Supporting information for

H/D Isotope Effects on ¹H NMR Chemical Shifts in Cyclic Heterodimers and Heterotrimers of Phosphinic and Phosphoric Acids

Valeria V. Mulloyarova¹, Daria O. Ustimchuk¹, Aleksander Filarowski², Peter M. Tolstoy^{1,*}

¹ Institute of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia; <u>myllerka20071993@gmail.com</u> (V.V.M.); <u>ustimchuk.d@yandex.ru</u> (D.O.U.)

² Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie str., 50-383 Wrocław, Poland; <u>aleksander.filarowski@chem.uni.wroc.pl</u>

* Correspondence: peter.tolstoy@spbu.ru; tel.: +7-921-430-8191

Contents	Page
Figure S1 . The low-field part of ¹ H NMR spectrum of a mixture of acids 2 and 3.	2
Figure S2. Parts of ³¹ P NMR spectrum of a mixture of acids 2 and 3.	3
Figure S3 . The low-field part of ¹ H NMR spectrum of a mixture of acids 2 and 4.	4
Figure S4. Parts of ³¹ P NMR spectrum of a mixture of acids 2 and 4.	5
Figure S5 . The low-field part of 1 H NMR spectrum of a mixture of acids 3 and 4 .	6
Figure S6. Parts of ³¹ P NMR spectrum of a mixture of acids 3 and 4.	7
Figure S7 . Probabilities of various isotopologs and relative intensities of their signals as a function of deuteration ratio $x_{\rm D}$.	8
Figure S8 . The low-field part of ¹ H NMR spectrum of a mixture of partially deuterated acids 2 and 3 .	9
Figure S9 . The low-field parts of ¹ H NMR spectra of a mixture of partially deuterated acids 3 and 4 at various degrees of deuteration.	10
Table S1. ³¹ P NMR chemical shifts of homodimers and heterodimers of acids 1–4.	11
Table S2. ³¹ P NMR chemical shifts of homotrimers and heterotrimers of acids 1–4.	12
Figure S10. The analysis of H/D fractionation factors for a mixture of partially deuterated acids 2 and 3.	13
Table S3 . The deuteration ratios of individual hydrogen bonds for the sample of a mixture of partially deuterated acids 2 and 3 .	13

Figure S1. The low-field part of ¹H NMR spectrum of the sample containing acids **2** and **3** (1.8:1) in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the subspectra arising from self-associated of **2**, heterodimer **2-3** and two heterotrimers, **2-3-2** and **3-2-3**. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S2. The parts of ³¹P NMR spectrum of the sample containing acids **2** and **3** (1.8:1) in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the sub-spectra arising from self-associated of **2** and two heterotrimers, **2-3-2** and **3-2-3**. The self-associates of **3** are not formed, while the signals of heterodimer **2-3** are not detected due to their low intensity. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S3. The low-field part of ¹H NMR spectrum of the sample containing acids 2 and 4 (1.3:1) in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the subspectra arising from self-associated of 2 or 4, heterodimer 2-4 and two heterotrimers, 2-4-2 and 4-2-4. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S4. The parts of ³¹P NMR spectrum of the sample containing acids **2** and **4** (1.3:1) in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the sub-spectra arising from self-associated of **2**, heterodimer **2-4** and two heterotrimers, **2-4-2** and **4-2-4**. The self-associates of **4** are not detected due to the low intensity of their signals. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S5. The low-field part of ¹H NMR spectrum of the sample containing acids **3** and **4** (1:1.4) in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the subspectra arising from self-associated of **4**, heterodimer **3-4** and two heterotrimers, **3-4-3** and **4-3-4**. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S6. The parts of ³¹P NMR spectrum of the sample containing acids **3** and **4** (1:1.4) in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the sub-spectra arising from self-associated of **4**, heterodimer **3-4** and two heterotrimers, **3-4-3** and **4-3-4**. The self-associates of **3** are not formed, while the signals of heterodimer **3-4** are not detected due to their low intensity. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S7. The probabilities of various isotopologs (top) and the relative integrated intensities of their ¹H NMR signals (bottom) calculated for cyclic dimers (left) and cyclic trimers (center) and cyclic tetramers of the **X-Y-X-Y** type (right) as a function of the deuteration ratio x_D .

Figure S8. The low-field part of ¹H NMR spectrum of the sample containing partially deuterated (OH/OD, 57% D) acids **2** and **3** (4:1) in solution in CDF_3/CDF_2Cl at 100 K. The experimental spectrum is deconvoluted into the sub-spectra arising from various isotopologs of self-associates, heterodimer and heterotrimers. For visual clarify the signals in the experimental spectrum and the computed sub-spectra are color coded.

Figure S9. The low-field part of ¹H NMR spectra of the sample containing partially deuterated (OH/OD, from top to bottom: 0% D, 10% D, 50% D) acids **3** and **4** (1:22) in solution in CDF_3/CDF_2Cl at 100 K. Due to the large excess of acid **3** only one type of hetero-complex is formed, namely, a heterotrimer **4-3-4**. The evolution of the relative intensities of signals as a function of the deuteration ratio was used to assign the signals to particular isotopologs. For visual clarify the signals in the experimental spectrum and in the computed sub-spectra are color coded.

Table S1. The ³¹P NMR chemical shifts of various isotopologs of homodimers and heterodimers of POOH-containing acids 1-4 in CDF₃/CDF₂Cl at 100 K. The corresponding spectra are shown in Figures 4, 6, 8 and Figures S2, S4, S6.

Complex	(PhO) ₂ ³¹ POOH	(MeO) ₂ ³¹ POOH	Ph ₂ ³¹ POOH	Me ₂ ³¹ POOH
1-1 ^a	-8.09	-	-	-
$2-2^{\mathrm{b}}$	-	2.91	-	-
3-3 ^c	-	-	n.d. ^d	-
4 - 4 ^a	-	-	-	62.46
1-2	-7.88	2.64	-	-
1-3	n.m. ^e	-	-	n.m.
1-4	-8.17	-	-	72.99
2-3	-	n.d.	n.d.	-
2-4	-	2.96	-	65.92
3-4	-	-	n.d.	n.d.

^a – chemical shifts found in this work coincide with those reported previously in [Mulloyarova, V.V.; Giba, I.S.; Kostin, M.A.; Denisov, G.S.; Shenderovich, I.G.; Tolstoy, P.M. Cyclic trimers of phosphinic acids in polar aprotic solvent: symmetry, chirality and H/D isotope effects on NMR chemical shifts. *Phys. Chem. Chem. Phys.* **2018**, *20*, 4901–4910.].

^b – chemical shifts match reasonably well those reported previously in Ref. [Detering, C.;
Tolstoy, P.M.; Golubev, N.S.; Denisov, G.S.; Limbach, H.H. Vicinal H/D isotope effects in
NMR spectra of complexes with coupled hydrogen bonds: phosphoric acids. *Dokl. Phys. Chem.* **2001**, *379*, 191–193.].

 c – the diphenylphosphinic acid **3** is poorly soluble in CDF₃/CDF₂Cl and does not form selfassociates in a detectable amount

 d – n.d. – not detected.

e - n.m. - not measured.

Complex	(PhO)2 ³¹ POOH	(MeO) ₂ ³¹ POOH	Ph ₂ ³¹ POOH	Me ₂ ³¹ POOH
1-1-1 ^a	-11.56	-	-	-
2-2-2 ^b	-	1.22	-	-
3-3-3 ^c	-	-	n.d. ^d	-
4 - 4 - 4 ^a	-	-	-	56.07
1-2-1	-11.43	1.15	-	-
2-1-2	-11.62	1.20	-	-
1-3-1	-11.65	-	37.85	-
3-1-3	-12.25	-	33.68	-
1-4-1	-11.46	-	-	71.55
4-1-4	-11.50	-	-	63.86
2-3-2	-	1.37	32.65	-
3-2-3	-	1.00	30.79	-
2-4-2	-	1.30	-	62.93
4-2-4	-	1.25	-	59.66
3-4-3	-	-	28.76	58.07
4-3-4	-	-	28.39	57.24

Table S2. The ³¹P NMR chemical shifts of various isotopologs of homotrimers and heterotrimers of POOH-containing acids 1-4 in CDF₃/CDF₂Cl at 100 K. The corresponding spectra are shown in Figures 4, 6, 8 and Figures S2, S4, S6.

^a – chemical shifts found in this work coincide with those reported previously in [Mulloyarova, V.V.; Giba, I.S.; Kostin, M.A.; Denisov, G.S.; Shenderovich, I.G.; Tolstoy, P.M. Cyclic trimers of phosphinic acids in polar aprotic solvent: symmetry, chirality and H/D isotope effects on NMR chemical shifts. *Phys. Chem. Chem. Phys.* **2018**, *20*, 4901–4910.].

^b – chemical shifts match reasonably well those reported previously in Ref. [Detering, C.;
Tolstoy, P.M.; Golubev, N.S.; Denisov, G.S.; Limbach, H.H. Vicinal H/D isotope effects in
NMR spectra of complexes with coupled hydrogen bonds: phosphoric acids. *Dokl. Phys. Chem.* **2001**, *379*, 191–193.].

 c – the diphenylphosphinic acid **3** is poorly soluble in CDF₃/CDF₂Cl and does not form selfassociates in a detectable amount

 d – n.d. – not detected.

Figure S10. The analysis of H/D fractionation factors for a mixture of partially deuterated acids **2** and **3**, based on the ¹H NMR spectrum shown in Figure S8 and the individual deuteration ratios listed in Table S3.

Note: the H/D fractionation factors are defined with respect to a standard/reference, which is usually water. In our case the fractionation factors were calculated either with respect to one of the complexes (green labels in Figure S10) or within a selected pair of complexes (red labels). It has to be mentioned that for many other samples the changes of deuteration ratios x_D between individual complexes are either too small or lie within the experimental error.

Table S3. The deuteration ratios of individual hydrogen bonds for the sample of a mixture of partially deuterated acids **2** and **3** (see ¹H NMR spectrum in Figure S8). Note that intensities of some isotopologs are too small to reliably measure the deuteration ratio (this is why only one signal of heterotrimer **3-2-3** was analyzed).

Complex	2-2	2-2-2	2-3-2	3-2-3	2-3-2	2-3
δH, ppm	13.33	13.96	14.29	14.72	14.98	15.10
x_{D}	0.67	0.62	0.57	0.55	0.55	0.54