.7 Hz, 1H), 4.25 (dd, *J* = 18.9, 2.4 Hz, 1H), 4.12 (dd, *J* = 19.0, 2.4 Hz, 2H), 3.73 (m, 2H), 2.39 (d, J = 5.3 Hz, 2H), 2.28 (s, 3H), 2.27 (s, 3H), 2.23 (t, J = 2.4 Hz, 2H), 2.15–2.05 (m, 4H), 1.89 (m, 4H), 1.62 (m, 8H), 1.27*, 1.26 (2 x s, 3H), 1.13 (m, 8H), 0.86, 0.84* (2 x s, 3H). ¹³C NMR (CDCl₃) δ 172.54*, 172.23, 168.56*, 168.06, 142.56*, 141.77, 124.61*, 124.33, 80.21*, 72.52, 72.03*, 62.41, 61.81*, 48.55, 48.35*, 44.85*, 44.21, 40.39*, 38.21*, 37.96, 36.77*, 36.57, 35.67*, 33.09*, 32.93, 32.84*, 32.12*, 32.04, 31.85*, 31.65, 28.57, 26.13*, 25.60*, 24.89, 24.81*, 24.78, 24.01, 23.56*, 22.28*, 22.21, 21.13, 21.04*. (*

Correspond to the major diastereomer). HRMS (ESI–FT–ICR) *m*/*z*: Calcd. for C₂₂H₃₂N₂O₂Na [M + Na]⁺ 379.23615 found 379.23580.

Spectroscopic data of major diastereomer of 1c:

¹H NMR (400 MHz, CDCl₃) δ 5.85 (d, *J* = 7.5 Hz, 1H), 5.67 (s, 1H), 5.26 (s, 1H), 4.25 (dd, *J* = 18.9, 2.4 Hz, 1H), 4.12 (dd, *J* = 18.9, 2.3 Hz, 1H), 3.79–3.65 (m, 1H), 2.40 (m, 1H), 2.27 (s, 3H), 2.23 (t, *J* = 2.4 Hz, 1H), 2.05 (m, 2H), 1.92–1.80 (m, 4H), 1.73–1.53 (m, 3H), 1.36–1.23 (m, 4H), 1.27 (s, 3H), 0.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.57, 168.58, 142.56, 124.63, 80.21, 72.03, 61.84, 48.36, 44.86, 40.40, 38.22, 36.78, 35.68, 33.09, 32.84, 32.13, 31.86, 26.15, 25.61, 23.64, 22.29, 21.05.

(1R,5S)-N-benzyl-N-(2-(cyclohexylamino)-2-oxoethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carboxamide **(2a)**

Paraformaldehyde (30.0 mg, 1.0 mmol), benzylamine (109.2 µL, 1.0 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (166.2 mg, 1.0 mmol) and cyclohexyl isocyanide (124.2 µL, 1.0 mmol) were reacted according to the general multicomponent procedure. Flash column chromatography purification (EtOAc/hexane = 1:3 v/v) afforded **2a** (374.9 mg, 95%) as an amorphous solid. R_i = 0.35 (EtOAc/hexane = 1:3 v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (m, 5H), 6.36 (bs, 1H, NH), 5.92 (bs, 1H), 4.74 (d, *J* = 16.2 Hz, 1H), 4.70 (d, *J* = 16.1 Hz, 1H), 3.97 (d, *J* = 15.7 Hz, 1H), 3.85 (d, *J* = 16.1 Hz, 1H), 3.70 (m, 1H), 2.52–2.42 (m, 2H), 2.37 (t, *J* = 3.0 Hz, 1H), 2.35 (t, *J* = 3.0 Hz, 1H), 2.13 (m, 1H), 1.94–1.49 (m, 6H), 1.31 (s, 3H), 1.42–1.08 (m, 5H), 0.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.66, 167.95, 142.85, 136.55, 128.99, 127.89, 126.55, 48.16, 44.59, 40.42, 38.08, 36.76, 32.88, 31.75, 26.00, 25.55, 24.80, 24.76, 21.23. HRMS (ESI-FT-ICR) *m/z*: Calcd. for C₂₅H₃₄N₂O₂Na [M + Na]⁺ 417.25180 found 417.25125. (1R,5S)-N-(2-(cyclohexylamino)-2-oxoethyl)-6,6-dimethyl-N-(pyridin-3-ylmethyl)bicyclo[3.1.1]hept-2-ene-2-carboxamide (2b)

Paraformaldehyde (30.0 mg, 1.0 mmol), pyridin-3-amine (94.0 mg, 1.0 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (166.2 mg, 1.0 mmol) and cyclohexyl isocyanide (124.2 μ L, 1.0 mmol) were reacted according to the general multicomponent procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **2b** (228.9 mg, 60%) as an amorphous white solid. $R_f = 0.20$ (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, CDCl₃) δ 8.49 (dd, *J* = 4.7, 1.1 Hz, 1H), 8.43 (d, *J* = 2.3 Hz, 1H), 7.65 (ddd, *J* = 8.1, 2.3, 1.5 Hz, 1H), 7.32 (dd, *J* = 8.1, 4.8 Hz, 1H), 6.35 (d, *J* = 7.6 Hz, 1H, NH), 5.83 (m, 1H), 4.32 (s, 2H), 3.76 (m, 1H), 2.27 (m, 1H), 2.22–2.17 (m, 3H), 2.02–1.83 (m, 2H), 1.74–1.65 (m, 2H), 1.63–1.55 (m, 2H), 1.43–1.12 (m, 6H), 1.21 (s, 3H), 0.74 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 171.00, 167.58, 148.53, 148.02, 142.72, 140.43, 134.50, 132.69, 123.98, 54.44, 48.32, 44.04, 39.99, 37.92, 32.99, 31.98, 31.11, 25.91, 25.57, 24.72, 20.98. HRMS (ESI-FT-ICR) *m*/*z*: Calcd. for C₂₃H₃₁N₃O₂H [M + H]⁺ 382.24945 found 382.24890.

(1R,5S)-N-(2-(cyclohexylamino)-2-oxoethyl)-6,6-dimethyl-N-(prop-2-yn-1-yl)bicyclo [3.1.1]hept-2-ene-2-carboxamide **(2c)**

Paraformaldehyde (30.0 mg, 1.0 mmol), propargylamine (64.9 µL, 1.0 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (166.2 mg, 1.0 mmol) and cyclohexyl isocyanide (124.2 µL, 1.0 mmol) were reacted according to the general multicomponent procedure. Flash column chromatography purification (EtOAc/hexane = 1:3 v/v) afforded **2c** (311.7 mg, 91%) as an amorphous white solid. R_f = 0.41 (EtOAc/hexane = 1:3 v/v). ¹H NMR (400 MHz, CDCl₃) δ 6.25 (bs, 1H), 6.06 (bs, 1H), 4.28 (dd, *J* = 17.8, 2.2 Hz, 1H), 4.17 (dd, *J* = 17.8, 2.4 Hz, 1H), 4.09 (d, *J* = 15.9 Hz, 1H), 3.98 (d, *J* = 15.9 Hz, 1H), 3.78–3.68 (m, 1H), 2.51–2.32 (m, 4H), 2.12 (m, 1H), 1.84 (m, 2H), 1.71–1.52 (m, 3H), 1.30 (s, 3H), 1.42–1.09 (m, 7H), 0.88 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 171.76, 167.75, 142.36, 128.11, 78.68, 73.27, 48.27, 44.17, 40.35, 37.96, 36.70, 32.91, 31.84, 31.69, 25.92, 25.54, 24.75, 21.14. HRMS (ESI-FT-ICR) *m*/*z*: Calcd. for C₂₁H₃₀N₂O₂Na [M + Na]⁺ 365.22050 found 365.21995.

(1R,5S)-N-(2-(cyclohexylamino)-2-oxoethyl)-6,6-dimethyl-N-((1-(p-tolyl)-1H-1,2,3-triazol-4-yl)methyl)bicyclo[3.1.1]hept-2-ene-2-carboxamide **(3a)**

Paraformaldehyde (3.0 mg, 0.1 mmol), propargylamine (6.5 μL, 0.1 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (16.6 mg, 0.1 mmol), cyclohexyl isocyanide (12.4 μL, 0.1 mmol), 4-azidotoluene (14.6 mg, 0.1 mmol), CuSO₄·5H₂O (0.02 mmol) and sodium ascorbate (0.04 mmol) were reacted according to the general one-pot multicomponent-click procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **3a** (42.8 mg, 90%) as an amorphous white solid. R_f = 0.20 (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, MeOD) δ 8.39 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 6.08 (m, 1H), 4.75 (bs, 1H), 4.12 (m, 2H), 3.65 (m, 1H), 2.57–2.36 (m, 4H), 2.44 (s, 3H), 2.15 (d, *J* = 7.1 Hz, 1H), 1.79– 1.60 (m, 4H), 1.64 (d, *J* = 12.0 Hz, 1H), 1.34 (s, 3H), 1.44–1.14 (m, 7H), 0.93 (s, 3H). ¹³C NMR (100 MHz, MeOD) δ 174.45, 169.68, 140.53, 136.07, 131.36, 121.46, 49.91, 45.50, 41.65, 38.86, 33.68, 32.58, 32.55, 26.59, 26.34, 26.00, 21.55, 21.06. HRMS (ESI-FT-ICR) *m*/z: Calcd. for C₂₈H₃₇N₅O₂H [M + H]⁺ 476.30255 found 476.30200.

(1R,5S)-N-((1-(3-chlorophenyl)-1H-1,2,3-triazol-4-yl)methyl)-N-(2-(cyclohexylamino)-2-oxoethyl)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxamide **(3b)**

Paraformaldehyde (3.0 mg, 0.1 mmol), propargylamine (6.5 μL, 0.1 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (16.6 mg, 0.1 mmol), cyclohexyl isocyanide (12.4 μL, 0.1 mmol), 1-azido-3-chlorobenzene (16.9 mg, 0.1 mmol), CuSO₄·5H₂O (0.02 mmol) and sodium ascorbate (0.04 mmol) were reacted according to the general one-pot multicomponentclick procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **3b** (46.6 mg, 94%) as an amorphous white solid. R_f = 0.18 (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, MeOD) δ 8.50 (bs, 1H), 8.00 (s, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 8.0 Hz, 1H), 6.08 (bs, 1H), 4.75 (bs, 2H), 4.31–4.05 (m, 2H), 3.69–3.60 (m, 1H), 2.58– 2.34 (m, 5H), 2.15 (d, *J* = 7.0 Hz, 1H), 1.79–1.60 (m, 5H), 1.64 (d, *J* = 12.0 Hz, 1H), 1.34 (s, 3H), 1.42–1.17 (m, 9H), 0.93 (s, 3H). ¹³C NMR (100 MHz, MeOD) δ 174.43, 169.67, 145.85, 144.04, 139.46, 136.60, 132.45, 129.97, 128.65, 123.31, 121.63, 119.80, 49.93, 45.49, 41.71, 38.86, 33.69, 32.79, 26.59, 26.34, 26.01, 21.56. HRMS (ESI-FT-ICR) *m/z*: Calcd. for C₂₇H₃₄ClN₅O₂Na [M + Na]⁺ 518.22987 found 518.22932. (1R,5S)-N-(2-(cyclohexylamino)-2-oxoethyl)-N-((1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl)methyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carboxamide **(3c)**

Paraformaldehyde (3.0 mg, 0.1 mmol), propargylamine (6.5 µL, 0.1 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (16.6 mg, 0.1 mmol), cyclohexyl isocyanide (12.4 µL, 0.1 mmol), 4-azidoanisole (16.4 mg, 0.1 mmol), CuSO₄·5H₂O (0.02 mmol) and sodium ascorbate (0.04 mmol) were reacted according to the general one-pot multicomponent-click procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **3c** (40.8 mg, 83%) as an amorphous white solid. R_f = 0.15 (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, MeOD) δ 8.33 (s, 1H), 7.73 (d, *J* = 8.2 Hz, 2H), 7.12 (d, *J* = 8.2 Hz, 2H), 6.07 (d, *J* = 7.3 Hz, 1H), 4.74 (bs, 2H), 4.24–4.03 (m, 2H), 3.88 (s, 3H), 3.71–3.59 (m, 1H), 2.59–2.34 (m, 5H), 2.14 (brs, 1H), 1.90–1.56 (m, 7H), 1.31 (s, 3H), 1.37–1.22 (m, 7H), 0.93 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.57, 160.00, 142.60, 130.47, 128.03, 122.28, 114.89, 60.50, 55.74, 44.25, 40.40, 37.99, 32.94, 31.86, 31.70, 31.04, 25.97, 25.56, 24.94, 21.23, 14.31. HRMS (ESI-FT-ICR) *m*/z: Calcd. for C₂₈H₃₇N₅O₃H [M + H]⁺ 492.29747 found 492.29691. (1R,5S)-N-(2-(cyclohexylamino)-2-oxoethyl)-N-((1-(((1R,5S)-6,6-dimethylbicyclo [3.1.1]hept-2-en-2yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)-6,6-dimethylbicyclo [3.1.1]hept-2-ene-2-carboxamide (3d)

Paraformaldehyde (3.0 mg, 0.1 mmol), propargylamine (6.5 µL, 0.1 mmol), (1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (16.6 mg, 0.1 mmol), cyclohexyl isocyanide (12.4 µL, 0.1 mmol), (1R,5S)-2-(azidomethyl)-6,6-dimethylbicyclo[3.1.1]hept-2-ene ¹ (18.0 mg, 0.1 mmol), CuSO₄·5H₂O (0.02 mmol) and sodium ascorbate (0.04 mmol) were reacted according to the general one-pot multicomponent-click procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **3d** (45.7 mg, 88%) as an amorphous white solid. R_f = 0.25 (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 6.01 (s, 1H), 5.58 (s, 1H), 4.82 (s, 2H), 4.58 (s, 2H), 4.17–3.83 (m, 4H), 3.82–3.63 (m, 1H), 2.50–2.21 (m, 9H), 2.09 (m, 2H), 1.99 (t, *J* = 5.2 Hz, 2H), 1.92–1.54 (m, 9H), 1.40–1.26 (m, 9H), 1.24 (s, 3H), 1.20 (s, 3H), 1.12–1.01 (m, 6H), 0.87 (s, 3H), 0.70 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.45, 167.88, 143.88, 142.62, 142.02, 127.86, 123.32, 60.51, 59.64, 55.46, 44.21, 43.54, 40.51, 40.40, 38.26, 38.11, 37.97, 32.94, 32.89, 31.83, 31.72, 31.67, 31.35, 29.81, 26.00, 25.97, 25.57, 21.07. HRMS (ESI-FT-ICR) *m/z*: Calcd. for C₃₁H₄₅N₅O₂Na [M + Na]⁺ 542.34710 found 542.346547.

(2S,3S,4R,5S,6S)-2-(acetoxymethyl)-6-(4-(((1R,5S)-N-(2-(cyclohexylamino)-2-oxoethyl)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxamido)methyl)-1H-1,2,3-triazol-1-yl)tetrahydro-2H-pyran-3,4,5-triyl triacetate **(3e)**

Paraformaldehyde (3.0 mg, 0.1 mmol), propargylamine (6.5 μ L, 0.1 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (16.6 mg, 0.1 mmol), cyclohexyl isocyanide (12.4 μ L, 0.1 mmol), 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl azide² (41.1 mg, 0.1 mmol), CuSO4·5H₂O (0.02 mmol) and sodium ascorbate (0.04 mmol) were reacted according to the general one-pot multicomponent-click procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **3e** (65 mg, 91%) as an amorphous white solid. *R*_f = 0.27 (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 6.05 (s, 1H), 5.84 (d, *J* = 8.3 Hz, 1H), 5.49–5.36 (m, 2H), 5.24 (t, *J* = 9.4 Hz, 1H), 4.68 (2xbs, 2H), 4.32 (dd, *J* = 12.7, 4.7 Hz, 1H), 4.19–3.99 (m, 4H), 3.79 (bs, 1H), 2.46 (m, 2H), 2.37 (d, *J* = 10.6 Hz, 2H), 2.10 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H), 1.87 (s, 3H), 1.87 (m, 2H), 1.67 (2xd, *J* = 11.1 Hz, 4H), 1.31 (s, 3H), 1.43–1.12 (m, 7H), 0.90 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 172.41, 170.63, 170.02, 169.42, 168.91, 167.70, 144.47, 142.53, 127.85, 121.66, 85.92, 75.30, 72.61, 70.54, 67.75, 61.57, 44.21, 40.38, 37.97, 32.96, 32.92, 31.83, 31.68, 25.96, 25.57, 24.89, 21.21, 21.15, 20.81, 20.63, 20.62, 20.23. HRMS (ESI-FT-ICR) *m/z*: Calcd. for C₃₅H₄₉N₅O₁₁Na [M + Na]⁺ 738.33263 found 738.33207.

(1R,1'R,5S,5'S)-N,N'-(hexa-2,4-diyne-1,6-diyl)bis(N-(2-(cyclohexylamino)-2-oxoethyl)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxamide) **(4a)**

Paraformaldehyde (3.0 mg, 0.1 mmol), propargylamine (6.5 µL, 0.1 mmol), (1R,5S)-6,6dimethylbicyclo[3.1.1]hept-2-ene-2-carboxylic acid (16.6 mg, 0.1 mmol), cyclohexyl isocyanide (12.4 µL, 0.1 mmol), piperidine (9.9 µL, 0.1 mmol), CuAcO₂·H₂O (2.0 mg, 0.1 mmol) were reacted according to the general tandem multicomponent-homocoupling procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **4a** (55 mg, 80%) as an amorphous white solid. R_f = 0.35 (EtOAc/hexane = 1:1 v/v). ¹H NMR (400 MHz, CDCl₃) δ 6.26 (s, 2H), 6.06 (s, 2H), 4.40 (d, *J* = 18.2 Hz, 2H), 4.30 (d, *J* = 18.2 Hz, 2H), 4.13 (d, *J* = 15.7 Hz, 2H), 3.98 (d, *J* = 15.7 Hz, 2H), 3.76 (m, 2H), 2.60–2.31 (m, 8H), 2.16 (d, *J* = 7.1 Hz, 2H), 1.93–1.79 (m, 6H), 1.73–1.53 (m, 6H), 1.33 (s, 6H), 1.44–1.10 (m, 15H), 0.91 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.63, 167.43, 142.28, 128.44, 73.93, 68.79, 60.49, 48.36, 44.20, 40.36, 37.98, 32.96, 31.89, 31.74, 25.95, 25.56, 24.80, 21.17, 14.29. HRMS (ESI-FT-ICR) *m*/*z*: Calcd. for C₄₂H₅₈N₄O₄H [M + H]⁺ 683.45363 found 683.45308. 2,2'-(hexa-2,4-diyne-1,6-diylbis(acetylazanediyl))bis(N-cyclohexyl-2-((1R,5S)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)acetamide) **(4b)**

(1*R*)-(-)-Myrtenal (15.2 μL, 0.1 mmol), propargylamine (6.5 μL, 0.1 mmol), acetic acid (5.7 μL, 0.1 mmol) and cyclohexyl isocyanide (12.4 μL, 0.1 mmol), piperidine (9.9 μL, 0.1 mmol), CuAcO₂·H₂O (2.0 mg, 0.1 mmol) were reacted according to the general tandem multicomponent-homocoupling procedure. Flash column chromatography purification (EtOAc/hexane = 1:1 v/v) afforded **4b** (43 mg, 60%) as an amorphous white solid. R_i = 0.40 (EtOAc/hexane = 1:1 v/v). A mixture of diastereomers in a 1:0.9 ratio was observed by NMR analysis. ¹H NMR (400 MHz, CDCl₃) δ 5.67 (m, 6H), 5.38 (s, 2H), 5.26 (s, 2H), 4.41 (dd, *J* = 19.3, 3.7 Hz, 2H), 4.27 (d, *J* = 20.2 Hz, 2H), 4.17 (d, *J* = 9.6 Hz, 2H), 3.80–3.68 (m, 4H), 2.45 (m, 4H), 2.29 (m, 4H), 2.26 (s, 6H), 2.25 (s, 6H), 2.15–2.02 (m, 10H), 1.96–1.79 (m, 12H), 1.76–1.57 (m, 12H), 1.29 (s, 6H), 1.28 (s, 6H), 1.42–1.06 (m, 26H), 0.88 (s, 6H), 0.86 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.23, 172.03, 168.50, 168.08, 142.54, 141.69, 124.86, 124.69, 75.25, 75.00, 68.43, 67.94, 61.99, 61.36, 48.62, 48.39, 44.93, 44.14, 40.44, 40.36, 38.21, 37.98, 37.14, 36.25, 33.09, 32.96, 32.85, 32.10, 31.89, 31.68, 31.04, 26.12, 25.59, 24.93, 24.80, 22.24, 21.12, 21.06. HRMS (ESI-FT-ICR) *m/z*: Calcd. for C₄₄H₆₂N₄O₄H [M + H]⁺ 711.48493 found 711.48438.

Myrtenyl	AGS	MCF–7	HT29
derivatives	EC50 (nM) / Emax	EC50 (nM) / E _{max}	EC50 (nM) / Emax
1a	$46\pm6\ /\ 0.1$	$65 \pm 9 / 0.1$	$68 \pm 7 \ / \ 0.1$
3a	$50 \pm 16 \ / \ 0.1$	$24 \pm 5 \ / \ 0.3$	$59 \pm 13 \ / \ 0.3$
3b	$49\pm8\ /\ 0.2$	$24\pm7\ /\ 0.5$	$21\pm7\ /\ 0.4$
3c	$75 \pm 4 \ / \ 0.1$	38 / 0.4	$38 \pm 1 \ / \ 0.4$
3d	33 ± 3 / 0.1	$22 \pm 2 / 0.1$	33 ± 6 / 0.1

Table S1. EC $_{50}$ and E_{max} values of derivative against different cancer cell lines

Spectra of selected compounds

FIGURE S1. 400 MHz ¹H NMR spectra in CDCl₃ of **1a** (Crude mixture of diastereomers).

FIGURE S2. 100 MHz ¹³C NMR spectra in CDCl₃ of **1a** (Crude mixture of diastereomers).

FIGURE S3. HRMS (ESI-FT-ICR) *m*/*z* spectra of **1a**.

7.33 7.25 7.26 7.27 7.26 7.27 7.27 7.26 7.27 7.27 7.27 7.26 7.27 7.27 7.27 7.27 7.27 7.27 7.27 7.27

FIGURE S5. 100 MHz ¹³C NMR spectra in CDCl₃ of major diastereomer of **1a**.

FIGURE S7. 100 MHz ¹³C NMR spectra in CDCl₃ of **1b** (Crude mixture of diastereomers).

FIGURE S9. 400 MHz 1 H NMR spectra in CDCl₃ of **1c** (Crude mixture of diastereomers).

FIGURE S10. 100 MHz 13 C NMR spectra in CDCl₃ of **1c** (Crude mixture of diastereomers).

C 258 C

FIGURE S11. 400 MHz ¹H NMR spectra in CDCl₃ of major diastereomer of **1c.**

FIGURE S12. 100 MHz ¹³C NMR spectra in CDCl₃ of major diastereomer of 1c.

FIGURE S13. HRMS (ESI-FT-ICR) m/z spectra of **1c**.

FIGURE S23. 400 MHz ¹H NMR spectra in CD₃OD of 3a.

FIGURE S25. HRMS (ESI-FT-ICR) *m*/*z* spectra of **3a**.

FIGURE S27. 100 MHz ¹³C NMR spectra in CD₃OD of **3b**.

FIGURE S28. HRMS (ESI-FT-ICR) *m*/*z* spectra of **3b**.

FIGURE S33: 100 MHz ¹³C NMR spectra in CDCl₃ of **3d**.

FIGURE S34. HRMS (ESI-FT-ICR) m/z spectra of **3d**.

-7.83 -7.83 -7.83 -7.83 -7.83 -7.83 -7.83 -7.83 -7.84 -7.83 -7.84 -7.8

172.41 1889.42 1899.42 1899.42 1914.47 1914.47 191.95 1

FIGURE S36. 100 MHz ¹³C NMR spectra in CDCl₃ of 3e.

S31

FIGURE S41. 400 MHz ¹H NMR spectra in CDCl₃ of **4b**.

FIGURE S42. 100 MHz ¹³C NMR spectra in CDCl₃ of **4b**.

