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Abstract: Irradiation of the Keggin-type [PW11O39{Ru(NO)}]4− (Ru-NO) polyoxometalate in CH3CN 
results in rapid NO ligand elimination with the formation of [PW11O39{RuIII(CH3CN)}]4− (Ru-
CH3CN). This complex offers an easy entry into the Ru-based chemistry of the {PW11Ru} complex. 
Attempts to substitute N3− for CH3CN in the presence of an NaN3 excess lead a variety of products: 
(i) [PW11O39{RuIII(N3)}]4− (Ru-N3); (ii) [PW11O39{RuIII(N4HC-CH3)}]4− (Ru-Tz) as a click-reaction 
product; and (iii) [PW11O39{RuII(N2)}]5− (Ru-N2). UV-VIS, CV, and HR-ESI-MS techniques were used 
for the reaction monitoring and characterization of the products. 
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1. Introduction 

Chemistry of noble-metal-substituted polyoxometalates, apart from general chemical interest of 
bringing noble metal centers in coordination to what can be regarded as noninnocent multidentate 
oxygen-donor ligand, is important for the search of new pathways of coordinated molecules 
activation and design of new catalysts, including photo- and electrocatalysts. 

Of the polyoxometalates (POMs) incorporating noble metals, the most studied are Ru-
substituted Keggin-type heteropolytungstates, where a {W=O}4+ moiety in the plenary Keggin 
archetype, [XW12O40]n− (X = P (n = 3), Si and Ge (n = 4)), is substituted by a {RuL} group. L can be 
neutral or charged, such as O2− or N3−, and Ru in POMs is known to exist in at least five oxidation 
states, ranging from Ru(II) to Ru(VI). Incorporation of Ru confers unique redox and catalytic 
properties on the resulting POMs [1,2]. Catalytic activities of [PW11O39RuIII(H2O)]4−, 
[PW11O39RuII(DMSO)]5− (DMSO: dimethyl sulfoxide), [SiW11O39RuIII(H2O)]5−, [SiW11O39RuIII(DMSO)]5−, 
and [GeW11O39RuIII(H2O)]5− in oxidation of olefins [3–5], water [6–8], DMSO [9,10], and alcohols 
[11,12]; reduction of DMSO [10] and carbon dioxide [13]; and oxidative C–C bond formation [14] have 
been reported. The H2O ligand attached to Ru is exchangeable with other organic and inorganic 
donor molecules to form Ru-pyridine [10,15,16], Ru-pyrazine [12], Ru-DMSO [10,17,18], Ru-NO [19–
21], Ru-Cl [22], Ru-CO [23–25], Ru-olefin [10], and Ru-O-Ru derivatives [26,27]. 

In 2013 we reported incorporation of a {Ru(NO)}3+ group into a Keggin type POM, [PW11O39]7−, 
and versatile reactivity of the coordinate NO ligand [20,21]. Easily available [Ru(NO)Cl5]2− offers 
serious advantages as Ru source for preparation of Ru-substituted Keggin-type heteropolytungstates 
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due to the redox stability of the {Ru(NO)}3+ unit, hydrolytic inertness, and consequent lack of 
uncontrollable hydrolytic oligomerization, though the inertness of coordinated Cl ligands in this low-
spin d6-Ru(II) complex requires drastic reaction conditions. The coordinated NO can be destroyed or 
eliminated, leaving a vacant coordination site, which can open a way for activation of different 
substrates in catalytical applications [28–30]. Recently, we reported the reactions of [Ru(NO)Cl5]2− 
with pseudotrivacant B-α-[XW9O33]9− (X = AsIII, SbIII) at 160 °C resulting in rearrangement of the 
polyoxometalate backbones into {XM18} structures [31]. In the case of [α-B-AsW9O33]9−, oxidation of 
As(III) to As(V) took place, accompanied by rearrangement into Dawson type [As2W17{Ru(NO)}O61]7−. 
In the case of [α-B-SbW9O33]9−, the product [SbW17{Ru(NO)}O59]10− was isolated as 
(DMAH)10[SbW17{Ru(NO)}O59]∙11H2O. 

Another aspect highlighted here is reactions of coordinated ligands [32] or ligand activation in 
the coordination sphere of noble metals. Numerous research papers have been published in this field. 
Specifically we would like to highlight the reactivity of coordinated nitriles in the Pt coordination 
sphere [33–37] or reactivity of triosmium clusters toward a wide range of substrates [38–41]. UV-
irradiation (or photolysis) is a well-known technique for a lot of chemical processes, including (i) 
ligand exchange reactions (e.g., low-valence iron, osmium clusters) [42,43], (ii) ligand transformation 
[44–46], and (iii) CO2 capture [47]. 

Here, we report an easy way to remove the NO ligand from [PW11O39(Ru(NO)}4−, quantitative 
generation of [PW11O39RuIII(CH3CN)]4−, and its reactions with N3– which follow three different 
pathways.  

2. Results 

Coordinated NO (formally, NO+) ligand in the {Ru(NO)}3+ complexes typically can play three 
roles: (i) stabilizing low-spin d6-Ru(II) and imparting stability and inertness on the coordination 
sphere; (ii) acting as spectator ligand, capable of taking up or releasing extra electron density on Ru 
due to π-backbonding; (iii) easy transformations or elimination (releasing a coordination site) upon 
irradiation or in the presence of reducing agents or nucleophiles. In this work we used mercury lamp 
irradiation to eliminate NO ligand from [PW11O39{Ru(NO)}]4− (Ru-NO) (Figures S1–S3, Table S1) in 
CH3CN solution producing corresponding [PW11O39{RuIII(CH3CN)}]4− anion. The reaction can be 
viewed as dissociation of neutral NO molecule with the formation of coordinatively unsaturated 
species [PW11O39RuIII]4−, followed by rapid solvation with CH3CN, quantitatively yielding 
[PW11O39{RuIII(CH3CN)}]4− (Ru-CH3CN). This process was followed by IR, UV-VIS, and CV 
techniques. 

After 90 min irradiation of a solution of Ru-NO in CH3CN, the UV-VIS spectrum changed 
(Figure 1) by disappearance of the band at 412 nm (ε = 1059 M–1cm–1), and appearance of two new 
bands at 356 nm (ε = 2843 M−1cm−1) and 410 nm (ε = 1720 M−1cm−1). Cyclic voltammetry (CV) can be 
used for the monitoring of the substitution of CH3CN for NO by following the change in the 
corresponding redox processes. The CV plot of Ru-CH3CN in acetonitrile is shown in Figure 2. Three 
redox processes at E1/2 = 0.92, −0.33 and −1.64 V (vs. Ag/AgCl) were detected. The difference between 
the anodic and cathodic peak potentials (ΔE) does not exceed 80 mV, and the ratio between the anodic 
and cathodic peak currents (Ia/Ic) is close to 1 for each of these processes. All this indicates the 
reversibility of the processes. The oxidation process at 0.92 V corresponds to Ru(II)/Ru(III) couple. It 
was previously found that a similar Ru-NO complex reversibly oxidizes at 1.29 V (vs. Ag/AgCl) [20]. 
Two redox processes at −0.33 and −1.64 V should correspond to the reduction of W(VI) in the {PW11} 
framework, as is well documented. 



Molecules 2020, 25, 1859 3 of 13 

 

 

Figure 1. UV-VIS spectra for POM-Ru derivatives. 

 

Figure 2. CV of Ru-CH3CN in CH3CN at scan rate of 100 mV/s. 

The Ru-CH3CN complex can be isolated as TBA-salt by diethyl ether diffusion for crystalline 
sample or bulk ether precipitation of the crude product. IR-spectroscopy confirms absence of NO 
ligand by disappearance of the tell-tale NO band at 1846 cm−1 (Figures S7 and S8).  
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Ru-CH3CN was prepared to study reactivity at the Ru site in various reactions. We tried to 
exchange the coordinated acetonitrile molecule with azide ligand in order to make the 
[PW11O39RuIII(N3)]5− (Ru-N3) complex and to study the reactions of the coordinated azide ligand. The 
reaction was monitored by CV. Heating of Ru-CH3CN with a large excess of NaN3 results in the 
changing of the UV-VIS spectrum (Figure 1). The spectrum differs from that of Ru-CH3CN or Ru-NO 
and looks essentially featureless. The implicit absorption bands could be identified by calculating 
wavelength derivatives [48]. Two bands at 366 nm (ε = 2888 M−1cm−1) and 415 nm (ε = 1633 M−1cm−1) 
were detected (Figure S9). Substitution of acetonitrile leads to a noticeable cathodic shift in the 
Ru(II)/Ru(III) potential from 0.92 V (red line in Figure 3) to 0.57 V (black line in Figure 3). Additionally 
two small irreversible shoulders were detected. However, within the concentrations of NaN3 
employed in this work, we were unable to achieve complete substitution of CH3CN by azide by 
working in CH3CN. However, with large excess in NaN3, the cyclic voltammogram plot shows the 
presence of three reversible Ru(II)/Ru(III) waves in the positive region (Figure 4). The first one 
corresponds to the formation of the azide complex, and the second one corresponds to the unreacted 
acetonitrile complex. 

 

Figure 3. CVs of Ru-N3/Ru-Hc (black line) and Ru-CH3CN (red line) in CH3CN in the range from 0 to 
1.50 V at potential scan rate of 100 mV/s. 
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Figure 4. CV of the reaction mixture in CH3CN in the range from 0 to 1.60 V at potential scan rate of 
100 mV/s. 

The composition of the complex was confirmed with elemental analysis and HR-ESI-MS 
(Figures 5, S4–S6, Table S2). We also used HR-ESI-MS techniques to study these reactions. The 
products were isolated by diethyl ether precipitation as mixtures of TBA salts and redissolved in 
CH3CN for the measurements. The spectra (Figures 5, S10–S15, Table S3) indicate the presence of both 
Ru-N3 and Ru-CH3CN complexes. Moreover, there are other species, such as {2H+ + Ru-N3 + CH3CN}3− 
(m/z 954.451), {Na+ + H+ + Ru-N3 + CH3CN}3− (m/z 961.779), or {2Bu4N+ + Ru-N3 + CH3CN}3− (m/z 
1115.424) (Table S3). Since an acetonitrile molecule is routinely required for matching calculated and 
experimental m/z values, this can be attributed to the formation of N4HC-CH3 (Tz) tetrazole or 
tetrazolate (Tz−) in the coordination sphere of ruthenium as a click reaction result ([2 + 3] dipolar 
addition of azide to the nitrile bond). We have to conclude that the formation of Ru-N3 and 
[PW11O39{RuIII(N4HC-CH3)}]4− (Ru-Tz) anion occurred during the reaction. 

When the reaction is carried out in a weakly coordinating CH3NO2, the HR-ESI-MS data (Figures 
5, S16–S21, Table S4) reflect different pathways of ligand transformation. There are two products, 
with one of them being the above-mentioned Ru-Tz complex. This [PW11O39{RuIII(N4HC-CH3)}]4− (Ru-
Tz) was detected in the composite peaks {2Bu4N+ + Ru-Tz}2− (m/z 1673.633) and {2Bu4N+ + Ru-Tz + 
H2O}2− (m/z 1682.642). 
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Figure 5. HR-ESI-MS spectra of Ru-CH3CN (a), Ru-N3 (b), Ru-N2 and Ru-Tz (c). 
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We can conclude that activation of azide ligand in the coordination sphere of Ru leads to a fast 
reaction with CH3CN into the tetrazole molecule. We proposed the following mechanism of this 
reaction (Figure 6). 

 

Figure 6. The proposed mechanism of N3− and CH3CN coupling in the coordination sphere of Ru. 

In the CH3CN solution, and in the presence of excess azide, there are competing reactions 
leading to Ru-N3 and Ru-CH3CN complexes. These are not possible in CH3NO2 when stoichiometric 
amounts of azide are employed.  

The azide–alkyne Huisgen cycloaddition is a 1,3-dipolar cycloaddition between an azide and a 
terminal or internal alkyne to give a 1,2,3-triazole [49]. Typically, such reactions can be catalyzed by 
Cu(I) [50], Ru [51,52], and Ag(I) [53,54]. The Ru-based catalysts are typically low-valent 
organometallic complexes like [Cp*RuCl(PPh3)2], [Cp*RuCl(COD)], and [Cp*RuCl(NBD)] [52]. The 
ruthenium-catalyzed azide−alkyne cycloaddition proceeds by an oxidative coupling of the azide and 
alkyne to give a six-membered ruthenacycle intermediate, in which the first new carbon−nitrogen 
bond is formed between the more electronegative carbon of the alkyne and the terminal, electrophilic 
nitrogen of the azide. In our case POM plays the role of a bulky ligand with “hard” oxo-environment, 
and ruthenium has 3+ oxidation state. This nonfavorable arrangement can induce partial leaving of 
a noble metal atom from the POM lacuna to achieve the suitable geometry for oxidative addition. The 
above-mentioned mechanism does not include changing of the Ru coordination environment and 
can be more favorable. 
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Moreover, analysis of the HR-ESI-MS data reveals another product in the reaction mixture in 
CH3NO2. The m/z calculations suggest coordination of the {PW11O39Ru} moiety with a ligand of 
molecular weight between 28 and 30, which can be addressed to CO, NO, or N2. However, CH3NO2 
cannot be a source of NO or CO under reaction conditions and most likely is not involved in the 
reaction. We are to assume, therefore, that this ligand comes from azide, and can be nothing except 
N2, attached to RuII (Figure 5). To confirm this, we studied the bulk solid mixture with Raman 
spectroscopy and found a band at 2135 cm−1 (Figure S22). Stable RuII complexes with coordinated N2 
molecule have been reported since the 1960s, including the first examples of dinitrogen complexes, 
isolated as [Ru(NH3)5N2]X2 (X = Br−, I−, BF4−, PF6−) [55]. According to the Raman data, the N2 stretches 
can lie between 2103 cm−1 (for trans-[RuN3(N2)(en)2]PF6 [56]) and 2140 cm−1 (for [Ru2H6N2(PPh3)4] [57]). 
Therefore, based on the HR-ESI-MS and Raman data, we can suggest formation of 
[PW11O39{RuII(N2)}]5− complex following N3− activation upon coordination to the {PW11O39Ru}. The 
formation of the [PW11O39{RuII(N2)}]5− can be rationalized by the following simplified scheme: 

{Ru-CH3CN} + N3– = {Ru-N3} + CH3CN (1) 

{Ru-N3} = {Ru-N} + N2 (2) 

{Ru-N} + {Ru-N3} = 2{Ru-N2} (3) 

After detection of Ru-N2 complex in the mixture of products isolated after the reaction in 
CH3NO2, we checked a mixture isolated from acetonitrile and found peaks from the same complex 
with nitrogen. This means that heating of Ru-CH3CN with azide induces two parallel reactions of 
activated azide, resulting in tetrazole formation or nitrogen stabilization. The [PW11O39RuIII(N3)]5− 

complex must be considered as a highly reactive intermediate. 

3. Materials and Methods 

K2[RuNOCl5] was prepared according to the literature [58]. IR spectra were recorded on a FT-
801 FT-IR spectrometer (Simex, Russia). Elemental analysis was carried out on a Eurovector EA 3000 
CHN analyzer. The TGA measurements were performed on a NETZSCH TG 209 F3 thermobalance 
in aluminum crucibles while heating the samples from 30 to 300 °C at a step of 10 °C. A 1.5 kW full-
spectrum Hg lamp (GO Pnik, Iskitim, Russia) was used for the bulk solution photolysis.  

The cyclic voltammograms (CV) were recorded with a 797 VA Computrace system (Metrohm, 
Zurich, Switzerland). All measurements were performed with a conventional three-electrode 
configuration consisting of glassy carbon working and platinum auxiliary electrodes and an 
Ag/AgCl/KCl reference electrode. The solvent used in all experiments was CH3CN, which was 
deoxygenated before use. Tetra-n-butylammonium hexafluorophosphate (0.1 M solution) was used 
as a supporting electrolyte. The concentration of the complexes was approximately 10−3 M. The 
potential scan rate was 100 mV/s. The half-wave potential (E1/2) values were determined as (Ea + Ec)/2, 
where Ea and Ec refer to anodic and cathodic peak potentials, respectively. Ferrocene was used as an 
internal standard, and the Fc/Fc+ potential was 0.43 V. 

The high-resolution electrospray ionization mass spectrometric (HR-ESI-MS) measurements 
were performed at the Center of Collective Use “Mass Spectrometric Investigations” SB RAS 
(Novosibirsk, Russia). Spectra were obtained with a direct injection of liquid samples on an ESI 
quadrupole time-of-flight (ESI-q-TOF) high-resolution mass spectrometer Maxis 4G (Bruker 
Daltonics, Bremen, Germany). The spectra were recorded in the 300–3000 m/z range in negative mode. 

Raman spectra were recorded on a LabRAM Horiba spectrometer (Horiba, Kyoto, Japan). An 
ion He-Ne laser (Simex, Moscow, Russia) with a wavelength of exciting light of 633 nm was used. 
The spectra were obtained in the backscattering geometry using a Raman microscope. 

Synthesis of (Bu4N)4[PW11O39{Ru(NO)}] (Ru-NO): 1 g (0.31 mmol) K7[PW11O39]∙14H2O was dissolved 
in 15 mL H2O. Then, the solution of 0.132 g (0.31 mmol) K2[RuNOCl5] in 1 mL H2O was added. The 
resulting mixture was transferred into a Teflon-lined Parr autoclave and kept at 150 °C for 18 h. After 
cooling to the room temperature, TBABr was added (1 g, 0.95 mmol). The precipitation was filtered 
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on a glass filter and rinsed with 200 mL of a distilled water. Yield: 1.070 g (95%). 31P NMR (CH3CN + 
CD3CN): −13.88 ppm. (Figure S23). IR (ATR, cm−1): 1846(s), 1482 (m), 1462 (m), 1380 (w), 1151 (w), 
1089 (m), 1036 (m), 956 (s), 884 (m), 793 (vs), 658 (m), 613 (w), 606 (w), 590 (w), 578 (w), 569 (w), 554 
(w). EA, found C,H,N (%): 16.4, 3.1, 1.5; calc C,H,N (%): 16.3, 3.1, 1.6. 

Synthesis of (Bu4N)4[PW11O39{Ru(CH3CN)}] (Ru-CH3CN): 0.1 g (0.028 mmol) of 
(Bu4N)4[PW11O39{Ru(NO)}] was dissolved in 10 mL of CH3CN. (Bu4N)4[PW11O39{Ru(CH3CN)}] was 
generated by photolysis for 90 min. The solid product was obtained by precipitation with diethyl 
ether. Yield: 0.07 g (64%). 31P NMR (CH3CN + CD3CN): −13.57 ppm. (Figure S24). IR (ATR, cm−1): 1482 
(m), 1465 (m), 1378 (w), 1152 (w), 1079 (m), 1045 (m), 954 (s), 879 (s), 784 (vs), 626 (m), 613 (m), 598 
(w), 587 (m), 578 (w), 563 (w), 556 (w). EA, found C,H,N (%): 20.8, 3.6, 2.0; calc C,H,N (%): 20.9, 3.9, 
1.8. 

Reaction of Ru-CH3CN with NaN3 in acetonitrile: Crude sodium azide (0.017 g, 0.26 mmol) was 
added to the solution of freshly prepared (Bu4N)4[PW11O39{Ru(CH3CN)}] (0.100 g, 0.026 mmol) in 10 
mL of CH3CN. The reaction mixture was kept at 70 °C upon stirring for 18 h. After cooling to room 
temperature, white precipitate was filtered off. The resulting product was isolated by vapor diffusion 
of Et2O. Yield: 0.70 g. 

Reaction of Ru-CH3CN with NaN3 in nitromethane: 0.120 g (0.032 mmol) of 
(Bu4N)4[PW11O39{Ru(CH3CN)}] was dissolved in 7 mL of CH3NO2. Then, 0.044 g (0.64 mmol) of solid 
NaN3 was added to the solution. The resulting mixture was transferred into a Teflon-lined Parr 
autoclave and kept at 100 °C for 18 h. The formed precipitate was filtered off, and the reaction product 
was isolated by the addition of diethyl ether. Yield: 0.092 g. IR (ATR, cm−1): 1477 (m), 1469 (m), 1376 
(w), 1150 (w), 1077 (s), 1047 (m), 970 (s), 955 (s), 888 (sh), 880 (s), 798 (sh), 784 (vs), 773 (vs), 657 (s), 
627 (s), 594 (m), 580 (m), 559 (m).  

4. Conclusions 

This manuscript summarized our studies of Ru-atom reactivity inside the POM backbone 
toward azide anion. We detected two reaction pathways resulting in (i) azide–acetonitrile click 
reaction and (ii) azide decomposition. The first one produces coordinated tetrazole and the second 
generates a complex with coordinated N2. Such reactivity is important for organic substrate 
transformation and N2 activation. Further studies in these directions are in progress. 

Supplementary Materials: The following are available online, Figure S1: Full spectrum of Ru-NO (calculated 
patterns have negative intensities), Figure S2: Zoomed 1637–1661 m/z region of spectrum of Ru-NO (calculated 
isotopic patterns have negative intensities), Figure S3: Zoomed 931–942 m/z and 1011–1023 m/z regions of 
spectrum of Ru-NO (calculated isotopic patterns have negative intensities), Table S1: Peak assignment for ESI-
MS spectrum of Ru-NO, Figure S4: Full spectrum of Ru-CH3CN (calculated patterns have negative intensities), 
Table S2: Peak assignment for ESI-MS spectrum of Ru-CH3CN, Figure S5: Zoomed 1643–1670 m/z region of 
spectrum of Ru-CH3CN (calculated isotopic patterns have negative intensities), Figure S6: Zoomed 1014–1027 
m/z region of spectrum of Ru-CH3CN (calculated isotopic patterns have negative intensities), Figure S7: The FT-
IR of Ru-NO (gray), Ru-CH3CN (red) and Ru-Tz + Ru-N3 (blue), Figure S8: Zoomed 1200–550 cm–1 region of IR 
spectra, Figure S9: Spectrum of Ru-Tz + Ru-N3 (black) and 1st derivative (red), Figure S10: Full spectrum of Ru-
N3 and Ru-CH3CN (calculated patterns have negative intensities), Figure S11: Zoomed 949–968 m/z region of 
spectrum of Ru-N3 and Ru-CH3CN (calculated isotopic patterns have negative intensities), Figure S12: Zoomed 
1011–1053 m/z region of spectrum of Ru-N3 and Ru-CH3CN (calculated isotopic patterns have negative 
intensities), Figure S13: Zoomed 1108–1123 m/z region of spectrum of Ru-N3 and Ru-CH3CN (calculated isotopic 
patterns have negative intensities), Figure S14: Zoomed 1644–1695 m/z region of spectrum of Ru-N3 and Ru-
CH3CN (calculated isotopic patterns have negative intensities), Figure S15: Zoomed 1786–1804 m/z region of 
spectrum of Ru-N3 and Ru-CH3CN (calculated isotopic patterns have negative intensities), Table S3: Peak 
assignment for ESI-MS spectrum of Ru-N3 and Ru-CH3CN, Figure S16: Full spectrum of Ru-N3 and Ru-Tz 
(calculated patterns have negative intensities), Figure S17: Zoomed 930–961 m/z region of spectrum of Ru-N3 
and Ru-Tz (calculated isotopic patterns have negative intensities), Figure S18: Zoomed 1011–1036 m/z region of 
spectrum of Ru-N3 and Ru-Tz (calculated isotopic patterns have negative intensities), Figure S19: Zoomed 1536–
1550 m/z region of spectrum of Ru-N3 and Ru-Tz (calculated isotopic patterns have negative intensities), Figure 
S20: Zoomed 1636–1691 m/z region of spectrum of Ru-N3 and Ru-Tz (calculated isotopic patterns have negative 
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intensities), Figure S21: Zoomed 1759–1776 m/z region of spectrum of Ru-N3 and Ru-Tz (calculated isotopic 
patterns have negative intensities), Table S4: Peak assignment for ESI-MS spectrum of Ru-N3 and Ru-Tz, Figure 
S22:. The Raman spectrum of the solid mixture isolated after the Reaction of Ru-CH3CN with NaN3, Figure S23: 
31P NMR spectrum of (Bu4N)3H[PW11O39{Ru(NO)}] in the mixture of CH3CN + CD3CN (−13.88 ppm), Figure 
S24: 31P NMR spectrum of (Bu4N)4[PW11O39{Ru(CH3CN)}] in the mixture of CH3CN + CD3CN (−13.57 ppm). 
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