Supporting Information

Sabrina Adorisio¹, Laura Giamperi², Anahi Elena Ada Bucchini², Domenico Vittorio Delfino^{1,3,*} and Maria Carla Marcotullio^{4,*}

Foligno Nursing School, Department of Medicine, University of Perugia, 06034
Foligno, Italy; adorisiosabrina@libero.it

2 Department of Biomolecular Sciences, Section of Biochemistry and Biotechnology, University of Urbino , 61029 Urbino, Italy; laura.giamperi@uniurb.it (L.G.), elena.bucchinianahi@uniurb.it (A.E.A.B.)

3 Department of Medicine, Section of Pharmacology, University of Perugia, 06132Perugia, Italy

4 Department of Pharmaceutical Sciences, Università degli Studi di Perugia, 06123 Perugia, Italy

Correspondence: domenico.delfino@unipg.it (D.V.D.),
mariacarla.marcotullio@unipg.it (M.C.M.); Tel.: +39-075-585-8186 (D.V.D.), Tel.: +39-075-585-5100 (M.C.M.)

Figure S1. Effects of methanol extract (M) of *L. crithmoides* on OCI-AML3 cell number and apoptotic cell death. **A.** Bars represent the cell number (left panel) or the percentage of apoptotic cells after 24 h of treatment with control vehicle (Control) or 50 (MeOH 50), 100 (MeOH 100) or 200 (MeOH 200) µg/mL of the methanol extract (M). **B**. Flow cytometry analyses of a representative experiment. Data from three independent experiments are reported as mean ± SEM. * < 0.05; ** < 0,01; *** < 0,001.

в

Α

Figure S2. Effects of methanol extract (M) of *L. crithmoides* on OCI-AML3 cell cycle progression. **A.** Bars represent the percentage of cells in G0/G1 (left panel), S (middle panel), or G2/M (right panel) phases after 24 h of treatment with control vehicle (Control) or 50 (MeOH 50), 100 (MeOH 100) or 200 (MeOH 200) μ g/mL of the methanol extract (M). **B.** Flow cytometry analyses of a representative experiment. Data from three independent experiments are reported as mean ± SEM. ** < 0,001; *** < 0,001.

Figure S3. Effects of DCM or H extracts of *L. crithmoides* on OCI-AML3 cell number and apoptotic cell death. **A.** Bars represent the cell number (left panel) or the percentage of apoptotic cells after 24 h of treatment with control vehicle (Control) or 5 (DCM 5; H 5), 10 (DCM 10; H 10) or 15 (DCM 15; H 15) µg/mL of the DCM or H extracts, respectively. **B**. Flow cytometry analyses of a representative experiment. Data from three independent experiments are reported as mean ± SEM. * < 0.05; ** < 0,01; *** < 0,001.

Figure S4. Effects of DCM or H extracts of *L. crithmoides* on OCI-AML3 cell cycle progression. **A.** Bars represent the percentage of cells in G0/G1 (left panel), S (middle panel), or G2/M (right panel) phases after 24 h of treatment with control vehicle (Control) or 5 (DCM 5; H 5), 10 (DCM 10; H 10) or 15 (DCM 15; H 15) µg/mL of the DCM or H extracts, respectively. **B**. Flow cytometry analyses of a representative experiment. Data from three independent experiments are reported as mean ± SEM. * < 0,05, ** < 0,01; *** < 0,001.

Figure S5. ¹H NMR Spectrum of compound 1.

-200	-400	-300	-200	-100	<u> </u>	100	200	-300	-400	500	600	700	800	006
	_													
_ IS'50					-		-				-1			- ;
59.05		-	2	j.	ł									
VIIC				1	I					_		_	_	
					ł									
					I									
90'TS-					ł									- 6
78'99-														- 0
					I									- F
			_	-	ł									
			_		ł					_		_		
	_		_		ł	_				_		_	_	
r 153' TG														
L-126.05					1	_								;
8.821					ł									- ç
139.951					Ŧ									
78.891 —	-		-		ł					-		+	-	
	_		_		ł					_		-	_	
- 1991						-2						_	_	ŗ
				-11										
					I									-
C20					ł									
Cult														
312,11					-									
MOD	_		_	_	ł	_				_	_	_		

Figure S6. JMODXH spectrum of compound 1.

Figure S7. ¹H NMR spectrum of compound 2.

Figure S8. JMODXH spectrum of compound 2.

Figure S9. NOESY spectrum of compound 2.

Figure S10. Flow chart of the isolation.