

- 1 Supplementary Material
- 2 Synthesis and Molecular Modelling Studies of New
- 3 1,3-Diaryl-5-Oxo-Proline Derivatives as Endothelin
- 4 Receptor Ligands
- 5 Sebastiano Intagliata ¹, Mohamed A. Helal ^{2,3}, Luisa Materia ¹, Valeria Pittalà ¹, Loredana Salerno
- 6 ¹, Agostino Marrazzo ¹, Alfredo Cagnotto ⁴, Mario Salmona ⁴, Maria N. Modica ^{1,*}, and Giuseppe
- 7 Romeo 1
- B 1 Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy; s.intagliata@unict.it (S.I.); lmateria@yahoo.it (L.M.); vpittala@unict.it (V.P.); lsalerno@unict.it (L.S.); marrazzo@unict.it (A.M.); mmodica@unict.it (M.N.M.); gromeo@unict.it (G.R.)
- University of Science and Technology, Biomedical Sciences Program, Zewail City of Science and
 Technology, October Gardens, 6th of October, Giza, 12578, Egypt; mhelal@zewailcity.edu.eg
- 13 Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
- Istituto di Ricerche Farmacologiche "Mario Negri", IRCCS. Via Mario Negri, 2, 20156 Milano, Italy.
 alfredo.cagnotto@marionegri.it (A.C.); mario.salmona@marionegri.it (M.S.)
- * Correspondence: mmodica@unict.it; Tel.: +39-095-738-6061

18 Table of contents

Synthetic procedures and experimental data of intermediate compounds 3, 4, (±)	S2-S13
6a-11a, (±) 6b-11b, 20, 21, 24, 25, (±) 28a-k, (±) 29a-k, (±) 30a-k.	
Figures S1–S12: Representative NMR spectra for title compounds	S14-S19
Figure S13: Ramachandran plot analysis of the final refined model	S20

19

17

20

21

22

23

24

25

26

27

28

29

30

Molecules S2 of S20

1. [(1,3-Benzodioxol-5-yl)amino]-propanedioic acid 1,3-diethyl ester (3)

A mixture of 1,3-benzodioxol-5-amine (1) (3.00 g, 21.87 mmol) and 2-bromo-propanedioic acid 1,3-diethyl ester (2.61 g, 10.92 mmol) without solvent was prepared and stirred at room temperature under nitrogen and protected from light for 3 days. The obtained sticky product was suspended in diethyl ether (50 mL) and filtered. The organic solution was washed with HCl 1N and dried over anhydrous sodium sulfate. Successively, after the addition of animal charcoal and filtration of the suspension, the solvent was evaporated to dryness. Compound **3** (2.50 g, 77%) was obtained as a pure oil, and it was used for the next step without further purification. IR (NaCl, cm⁻¹, selected lines): 2350, 2306, 1737, 1635, 1504, 1207, 1039, 931. 1 H NMR (CDCl₃): δ 6.68-6.61 (m, 1H, Ar), 6.33-6.29 (m, 1H, Ar), 6.12-6.05 (m, 1H, Ar), 5.86 (s, 2H, OCH₂O), 4.66 (s, 1H, CHNH), 4.27 (q, J = 7.2 Hz, 2H + 2H, CH₂), 1.28 (t, J = 7.2 Hz, 3H + 3H, CH₃). Anal. Calcd for (C₁₄H₁₇NO₆): C, 56.94; H, 5.80; N, 4.74. Found: C, 56.83; H, 5.70; N, 4.85.

2. [(3,4-Dimethoxyphenyl)amino]-propanedioic acid 1,3-diethyl ester (4)

The title compound was prepared, following the same procedure of compound **3**, starting from 3,4-dimethoxyaniline (**2**). The obtained crude oil was purified by flash column chromatography using ethyl acetate/cyclohexane (4:6, v:v) as eluent. The solvent of homogeneous fractions was evaporated, and the residue by treatment with petroleum ether (50 mL) gave a solid which was collected and dried. Compound **4** was obtained pure (58%), mp 53-57 °C. IR (KBr, cm⁻¹, selected lines): 3369, 2982, 1722, 1516, 1186, 1024, 836, 632. 1 H NMR (CDCl₃): δ 6.79-6.68 (m, 1H, Ar), 6.39-6.31 (m, 1H, Ar), 6.22-6.12 (m, 1H, Ar), 4.71 (s, 1H, CHNH), 4.27 (q, J = 7.0 Hz, 2H + 2H, CH₂), 3.85 (s, 3H, OCH₃), 3.80 (s, 3H, OCH₃), 1.29 (t, J = 7.0 Hz, 3H + 3H, CH₃). Anal. Calcd for (C₁₅H₂₁NO₆): C, 57.87; H, 6.80; N, 4.50. Found: C, 57.90; H, 6.69; N, 4.61.

3. General procedure for the synthesis of 1,3-disubstituted-5-oxo-proline ethyl esters 6–11

A solution of suitable diester (3-5) (3.39 mmol) in ethanol (2 ml) and a properly substituted 3-phenyl-2-propenoic acid ethyl ester (3.39 mmol) were added to a solution of EtONa, prepared by adding carefully freshly cut Na (3.39 mmol) to dry ethanol (4 mL) in a flask under reflux condenser (exothermic reaction). The mixture was kept at reflux and under stirring for 20 h under nitrogen. After being cooled, ice (15 mL) was added and the mixture was neutralized with HCl conc., and extracted with diethyl ether (3 × 15 mL). The organic layer was collected and dried over anhydrous sodium sulfate. The solvent was removed to dryness under reduced pressure to obtain desired crude products (6–11), which were purified by flash column chromatography using ethyl acetate/cyclohexane (4:6, v:v) as eluent. Evaporation of the solvent of homogeneous fractions gave the final compounds (±) 6a–11a and (±) 6b–11b. The following compounds were obtained:

3.1. 1-(4-Methoxyphenyl)-3-phenyl-5-oxo-proline ethyl esters

(±)-trans **6a** was obtained as a pure oil (11%). IR (NaCl, cm⁻¹, selected lines): 2979, 1705, 1512, 1249, 1191, 1029, 831, 701. 1 H NMR (DMSO- d_6): δ 7.44-7.29 (m, 5H + 2H, Ar), 6.99-6.90 (m, 2H, Ar), 4.84 (d, J = 5.6 Hz, 1H, CHCOO), 4.18-3.98 (m, 2H, CH₂CH₃), 3.73 (s, 3H, OCH₃), 3.71-3.58 (m, 1H, CHAr), 3.00 (dd, 3 J = 9.2 Hz; 2 J = 17.0 Hz, 1H, CH_AH_BCHAr), 2.64 (dd, 3 J = 7.0 Hz; 2 J = 17.0 Hz, 1H, CH_AH_BCHAr), 1.04 (t, J = 7.0 Hz, 3H, CH₃). Anal. Calcd for (C₂₀H₂₁NO₄): C, 70.78; H, 6.24; N, 4.13. Found: C, 70.93; H, 6.13; N, 4.18.

(±)-cis **6b** was obtained as a pure oil (1.1%). ¹H NMR (DMSO- d_6): δ 7.45-7.26 (m, 5H + 2H, Ar), 7.02-6.89 (m, 2H, Ar), 5.11 (d, J = 8.6 Hz, 1H, CHCOO), 4.17-4.07 (m, 1H, CHAr), 3.74 (s, 3H, OCH³), 3.72-3.53 (m, 2H, CH²CH³), 3.11 (dd, 3J = 12.4 Hz; 2J = 16.6 Hz, 1H, CHAHBCHAr), 2.69 (dd, 3J = 8.4 Hz;

Molecules S3 of S20

²*J* = 16.6 Hz, 1H, CH_A*H*_BCHAr), 0.66 (t, *J* = 7.4 Hz, 3H, CH₃). Anal. Calcd. for (C₂₀H₂₁NO₄): C, 70.78; H, 6.24; N, 4.13. Found: C, 70.64; H, 6.09; N, 4.20.

3.2. 1-(1,3-Benzodioxol-5-yl)-3-(4-methoxyphenyl)-5-oxo-proline ethyl esters

(±)-trans **7a** was obtained as a pure oil (10%), mp: 71-74 °C. IR (KBr, cm⁻¹, selected lines): 1739, 1705, 1490, 1250, 1194, 1035, 930, 835. ¹H NMR (DMSO- d_6): δ 7.35-7.26 (m, 2H, Ar), 7.14-7.09 (m, 1H, Ar), 6.98-6.87 (m, 3H, Ar), 6.82-6.74 (m, 1H, Ar), 6.02 (s, 2H, OCH₂O), 4.79 (d, J = 5.8 Hz, 1H, CHCOO), 4.17-3.98 (m, 2H, CH₂CH₃), 4.01 (s, 3H, OCH₃), 3.67-3.52 (m, 1H, CHAr), 2.95 (dd, ${}^3J = 8.8$ Hz; ${}^2J = 16.8$ Hz, 1H, CH_AH_BCHAr), 2.60 (dd, ${}^3J = 7.2$ Hz; ${}^2J = 16.8$ Hz, 1H, CH_AH_BCHAr), 1.05 (t, J = 7.0 Hz, 3H, CH₃). Anal. Calcd. for (C₂₁H₂₁NO₆): C, 65.79; H, 5.52; N, 3.65. Found: C, 65.72; H, 5.61; N, 3.73.

(±)-cis **7b** was obtained pure (18%). ¹H NMR (DMSO-d₆): δ 7.23-7.17 (m, 2H, Ar), 6.98-6.86 (m, 2H + 2H, Ar), 6.83-6.74 (m, 1H, Ar), 6.02 (s, 2H, OCH₂O), 5.05 (d, J = 8.8 Hz, 1H, CHCOO), 4.16-4.01 (m, 1H, CHAr), 3.73 (s, 3H, OCH₃), 3.70-3.55 (m, 2H, CH₂CH₃), 3.05 (dd, ${}^{3}J$ = 12.8 Hz; ${}^{2}J$ = 16.6 Hz, 1H, CH_AH_BCHAr), 2.66 (dd, ${}^{3}J$ = 8.0 Hz; ${}^{2}J$ = 16.6 Hz, 1H, CH_AH_BCHAr), 0.71 (t, J = 7.2 Hz, 3H, CH₃). Anal. Calcd. for (C₂1H₂1NO₆): C, 65.79; H, 5.52; N, 3.65. Found: C, 65.53; H, 5.66; N, 3.50.

3.3. 1,3-Di(1,3-benzodioxol-5-yl)-5-oxo-proline ethyl esters

(±)-*trans* **8a** was obtained pure (11%), mp 121-125 °C. IR (KBr, cm⁻¹, selected lines): 2977, 2915, 1705, 1485, 1252, 1036, 931, 813. ¹H NMR (DMSO- d_6): δ 7.13-7.03 (m, 1H + 1H, Ar), 6.94-6.73 (m, 2H + 2H, Ar), 6.01 (s, 2H + 2H, OCH₂O), 4.82 (d, J = 6.4 Hz, 1H, CHCOO), 4.16-3.96 (m, 2H, CH₂CH₃), 3.70-3.48 (m, 1H, CHAr), 2.92 (dd, ${}^{3}J$ = 9.0 Hz; ${}^{2}J$ = 16.8 Hz, 1H, CH_AH_BCHAr), 2.62 (dd, ${}^{3}J$ = 7.8 Hz; ${}^{2}J$ = 16.8 Hz, 1H, CH_AH_BCHAr), 1.03 (t, J = 7.2 Hz, 3H, CH₃). Anal. Calcd. for C₂₁H₁₉NO₇): C, 63.47; H, 4.82; N, 3.52. Found: C, 63.35; H, 4.89; N, 3.44.

(±)-cis **8b** was obtained pure (8%). ¹H NMR (DMSO- d_6): δ 7.20-7.15 (m, 1H, Ar), 6.96-6.84 (m, 3H, Ar), 6.84-6.73 (m, 2H, Ar), 6.03 (s, 2H, OCH₂O), 5.99 (s, 2H, OCH₂O), 5.06 (d, J = 8.6 Hz, 1H, CHCOO), 4.15-4.01 (m, 1H, CHAr), 3.80-3.63 (m, 2H, CH₂CH₃), 3.06 (dd, ³J = 13.0 Hz; ²J = 16.6 Hz, 1H, CHAH_BCHAr), 2.64 (dd, ³J = 8.0 Hz; ²J = 16.6 Hz, 1H, CHAH_BCHAr), 0.78 (t, J = 7.0 Hz, 3H, CH₃). Anal. Calcd. for (C₂₁H₁₉NO₇): C, 63.47; H, 4.82; N, 3.52. Found: C, 63.66; H, 4.90; N, 3.40.

3.4. 3-(1,3-Benzodioxol-5-yl)-1-(4-methoxyphenyl)-5-oxo-proline ethyl esters

(±)-*trans* **9a** was obtained pure (22%), mp 86-88 °C. IR (KBr, cm⁻¹, selected lines): 1698, 1516, 1378, 1249, 1181, 1031, 845, 634. ¹H NMR (DMSO- d_6): δ 7.36-7.28 (m, 2H, Ar), 7.08-7.02 (m, 1H, Ar), 6.97-6.77 (m, 2H + 2H, Ar), 6.01 (s, 2H, OCH₂O), 4.81 (d, J = 6.0 Hz, 1H, CHCOO), 4.17-3.99 (m, 2H, CH₂CH₃), 3.73 (s, 3H, OCH₃), 3.65-3.52 (m, 1H, CHAr), 2.92 (dd, $^3J = 8.6$ Hz; $^2J = 16.6$ Hz, 1H, CH₄H₆CHAr), 2.62 (dd, $^3J = 7.4$ Hz; $^2J = 16.6$ Hz, 1H, CH₄H₆CHAr), 1.03 (t, J = 7.0 Hz, 3H, CH₃). Anal. Calcd. for (C₂₁H₂₁NO₆): C, 65.79; H, 5.52; N, 3.65. Found: C, 65.92; H, 5.45; N, 3.74.

(±)-cis **9b** was obtained pure (15%). ¹H NMR (DMSO-d6): δ 7.43-7.29 (m, 2H, Ar), 7.00-6.75 (m, 2H + 3H, Ar), 5.99 (s, 2H, OCH2O), 5.05 (d, J = 8.4 Hz, 1H, CHCOO), 4.16-4.04 (m, 1H, CHAr), 3.73 (s, 3H, OCH3), 3.80-3.67 (m, 2H, CH2CH3), 3.06 (dd, 3J = 12.6 Hz; 2J = 16.4 Hz, 1H, CHAHBCHAr), 2.64 (dd, 3J = 8.4 Hz; 2J = 16.4 Hz, 1H, CHAHBCHAr), 0.78 (t, J = 7.2 Hz, 3H, CH3). Anal. Calcd. for (C21H21NO6): C, 65.79; H, 5.52; N, 3.65. Found: C, 65.85; H, 5.71; N, 3.46.

3.5. 3-(3,4-Dimethoxyphenyl)-1-(4-methoxyphenyl)-5-oxo-proline ethyl esters

These compounds were obtained following the general procedure adopted for **6–11** using chloroform/ethyl acetate (9:1, v:v) as eluent.

Molecules S4 of S20

(±)-*trans* **10a** was obtained as a pure oil (10%). IR (NaCl, cm⁻¹, selected lines): 2936, 1705, 1513, 1451, 1249, 1191, 1027, 831. 1 H NMR (DMSO- d_6): δ 7.39-7.28 (m, 2H, Ar), 7.10-7.01 (m, 1H, Ar), 7.00-6.82 (m, 2H + 2H, Ar), 4.83 (d, J = 6.2 Hz, 1H, CHCOO), 4.14-4.00 (m, 2H, CH₂CH₃), 3.74 (s, 3H + 3H + 3H, OCH₃), 3.68-3.48 (m, 1H, CHAr), 2.94 (dd, 3 J = 8.8 Hz; 2 J = 16.2 Hz, 1H, CH_AH_BCHAr), 2.66 (dd, 3 J = 8.0 Hz; 2 J = 16.2 Hz, 1H, CH_AH_BCHAr), 1.04 (t, J = 7.0 Hz, 3H, CH₃). Anal. Calcd. for (C₂₂H₂₅NO₆): C, 66.15; H, 6.31; N, 3.51. Found: C, 66.01; H, 6.23; N, 3.60.

(±)-cis **10b** was obtained as a pure oil (7%). ¹H NMR (DMSO- d_6): δ 7.44-7.34 (m, 2H, Ar), 7.00-6.79 (m, 2H + 3H, Ar), 5.07 (d, J = 8.6 Hz, 1H, CHCOO), 4.18-4.02 (m, 1H, CHAr), 3.75 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 3.72-3.63 (m, 2H, CH₂CH₃), 3.10 (dd, ³J = 12.4 Hz; ²J = 16.4 Hz, 1H, CH_AH_BCHAr), 2.65 (dd, ³J = 8.4 Hz; ²J = 16.4 Hz, 1H, CH_AH_BCHAr), 0.73 (t, J = 7.2 Hz, 3H, CH₃). Anal. Calcd. for (C₂2H₂5NO₆): C, 66.15; H, 6.31; N, 3.51. Found: C, 66.29; H, 6.56; N, 3.40.

 $3.6.\ 1\hbox{-}(3,4\hbox{-Dimethoxyphenyl})\hbox{-}3\hbox{-}(4\hbox{-methoxyphenyl})\hbox{-}5\hbox{-}oxo\hbox{-proline ethyl esters}$

These compounds were obtained following the general procedure adopted for **6–11** using chloroform/ethyl acetate (9:1, v:v) as eluent.

(±)-trans **11a** was obtained as a pure oil (6%). 1 H NMR (DMSO- 1 d₆): δ 7.50-7.26 (m, 2H + 1H, Ar), 7.17-6.82 (m, 2H + 2H, Ar), 4.83 (d, J = 5.8 Hz, 1H, CHCOO), 4.15-3.94 (m, 2H, CH₂CH₃), 3.75 (s, 3H, OCH₃), 3.73 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.68-3.52 (m, 1H, CHAr), 2.96 (dd, 3 J = 8.6 Hz; 2 J = 16.8 Hz, 1H, CH_AH_BCHAr), 2.62 (dd, 3 J = 7.4 Hz; 2 J = 16.8 Hz, 1H, CH_AH_BCHAr), 1.05 (t, J = 7.0 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₂H₂₅NO₆): C, 66.15; H, 6.31; N, 3.51. Found: C, 66.27; H, 6.40; N, 3.42.

(±)-cis **11b** was obtained pure (3%). 1 H NMR (DMSO- d_6): δ 7.32-7.21 (m, 2H + 1H, Ar), 7.00-6.80 (m, 2H + 2H, Ar), 5.08 (d, J = 8.6 Hz, 1H, CHCOO), 4.19-4.02 (m, 1H, CHAr), 3.73 (s, 3H + 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.69-3.59 (m, 2H, CH₂CH₃), 3.08 (dd, 3 J = 12.2 Hz; 2 J = 17.0 Hz, 1H, CH_AH_BCHAr), 2.66 (dd, 3 J = 8.6 Hz; 2 J = 17.0 Hz, 1H, CH_AH_BCHAr), 0.73 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₂H₂₅NO₆): C, 66.15; H, 6.31; N, 3.51. Found: C, 66.32; H, 6.51; N, 3.60.

4. 2,5-Dihydro-1-(4-methoxyphenyl)-5-oxo-3-phenyl-1H-pyrrole-2,2-dicarboxylic acid 2,2-diethyl ester (20)

Method A: To a solution of amide 18 (0.050 g, 0.20 mmol) in dry DMF (2 mL) was added NaH (0.009 g, 0.30 mmol, mineral oil suspension 80% m/m). The mixture was stirred at room temperature for 1 h and then diethyl 2-bromomalonate (0.048 g, 0.20 mmol) was added. The mixture was stirred at room temperature for 4 days, then was poured on ice-cold water (30 mL) and extracted with ethyl acetate (3 × 15 mL). The organic layer was collected and dried over anhydrous sodium sulfate. The solvent was removed to dryness under reduced pressure and the crude product was purified by flash column chromatography using ethyl acetate/cyclohexane (4:6, v:v) as eluent; by evaporation of the solvent of homogeneous fractions was obtained compound 20 (0.040 g, 16%) as pure oil.

Method B: To a solution of chloride derivative **19** (1.17 g, 7.11 mmol) in dry toluene (10 mL) diester **5** (2.00 g, 7.11 mmol), triethylamine (1.44 g, 14.23 mmol), and DMAP (0.35 g, 2.84 mmol) were added. The mixture was stirred for 5 days, at room temperature under nitrogen and protected from light. Then the solvent was evaporated to dryness and the obtained compound was solubilized with ethyl acetate (70 mL). The solution was washed with HCl 1N (60 mL), NaHCO₃ 5% (60 mL), and finally with water (2 × 50 mL). The organic layer was collected and dried over anhydrous with sodium sulfate. The solvent was removed to dryness under reduced pressure and the obtained oil was purified by flash column chromatography using ethyl acetate/cyclohexane (4:6, v:v) as eluent; by evaporation of the solvent of homogeneous fractions was obtained compound **20** (0.46 g, 49%) as pure oil. IR (NaCl, cm⁻¹, selected lines): 2982, 1708, 1512, 1296, 1246, 1049, 831, 661. ¹H NMR (CDCl₃): δ 7.58-7.50 (m, 2H, Ar), 7.46-7.36 (m, 3H, Ar), 7.33-7.23 (m, 2H, Ar), 6.96-6.87 (m, 2H, Ar), 6.68 (s, 1H, CHCO), 4.23-4.10 (m, 2H + 2H, CH₂), 3.81 (s, 3H, OCH₃), 1.07 (t, J = 7.0 Hz, 3H + 3H, CH₃). Anal. Calcd. for (C₂₃H₂₃NO₆): C, 67.47; H, 5.66; N, 3.42. Found: C, 67.23; H, 5.51; N, 3.31.

Molecules S5 of S20

186

187

188

198 199 200

201 202

203

215 216 217

214

218 219 220

221

222 223

234

235

236

5. 1-(4-Methoxyphenyl)-5-oxo-3-phenyl-pyrrolidine-2,2-dicarboxylic acid diethyl ester (21)

To a solution of diester 20 (0.17 g, 0.41 mmol) in ethanol Pd/C 10% (0.020 g) was added. The mixture is placed under hydrogen at a pressure of six bars for 17 h. Then the suspension was filtered and the solvent was evaporated to dryness under reduced pressure. The crude product was purified by flash column chromatography using ethyl acetate/cyclohexane (3:7, v:v) as eluent; by evaporation of the solvent of homogeneous fractions was obtained compound 21 pure (0.060 g, 35%), mp 107-112 °C. IR (KBr, cm⁻¹, selected lines): 2982, 1724, 1512, 1355, 1247, 1030, 827, 701. ¹H NMR (CDCl₃): δ 7.32-7.17 (m, 5H, Ar), 7.16-7.07 (m, 2H, Ar), 6.88-6.76 (m, 2H, Ar), 4.54 (m, 1H, CHAr), 4.11-3.98 (m, 1H, CH_AH_BCH₃), 3.95-3.75 (m, 2H, CH₂CH₃), 3.72 (s, 3H, OCH₃), 3.48-3.36 (m, 1H, CH_AH_BCH₃), 2.99 $(dd, {}^{3}J = 9.8 \text{ Hz}; {}^{2}J = 17.0 \text{ Hz}, 1\text{H}, \text{CH}_{A}\text{H}_{B}\text{CHAr}), 2.88 (dd, {}^{3}J = 9.2 \text{ Hz}; {}^{2}J = 17.0 \text{ Hz}, 1\text{H}, \text{CH}_{A}\text{H}_{B}\text{CHAr}),$ 0.89 (t, J = 7.2 Hz, 3H, CH₃), 0.71 (t, J = 7.0 Hz, 3H, CH₃). Anal. Calcd. for (C₂₃H₂₅NO₆): C, 67.14; H, 6.12; N, 3.40. Found: C, 67.30; H, 6.00; N, 3.51.

6. 3-(3,4-Dimethoxyphenyl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (24)

A solution of ester (22) (5.21 g, 22.05 mmol) in dry ethanol (12 mL) drop by drop and a solution of 2-(acetylamino)-propanedioic acid 1,3-diethyl ester (3.00 g, 13.81 mmol) in dry ethanol (6.0 mL) were added to a solution of NaH (0.10 g, 4.35 mmol) in dry ethanol (3.0 mL). The mixture was refluxed under stirring and nitrogen atmosphere for 40 h. After being cooled, the mixture was neutralized with HCl conc. and extracted with dichloromethane (3 × 25 mL). The organic layer was collected and washed with a saturated NaCl solution (50 mL). Then, the organic layer was again collected and was dried over anhydrous sodium sulfate. By evaporation of the solvent to dryness was obtained an oil, which was purified by flash column chromatography using ethyl acetate/cyclohexane (7:3, v:v) as eluent; by evaporation of the solvent of homogeneous fractions was obtained compound 24 pure (1.51 g, 30%); mp 123-126 °C. IR (KBr, cm⁻¹, selected lines): 3212, 2981, 1738, 1706, 1517, 1261, 853, 736, 653. H NMR(CDCl₃): δ 6.88-6.75 (m, 3H, Ar), 6.42 (br s, 1H, NH exchanges with D₂O), 4.40-4.19 (m, 1H + 2H, CHAr + CH_AH_BCH₃), 3.98-3.66 (m, 2H, CH_AH_BCH₃), 3.86 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 2.96 (dd, ${}^{3}J$ = 8,8 Hz, ${}^{2}J$ = 17.4 Hz, 1H, COCH₄H_B), 2.62 (dd, ${}^{3}J$ = 5.0 Hz, ${}^{2}J = 17.4$ Hz, 1H, COCH_AH_B), 1.29 (t, J = 7.0 Hz, 3H, CH₂CH₃), 0.90 (t, J = 7.0 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C18H23NO7): C, 59.17; H, 6.34; N, 3.83. Found: C, 59.02; H, 6.15; N, 3.66.

7. 3-(1,3-Benzodioxol-5-yl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (25)

A solution of ester (23) (3.24 g, 14.71 mmol) in dry ethanol (10 mL) and a solution of 2-(acetylamino)-propanedioic acid 1,3-diethyl ester (2.00 g, 9.21 mmol) in dry ethanol (8.0 mL) were added dropwise to a solution of NaH (0.063, 2.74 mmol) in dry ethanol (2.0 mL). The mixture was refluxed under stirring and nitrogen atmosphere for 18 h. After being cooled, the mixture was neutralized with HCl conc. and extracted with dichloromethane (3 × 25 mL). The organic layer was collected and washed with a saturated NaCl solution (50 mL). Then, the organic layer was collected and dried over anhydrous sodium sulfate. By evaporation of the solvent under reduced pressure to dryness was obtained an oil, which was purified by flash column chromatography using ethyl acetate/cyclohexane (5:5, v:v) as eluent; by evaporation of the solvent of homogeneous fractions was obtained compound 25 pure (0.68 g, 21%), mp 143 °C. IR (KBr, cm⁻¹, selected lines): 3184, 2997, 1736, 1486, 1225, 1085, 930, 670. ¹H NMR (CDCl₃): δ 6.82-6.71 (m, 3H, Ar), 5.93 (s, 2H, OCH₂O) 4.38-4.19 (m, 1H + 2H, CHAr + CH_2CH_3), 4.02-3.84 (m, 1H, CHAHBCH3), 3.84-3.70 (m, 1H CHAHBCH3), 2.94 (dd, $^3J =$ 9.0 Hz, ${}^{2}J = 17.2$ Hz, 1H, COCH_AH_B), 2.58 (dd, ${}^{3}J = 4.8$ Hz, ${}^{2}J = 17.2$ Hz, 1H, COCH_AH_B), 1.29 (t, J = 7.2Hz, 3H, CH₂CH₃), 0.96 (t, *J* = 7.4 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₁₇H₁₉NO₇): C, 58.45; H, 5.48; N, 4.01. Found: C, 58.63; H, 5.61; N, 4.24.

Molecules S6 of S20

8. General procedure for the synthesis of 1,3-disubstituted-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl esters (**28a–k**)

To a solution of the appropriate 5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester derivative (24-27) (1.64 mmol) in dry DMF (6.0 mL) was added NaH (1.78 mmol, mineral oil suspension 95% m/m) and the mixture was stirred at room temperature for 30 min, successively, the suitable 1-(chloromethyl)-substitutedbenzene was added (3.26 mmol). The mixture was stirred at room temperature for 1-5 days, monitoring the reaction time by TLC, and then it was poured on ice-cold water (50 mL) and extracted with ethyl acetate (3 × 25 mL). The organic layer was collected and dried over anhydrous sodium sulfate. By evaporation of the solvent to dryness was obtained the crude product, which was purified by flash column chromatography using ethyl acetate/cyclohexane (5:5, v:v), (4:6, v:v), or (3:7, v:v) as eluent; by evaporation of the solvent of homogeneous fractions was obtained desired compound 28a-k. The following compounds were prepared:

8.1. 1-[(4-Methoxyphenyl)methyl)]-3-phenyl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (28a)

The title compound was obtained as a pure oil (27%). IR (NaCl, cm⁻¹, selected lines): 3044, 2972, 2902, 1733, 1512, 1246, 1175, 1033. 1 H NMR (CDCl₃): δ 7.35-7.18 (m, 5H, Ar), 7.17-7.08 (m, 2H, Ar), 6.86-6.77 (m, 2H, Ar), 5.13 (d, J = 16.0 Hz, 1H, CH_AH_BN), 4.47-4.35 (m, 1H, CHAr), 3.39 (d, J = 16.0 Hz, 1H, CH_AH_BN), 4.01-3.76 (m, 2H, CH₂CH₃), 3.77 (s, 3H, OCH₃), 3.57-3.40 (m, 2H, CH₂CH₃), 3.05 (dd, 3 J = 8.8 Hz; 2 J = 17.0 Hz, 1H, CH_AH_BCHAr), 2.82 (dd, 3 J = 8.0 Hz; 2 J = 17.0 Hz, 1H, CH_AH_BCHAr), 1.02 (t, 2 J = 7.2 Hz, 3H, CH₃), 0.82 (t, 2 J = 7.0 Hz, 3H, CH₃). Anal. Calcd. for (C₂₄H₂₇NO₆): C, 67.75; H, 6.40; N, 3.29. Found: C, 67.63; H, 6.23; N, 3.10.

8.2. 3-(3,4-Dimethoxyphenyl)-1-[(4-methoxyphenylmethyl)]-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (28b)

The title compound was obtained as a pure oil (44%). IR (NaCl, cm⁻¹, selected lines): 2940, 1731, 1611, 1461, 1030, 857, 822, 763. 1 H NMR (CDCl₃): δ 7.20-7.10 (m, 2H, Ar), 6.92-6.74 (m, 2H + 3H, Ar), 5.07 (d, J = 16.0 Hz, 1H, NCH_AH_B), 4.40-4.30 (m, 1H, CHAr), 4.30 (d, J = 16.0 Hz, 1H, NCH_AH_B), 4.05-3.87 (m, 2H, CH₂CH₃), 3.85 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.66-3.45 (m, 2H, CH₂CH₃), 3.04 (dd, 3 J = 9.0 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 2.77 (dd, 3 J = 7.8 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 1.05 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.89 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₆H₃₁NO₈): C, 64.32; H, 6.44; N, 2.88. Found: C, 64.14; H, 6.55; N, 3.00.

8.3. 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(3,4-dimethoxyphenyl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (**28c**)

The title compound was obtained as a pure oil (54%). IR (NaCl, cm⁻¹, selected lines): 2980, 1729, 1599, 1444, 1034, 926, 860, 767. 1 H NMR (CDCl₃): δ 6.92-6.73 (m, 2H + 1H + 1H, Ar), 6.73-6.62 (m, 2H, Ar) 5.91 (s, 2H, OCH₂O), 5.00 (d, J = 16.0 Hz, 1H, NCH_AH_B), 4.45-4.35 (m, 1H, CHAr), 4.27 (d, J = 16.0 Hz, 1H, NCH_AH_B), 4.15-3.88 (m, 2H, CH₂CH₃), 3.85 (s, 3H, OCH₃), 3.83 (s, 3H, OCH₃), 3.82-3.44 (m, 2H, CH₂CH₃), 3.03 (dd, 3 J = 9.0 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 2.77 (dd, 3 J = 7.8 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 1.11 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.89 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂6H₂9NO₉): C, 62.52; H, 5.85; N, 2.80. Found: C, 62.38; H, 5.57; N, 2.98.

 $8.4. \quad 1-[(4-Methoxyphenyl)methyl]-3-(4-methoxyphenyl)-5-oxo-pyrrolidine-2, 2-dicarboxylic \quad acid diethyl ester \\ \textbf{(28d)}$

The title compound was obtained as a pure oil (42%). IR (NaCl, cm $^{-1}$, selected lines): 2934, 1731, 1612, 1461, 1247, 1181, 1032, 827. 1 H NMR (CDCl $_{3}$): δ 7.19-7.06 (m, 2H + 2H, Ar), 6.92-6.74 (m, 2H +

Molecules S7 of S20

289 2H, Ar), 5.09 (d, J = 15.7 Hz, 1H, NCH_AH_B), 4.40-4.31 (m, 1H, CHAr), 4.27 (d, J = 15.7 Hz, 1H, 290 NCH_AH_B), 4.03-3.80 (m, 2H, CH₂CH₃), 3.77 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.63-3.38 (m, 2H, CH₂CH₃), 3.01 (dd, ${}^{3}J = 9.0$ Hz, ${}^{2}J = 17.0$ Hz, 1H, COCH_AH_B), 2.75 (dd, ${}^{3}J = 8.0$ Hz, ${}^{2}J = 17.0$ Hz, 1H, 292 COCH_AH_B), 1.01 (t, J = 7.0 Hz, 3H, CH₂CH₃), 0.88 (t, J = 7.0 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₅H₂₉NO₇): C, 65.92; H, 6.42; N, 3.08. Found: C, 66.12; H, 6.61; N, 3.23.

8.5. 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(4-methoxyphenyl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (28e)

The title compound was obtained as a pure solid (37%); mp: 85-87 °C. IR (KBr, cm⁻¹, selected lines): 2983, 1612, 1511, 1253, 1034, 925, 840, 570. 1 H NMR (CDCl₃): δ 7.22-7.12 (m, 2H, Ar), 6.88-6.79 (m, 2H, Ar), 6.78-6.71 (m, 1H, Ar), 6.71-6.66 (m, 2H, Ar), 5.91 (s, 2H, OCH₂O), 5.05 (d, J = 16.0 Hz, 1H, NCH_AH_B), 4.42-4.30 (m, 1H, CHAr), 4.25 (d, J = 16.0 Hz, 1H, NCH_AH_B), 4.07-3.83 (m, 2H, CH₂CH₃), 3.78 (s, 3H, OCH₃), 3.70-3.47 (m, 2H, CH₂CH₃), 3.01 (dd, 3 J = 9.0 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 2.77 (dd, 3 J = 8.0 Hz, 2 J = 17.0 Hz, 1H, COH_AH_B), 1.07 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.89 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₅H₂₇NO₈): C, 63.96; H, 5.80; N, 2.98. Found: C, 63.81; H, 5.69; N, 3.17.

 $8.6.\ 1-[(3,4-{\rm Dimethoxyphenyl})-5-{\rm oxo-pyrrolidine-2,2-dicarboxylic\ acid\ diethyl\ ester\ (\bf 28f)}$

The title compound was obtained as a pure solid (37%); mp 94-95 °C. IR (KBr, cm⁻¹, selected lines): 2981, 1730, 1460, 1180, 1030, 836, 766, 656. 1 H NMR (CDCl₃): δ 7.23-7.12 (m, 2H, Ar), 6.87-6.67 (m, 2H + 3H, Ar), 5.10 (d, J = 15.8 Hz, 1H, NCH_AH_B), 4.42-4.29 (m, 1H, CHAr), 4.30 (d, J = 15.8 Hz, 1H, NCH_AH_B), 4.08-3.87 (m, 2H, CH₂CH₃), 3.86 (s, 3H, OCH₃), 3.81 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 3.70-3.40 (m, 2H, CH₂CH₃), 3.04 (dd, 3 J = 8.8 Hz, 2 J = 16.9 Hz, 1H, COCH_AH_B), 2.77 (dd, 3 J = 7.6 Hz, 2 J = 16.9 Hz, 1H, COCH_AH_B), 1.03 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.89 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₆H₃₁NO₈): C, 64.32; H, 6.44; N, 2.88. Found: C, 64.14; H, 6.24; N, 2.95.

8.7.

1-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-3-(4-methoxyphenyl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (28g)

The title compound was obtained as a pure solid (35%); mp 133-136 °C. IR (KBr, cm⁻¹, selected lines): 2988, 1730, 1610, 1481, 1030, 926, 839, 661. 1 H NMR (CDCl₃): δ 7.28-7.16 (m, 2H, Ar), 6.90-6.78 (m, 2H + 1H, Ar), 6.62-6.58 (m, 1H, Ar), 5.96 (s, 2H, OCH₂O, form A), 5.93 (s, 2H, OCH₂O, form B), 4.93 (d, J = 17.0 Hz, 1H, NCH_AH_B), 4.55-4.44 (m, 1H, CHAr), 4.43 (d, J = 17.0 Hz, 1H, NCH_AH_B), 4.13-3.98 (m, 1H, CH_AH_BCH₃), 3.98-3.83 (m, 1H, CH_AH_BCH₃), 3.79 (s, 3H, OCH₃), 3.73-3.50 (m, 2H, CH₂CH₃), 3.02 (dd, 3 J = 9.2 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 2.84 (dd, 3 J = 8.8 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 1.02 (t, J = 7.0 Hz, 3H, CH₂CH₃), 0.89 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂5H₂6ClNO₈): C, 59.59; H, 5.20; N, 2.78. Found: C, 59.38; H, 5.05; N, 2.51.

8.8. 3-(1,3-Benzodioxol-5-yl)-1-[(4-methoxyphenyl)methyl]-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (**28h**)

The title compound was obtained as a pure solid (36%); mp 98-100 °C. IR (KBr, cm⁻¹, selected lines): 2988, 1724, 1447, 1282, 1037, 931, 817, 655. 1 H NMR (CDCl₃): δ 7.18-7.08 (m, 2H, Ar), 6.85-6.69 (m, 2H + 3H, Ar), 5.93 (s, 2H, OCH₂O), 5.09 (d, J = 15.8 Hz, 1H, NCH_AH_B), 4.40-4.20 (m, 1H + 1H, NCH_AH_B + CHAr), 4.00-3.87 (m, 2H, CH₂CH₃), 3.77 (s, 3H, OCH₃), 3.70-3.45 (m, 2H, CH₂CH₃), 3.00 (dd, 3 J = 9.0 Hz, 2 J = 17.1 Hz, 1H, COCH_AH_B), 2.74 (dd, 3 J = 8.2 Hz, 2 J = 17.1 Hz, 1H, COH_AH_B), 1.03 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.94 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₅H₂₇NO₈): C, 63.96; H, 5.80; N, 2.98. Found: C, 63.82; H, 5.69; N, 2.76.

Molecules S8 of S20

341 8.9. 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(1,3-benzodioxol-5-yl)-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (28i)

The title compound was obtained as a pure solid (30%); mp 118-120 °C. IR (KBr, cm⁻¹, selected lines): 2986, 1732, 1493, 1245, 1038, 928, 871, 810. 1 H NMR (CDCl₃): δ 6.78-6.56 (m, 3H + 3H, Ar), 5.93 (s, 2H, OCH₂O), 5.92 (s, 2H, OCH₂O), 5.04 (d, J = 15.8 Hz, 1H, NCH_AH_B), 4.43-4.28 (m, 1H, CHAr), 4.23 (d, J = 15.8 Hz, 1H, NCH_AH_B), 4.10-3.80 (m, 2H, CH₂CH₃), 3.75-3.52 (m, 2H, CH₂CH₃), 2.99 (dd, 3 J = 9.0 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 2.73 (dd, 3 J = 8.2 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 1.08 (t, J = 7.0 Hz, 3H, CH₂CH₃), 0.95 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₅H₂₅NO₉): C, 62.11; H, 5.21; N, 2.90. Found: C, 62.32; H, 5.03; N, 2.72.

8.10. 3-(1,3-Benzodioxol-5-yl)-1-[(3,4-dimethoxyphenyl)methyl]-5-oxo-pyrrolidine-2,2-dicarboxylic acid diethyl ester (28j)

The title compound was obtained as a pure solid (41%); mp 139-141 °C. IR (KBr, cm⁻¹, selected lines): 2938, 1730, 1511, 1170, 1033, 930, 815, 768. 1 H NMR (CDCl₃): δ 6.82-6.68 (m, 3H + 3H, Ar), 5.94 (s, 2H, OCH₂O), 5.08 (d, J = 15.7 Hz, 1H, NCH_AH_B), 4.29 (d, J = 15.7 Hz, 1H, NCH_AH_B), 4.08-3.90 (m, 2H, CH₂CH₃), 3.86 (s, 3H, OCH₃), 3.85 (s, 3H, OCH₃), 3.75-3.45 (m, 2H + 1H, CH₂CH₃ + CHAr), 3.02 (dd, 3 J = 9.0 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 2.74 (dd, 3 J = 7.8 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 1.04 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.95 (t, J = 7.0 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₆H₂₉NO₉): C, 62.52; H, 5.85; N, 2.80. Found: C, 62.70; H, 5.97; N, 3.01.

8.11.

3-(1,3-Benzodioxol-5-yl)-1-[(6-chloro-1,3-benzodioxol-5-yl)methyl]-5-oxo-pyrrolidine-2,2-dicarboxyl ic acid diethyl ester (28k)

The title compound was obtained as a pure solid (37%); mp 143-145 °C. IR (KBr, cm⁻¹, selected lines): 2982, 1729, 1484, 1109, 1027, 918, 729, 661. ¹H NMR (CDCl₃): δ 6.82-6.73 (m, 3H + 1H, Ar), 6.60-6.57 (m, 1H, Ar), 5.95 (s, 2H + 2H, OCH₂O), 4.92 (d, J = 16.7 Hz, 1H, NCH_AH_B), 4.51-4.40 (m, 1H, CHAr), 4.42 (d, J = 16.7 Hz, 1H, NCH_AH_B), 4.10-3.90 (m, 2H, CH₂CH₃), 3.80-3.50 (m, 2H, CH₂CH₃), 3.00 (dd, ${}^{3}J$ = 8.8 Hz, ${}^{2}J$ = 17.0 Hz, 1H, COCH_AH_B), 2.81 (dd, ${}^{3}J$ = 9.0 Hz, ${}^{2}J$ = 17.0 Hz, 1H, COCH_AH_B), 1.02 (t, J = 7.2 Hz, 3H, CH₂CH₃), 0.95 (t, J = 7.2 Hz, 3H, CH₂CH₃). Anal. Calcd. for (C₂₅H₂₄ClNO₉): C, 57.98; H, 4.67; N, 2.70. Found: C, 58.11; H, 4.53; N, 2.93.

9. General procedure for the synthesis of 1,3-disubstituted-5-oxo-prolines (29a-k)

A solution of KOH (1.25 mmol) in water (2.5 mL) was added to a solution of the appropriate diester 28a-k (0.62 mmol) in ethanol (5.0 mL). The mixture was refluxed for 2-11 h, monitoring the reaction time by TLC. After being cooled, the solvent was removed at reduced pressure, water was added (2 mL) and the solution was extracted with ethyl acetate (5 mL). The water layer was collected, acidified with HCl conc. and extracted with ethyl acetate (3 × 10 mL). The organic layer of this latter extraction was separated and dried over anhydrous sodium sulfate. Evaporation of the solvent to dryness gave the crude product, which was used for the next step without purification. The following compounds were obtained with this procedure.

9.1. (±)-trans 1-[(4-Methoxyphenyl)methyl]-3-phenyl-5-oxo-proline (29a)

The title compound was obtained as a pure solid (70%).mp 92-95 °C. IR (KBr, cm⁻¹, selected lines): 2933, 1639, 1457, 1247, 1178, 1033, 912, 732. 1 H NMR (CDCl₃): δ 8.41 (br s, 1H, COOH exchanges with D₂O), 7.30-6.98 (m, 5H + 2H, Ar), 6.83-6.73 (m, 2H, Ar), 5.13 (d, J = 14.6 Hz, 1H, CH_AH_BN), 3.95 (d, J = 14.6 Hz, 1H, CH_AH_BN), 3.95 (d, J = 3.0 Hz, 1H, CHCOO), 3.74 (s, 3H, OCH₃), 3.65-3.55 (m, 1H, CHAr), 3.07 (dd, 3 J = 9.3 Hz, 2 J = 17.4 Hz, 1H, CH_AH_BCHAr), 2.57 (dd, 3 J = 3.7 Hz, 2 J =

Molecules S9 of S20

393 17.4 Hz, 1H, CHaHBCHAr). Anal. Calcd. for (C19H19NO4): C, 70.14; H, 5.89; N, 4.31. Found: C, 70.02; H, 5.77; N, 4.24.

9.2. 3-(3,4-Dimethoxyphenyl)-1-[(4-methoxyphenyl)methyl]-5-oxo-proline (29b)

The title compound was obtained as a pure semisolid product (54%). IR (NaCl, cm⁻¹, selected lines): 2937, 1735, 1515, 1247, 1028, 922, 733, 663. 1 H NMR (CDCl₃): δ 10.21 (br s, 1H, COOH exchanges with D₂O), 7.30-7.10 (m, 2H, Ar), 6.92-6.45 (m, 2H + 3H, Ar), 5.15 (d, J = 14.8 Hz, 1H, NCH_AH_B), 4.02-3.85 (m, 1H + 1H, NCH_AH_B + CHCOOH), 3.82 (s, 3H, OCH₃), 3.75 (s, 3H, OCH₃), 3.72 (s, 3H, OCH₃), 3.64-3.50 (m, 1H, CHAr), 3.10 (dd, 3 J = 9.4 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B), 2.59 (dd, 3 J = 3.2 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₂₃NO₆): C, 65.44; H, 6.02; N, 3.63. Found: C, 65.28; H, 5.87; N, 3.50.

9.3. 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(3,4-dimethoxyphenyl)-5-oxo-proline (29c)

The title compound was obtained as a pure oil (69%); IR (NaCl, cm⁻¹, selected lines): 2950, 1739, 1512,1246, 1031, 926, 810, 734. 1 H NMR (CDCl₃): δ 6.80-6.70 (m, 3H, Ar), 6.70-6.60 (m, 2H, Ar), 6.60-6.50 (m, 1H, Ar), 5.91 (s, 2H, OCH₂O), 5.74 (br s, 1H, COOH exchanges with D₂O), 5.12 (d, J = 14.7 Hz, 1H, NCH_AH_B), 3.97 (d, J = 3.0 Hz, 1H, CHCOOH), 3.94 (d, J = 14.7 Hz, 1H, NCH_AH_B), 3.84 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.60-3.50 (m, 1H, CHAr), 3.08 (dd, 3 J = 9.2 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 2.58 (dd, 3 J = 3.0 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₂₁NO₇): C, 63.15; H, 5.30; N, 3.51. Found: C, 63.29; H, 5.41; N, 3.43.

9.4. 1-[(4-Methoxyphenyl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline (29d)

The title compound was obtained as a pure oil (58%); IR (NaCl, cm⁻¹, selected lines): 2937, 1739, 1644, 1513, 1249, 1179, 1032, 830. 1 H NMR (CDCl₃): δ 7.24-7.06 (m, 2H, Ar), 7.02-6.92 (m, 2H, Ar), 6.90-6.70 (m, 4H, Ar), 5.12 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.97-3.84 (m, 1H + 1H, NCH_AH_B + CHCOOH), 3.76 (s, 3H + 3H, OCH₃), 3.66-3.51 (m, 1H, CHAr), 3.05 (dd, 3 J = 9.4 Hz, 2 J = 17.3 Hz, 1H, COCH_AH_B), 2.52 (dd, 3 J = 4.4 Hz, 2 J = 17.3 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₀H₂₁NO₅): C, 67.59; H, 5.96; N, 3.94. Found: C, 67.42; H, 6.16; N, 3.75.

9.5. 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline (29e)

The title compound was obtained as a pure oil (63%); IR (NaCl, cm⁻¹, selected lines): 2928, 1735, 1642, 1444, 1248, 1036, 937, 828. 1 H NMR (CDCl₃): δ 10.40 (br s, 1H, COOH exchanges with D₂O), 7.08-6.98 (m, 2H, Ar), 6.84-6.71 (m, 2H, Ar), 6.71-6.62 (m, 3H, Ar), 5.88 (s, 2H, OCH₂O), 5.09 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.98-3.82 (m, 1H + 1H, NCH_AH_B + CHCOOH), 3.75 (s, 3H, OCH₃), 3.62-3.52 (m, 1H, CHAr), 3.05 (dd, 3 J = 9.6 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B), 2.57 (dd, 3 J = 3.8 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₀H₁₉NO₆): C, 65.03; H, 5.18; N, 3.79. Found: C, 65.29; H, 5.30; N, 3.92.

9.6. 1-[(3,4-Dimethoxyphenyl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline (29f)

The title compound was obtained as a pure solid (60%); mp 161-164 °C. IR (KBr, cm⁻¹, selected lines): 2940, 1724, 1515, 1184, 1028, 977, 822, 522. 1 H NMR (CDCl₃): δ 7.06-6.96 (m, 2H, Ar), 6.83-6.66 (m, 2H + 3H, Ar), 5.11 (d, J = 14.4 Hz, 1H, NCH_AH_B), 4.01-3.89 (m, 1H + 1H, NCH_AH_B + CHCOOH), 3.83 (s, 3H, OCH₃), 3.76 (s, 3H + 3H, OCH₃), 3.61-3.50 (m, 1H, CHAr), 3.06 (dd, 3 J = 9.2 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B), 2.57 (dd, 3 J = 3.4 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₂₃NO₆): C, 65.44; H, 6.02; N, 3.63. Found: C, 65.26; H, 5.87; N, 3.76.

9.7. 1-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline (29g)

Molecules S10 of S20

The title compound was obtained as a pure solid (86%); mp 101-103 °C. IR (KBr, cm⁻¹, selected lines): 2908, 1735, 1510, 1247, 10671, 928, 726, 671. 1 H NMR (CDCl₃): δ 7.10-7.00 (m, 2H, Ar), 6.86-6.75 (m, 2H + 2H, Ar), 5.94 (s, 2H, OCH₂O), 5.05 (d, J = 14.7 Hz, 1H, NCH_AH_B), 4.21 (d, J = 14.7 Hz, 1H, NCH_AH_B), 3.94 (d, J = 3.2 Hz, 1H, CHCOOH), 3.78 (s, 3H, OCH₃), 3.60-3.48 (m, 1H, CHAr), 3.02 (dd, 3 J = 10.0 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 2.56 (dd, 3 J = 4.2 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₀H₁₈ClNO₆): C, 59.49; H, 4.49; N, 3.47. Found: C, 59.67; H, 4.58; N, 3.61.

9.8. 3-(1,3-Benzodioxol-5-yl)-1-[(4-methoxyphenyl)methyl]-5-oxo-proline (29h)

The title compound was obtained as a pure solid (72%); mp 105-107 °C. IR (KBr, cm⁻¹, selected lines): 2905, 1736, 1509, 1247, 1034, 928, 813, 726. 1 H NMR (CDCl₃): δ 10.25 (br s, 1H, COOH exchanges with D₂O), 7.18-7.09 (m, 2H, Ar), 6.85-6.76 (m, 2H, Ar), 6.69-6.63 (m, 1H, Ar), 6.56-6,48 (m, 2H, Ar), 5.89 (s, 2H, OCH₂O), 5.13 (d, J = 14.4 Hz, 1H, NCH_AH_B), 3.94 (d, J = 14.8 Hz, 1H, NCH_AH_B), 3.89 (d, J = 3.4 Hz, 1H, CHCOOH), 3.78 (s, 3H, CH₃), 3.58-3.48 (m, 1H, CHAr), 3.05 (dd, 3 J = 9.4 Hz, 2 J = 17.4 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂0H₁9NO₆): C, 65.03; H, 5.18; N, 3.79. Found: C, 65.28; H, 5.03; N, 3.63.

9.9. 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(1,3-benzodioxol-5-yl)-5-oxo-proline (29i)

The title compound was obtained as a pure solid (80%); mp 73-75 °C. IR (KBr, cm⁻¹, selected lines): 2361, 1736, 1634, 1443, 1246, 1038, 930, 807. 1 H NMR (CDCl₃): δ 6.76-6.64 (m, 2H + 1H + 1H, Ar), 6.60-6.50 (m, 2H, Ar), 5.93 (s, 2H + 2H, OCH₂O), 5.08 (d, J = 14.8 Hz, 1H, NCH_AH_B), 3.90 (d, J = 14.8 Hz, 1H, NCH_AH_B), 3.91 (d, J = 3.4 Hz, 1H, CHCOOH), 3.56-3.45 (m, 1H, CHAr), 3.02 (dd, 3 J = 8.8 Hz, 2 J = 17.1 Hz, 1H, COCH_AH_B), 2.53 (dd, 3 J = 4.2 Hz, 2 J = 17.1 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₀H₁₇NO₇): C, 62.66; H, 4.47; N, 3.65. Found: C, 62.80; H, 4.62; N, 3.77.

9.10. 3-(1,3-Benzodioxol-5-yl)-1-[(3,4-dimethoxyphenyl)methyl]-5-oxo-proline (29j)

The title compound was obtained as a pure oil (88%); IR (NaCl, cm⁻¹, selected lines): 2951, 1735, 1511, 1237, 1033, 931, 814, 732. 1 H NMR (CDCl₃): δ 6.84-6.60 (m, 3H + 1H, Ar), 6.60-6.50 (m, 2H, Ar), 5.89 (s, 2H, OCH₂O), 5.14 (d, J = 14.8 Hz, 1H, NCH_AH_B), 4.00-3.84 (m, 1H + 1H, NCH_AH_B + CHCOOH), 3.82 (s, 3H, OCH₃), 3.79 (s, 3H, OCH₃), 3.56-3.46 (m, 1H, CHAr), 3.05 (dd, 3 J = 9.2 Hz, 2 J = 17.7 Hz, 1H, COCH_AH_B), 2.53 (dd, 3 J = 3.0 Hz, 2 J = 17.7 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₂₁NO₇): C, 63.15; H, 5.30; N, 3.51. Found: C, 63.00; H, 5.09; N, 3.41.

9.11. 1-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-3-(1,3-benzodioxol-5-yl)-5-oxo-proline (29k)

The title compound was obtained as a pure solid (72%); mp 88-90 °C. IR (KBr, cm⁻¹, selected lines): 2904, 1736, 1645, 1481, 1243, 1037, 929, 670. 1 H NMR (CDCl₃): δ 6.82-6.78 (m, 2H, Ar), 6.74-6.68 (m, 1H, Ar), 6.62-6.55 (m, 2H, Ar), 5.96 (s, 2H, OCH₂O), 5.93 (s, 2H, OCH₂O), 5.06 (d, J = 15.0 Hz, 1H, NCH_AH_B), 4.21 (d, J = 15.0 Hz, 1H, NCH_AH_B), 3.94 (d, J = 3.4 Hz, 1H, CHCOOH), 3.54-3.47 (m, 1H, CHAr), 3.00 (dd, 3 J = 9.8 Hz, 2 J = 17.5 Hz, 1H, COCH_AH_B), 2.52 (dd, 3 J = 4.4 Hz, 2 J = 17.5 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₀H₁₆ClNO₇): C, 57.50; H, 3.86; N, 3.35. Found: C, 57.38; H, 3.99; N, 3.48.

10. General procedure for the synthesis of (\pm) -trans 1,3-disubstituted-5-oxo-proline methyl esters 30a-k

Thionyl chloride (0.60 mmol) was added to a solution of the appropriate acid (29a-k) in methanol (5.0 mL). The mixture was refluxed for 2-4 h. After being cooled, the solvent was removed and the residue extracted with ethyl acetate (3 × 20 mL). The organic layer was washed with a 5%

Molecules S11 of S20

water solution of Na₂CO₃ (30 mL) and a saturated NaCl solution (30 mL). The organic layer was collected and dried over anhydrous sodium sulfate. By evaporation of the solvent to dryness was obtained the crude product, which was used for the next step without purification. The following compounds were obtained with this procedure.

502

10.1. (±)-trans 1-[(Methoxyphenyl)methyl]-3-phenyl-5-oxo-proline methyl ester (30a)

503 504

505

506

507

508

497

498

499

500

501

The title compound was obtained as a pure oil (81%). IR (NaCl, cm⁻¹, selected lines): 2951, 1743, 1611, 1419, 1246, 1030, 821, 763. ¹H NMR (CDCl₃): δ 7.32-7.20 (m, 3H, Ar), 7.17-7.02 (m, 2H + 2H, Ar), 6.88-6.74 (m, 2H, Ar), 5.01 (d, J = 14.3 Hz, 1H, NCH_AH_B), 4.00 (d, J = 14.3 Hz, 1H, NCH_AH_B), 3.93 (d, J = 14.3 Hz, J = 14.33.4 Hz, 1H, CHCOOCH₃), 3.77 (s, 3H, OCH₃), 3.70 (s, 3H, COOCH₃), 3.55-3.45 (m, 1H, CHAr), 3.03 $(dd, {}^{3}I = 9.3 \text{ Hz}, {}^{2}I = 17.2 \text{ Hz}, 1\text{H}, COCH_{A}H_{B}), 2.55 (dd, {}^{3}I = 4.0 \text{ Hz}, {}^{2}I = 17.2 \text{ Hz}, 1\text{H}, COCH_{A}H_{B}).$ Anal. Calcd. for (C20H21NO4): C, 70.78; H, 6.24; N, 4.13. Found: C, 70.63; H, 6.01; N, 3.97.

509 510 511

10.2. (±)-trans 3-(3,4-Dimethoxyphenyl)-1-[(4-methoxyphenyl)methyl]-5-oxo-proline methyl ester (30b)

512 513 514

515

516

517

518

519

The title compound was obtained as a pure oil (80%); IR (NaCl, cm⁻¹, selected lines): 2945, 1742, 1695, 1513, 1454, 1246, 1027, 873. ¹H NMR (CDCl₃): δ 7.20-7.08 (m, 2H, Ar), 6.86-6.46 (m, 2H + 3H, Ar), 5.03 (d, J = 14.6 Hz, 1H, NCHaHв), 3.95 (d, J = 14.6 Hz, 1H, NCHaHв), 3.96 (d, J = 3.0 Hz, 1H, CHCOOCH₃), 3.83 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.74 (s, 3H, OCH₃), 3.73 (s, 3H, COOCH₃), 3.50-3.40 (m, 1H, CHAr), 3.04 (dd, ${}^{3}J$ = 9.4 Hz, ${}^{2}J$ = 17.4 Hz, 1H, COCH_AH_B), 2.53 (dd, ${}^{3}J$ = 3.8 Hz, ${}^{2}J$ = 17.4 Hz, 1H, COCHAHB). Anal. Calcd. for (C22H25NO6): C, 66.15; H, 6.31; N, 3.51. Found: C, 66.33; H, 6.13; N, 3.39.

520 521 522

10.3. (±)-trans 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(3,4-dimethoxyphenyl)-5-oxo-proline methyl ester (30c)

523 524 525

526

527

528

529

530

The title compound was obtained as a pure solid oil (74%); IR (NaCl, cm⁻¹, selected lines): 2950, 1695, 1443, 1243, 1031, 926, 810, 769. ¹H NMR (CDCl₃): δ 6.81-6.60 (m, 3H + 2H, Ar), 6.55-6,48 (m, 1H, Ar), 5.92 (s, 2H, OCH₂O), 5.03 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.95 (d, J = 3.0 Hz, 1H, CHCOOCH₃), 3.87 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.85 (s, 3H, OCH₃), 3.77 (s, 3H, OCH₃), 3.75 (s, 3H, COOCH₃), 3.52-3,40 (m, 1H, CHAr), 3.03 (dd, ${}^{3}J = 9.6$ Hz, ${}^{2}J = 17.2$ Hz, 1H, COCHAHB), 2.53 (dd, ${}^{3}J = 3.8$ Hz, ${}^{2}J = 17.2$ Hz, 1H, COCHAHB). Anal. Calcd. for (C22H23NO7): C, 63.91; H, 5.61; N, 3.39. Found: C, 64.19; H, 5.82; N, 3.23.

531 532 533

10.4. (±)-trans 1-[(4-Methoxyphenyl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline methyl ester (30d)

534 535

536

537

538

539

540

The title compound was obtained as a pure solid oil (70%); IR (NaCl, cm⁻¹, selected lines): 2951, 1742, 1513, 1443, 1249, 1178, 1032, 830. ¹H NMR (CDCl₃): δ 7.16-7.07 (m, 2H, Ar), 7.02-6.95 (m, 2H, Ar), 6.86-6,73 (m, 4H, Ar), 4.99 (d, *I* = 14.6 Hz, 1H, NCH_AH_B), 3.98 (d, *I* = 14.6 Hz, 1H, NCH_AH_B), 3.89 (d, J = 3.6 Hz, 1H, CHCOOCH3), 3.78 (s, 3H, OCH3), 3.77 (s, 3H, OCH3), 3.69 (s, 3H, COOCH3), 3.52-3.40 (m, 1H, CHAr), 3.01 (dd, $^{3}I = 9.4$ Hz, $^{2}I = 17.0$ Hz, 1H, COCHAHB), 2.51 (dd, $^{3}I = 4.4$ Hz, $^{2}I = 17.0$ Hz, 1H, COCHAHB), $^{2}I = 17.0$ Hz, $^{2}I = 17$ 17.0 Hz, 1H, COCHAHB). Anal. Calcd. for (C21H23NO5): C, 68.28; H, 6.28; N, 3.79. Found: C, 68.11; H, 6.42; N, 3.95.

541 542 543

10.5. (±)-trans 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline methyl ester (30e)

544 545 546

547

548

The title compound was obtained as a pure oil, which was purified by flash column chromatography using ethyl acetate/cyclohexane (5:5, v:v) as eluent and by evaporation of the solvent of homogeneous fractions was obtained a pure oil (71%). IR (NaCl, cm⁻¹, selected lines): 1740,

Molecules S12 of S20

549 1696, 1608, 1442, 1249, 1035, 926, 829. ¹H NMR (CDCl₃): δ 7.06-6.98 (m, 2H, Ar), 6.85-6.78 (m, 2H, Ar), 550 6.72-6.64 (m, 3H, Ar), 5.93 (s, 2H, OCH₂O), 4.99 (d, *J* = 14.2 Hz, 1H, NCH₄HՖ), 3.92 (d, *J* = 14.2 Hz, 1H, NCH₄HΒ), 3.85 (d, *J* = 3.6 Hz, 1H, CHCOOCH₃), 3.78 (s, 3H, OCH₃), 3.72 (s, 3H, COOCH₃), 3.53-3.42 (m, 1H, CHAr), 3.00 (dd, ³*J* = 9.4 Hz, ²*J* = 17.0 Hz, 1H, COCH₄HΒ), 2.52 (dd, ³*J* = 4.4 Hz, ²*J* = 17.0 Hz, 1H, COCH₄HΒ). Anal. Calcd. for (C₂¹H₂¹NO₆): C, 65.79; H, 5.52; N, 3.65. Found: C, 65.93; H, 5.41; N, 3.49.

10.6. (±)-*trans* 1-[(3,4-Dimethoxyphenyl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline methyl ester (**30f**)

The title compound was obtained as a pure oil (84%). IR (NaCl, cm⁻¹, selected lines): 2943, 1742, 1694, 1514, 1257, 1030, 874, 832. 1 H NMR (CDCl₃): δ 7.07-6.96 (m, 2H, Ar), 6.84-6.66 (m, 2H + 3H, Ar), 5.03 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.96 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.90 (d, J = 3.0 Hz, 1H, CHCOOCH₃), 3.84 (s, 3H, OCH₃), 3.78 (s, 3H, OCH₃), 3.76 (s, 3H, OCH₃), 3.72 (s, 3H, COOCH₃), 3.55-3.42 (m, 1H, CHAr), 3.02 (dd, 3 J = 9.4 Hz, 2 J = 17.1 Hz, 1H, COCH_AH_B), 2.53 (dd, 3 J = 3.8 Hz, 2 J = 17.1 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₂H₂₅NO₆): C, 66.15; H, 6.31; N, 3.51. Found: C, 66.02; H, 6.19; N, 3.40.

 $10.7. (\pm)$ -trans 1-[(6-Chloro-1,3-benzodioxol-5-yl)methyl]-3-(4-methoxyphenyl)-5-oxo-proline methyl ester (30g)

The title compound was obtained as a pure oil (86%). IR (NaCl, cm⁻¹, selected lines): 2950, 1742, 1480, 1247, 1034, 929, 874, 834. 1 H NMR (CDCl₃): δ 7.10-6.98 (m, 2H, Ar), 6.88-6.72 (m, 2H + 2H, Ar), 5.95 (s, 2H, OCH₂O), 4.99 (d, J = 14.9 Hz, 1H, NCH_AH_B), 4.20 (d, J = 14.9 Hz, 1H, NCH_AH_B), 3.91 (d, J = 3.6 Hz, 1H, CHCOOCH₃), 3.78 (s, 3H, OCH₃), 3.74 (s, 3H, COOCH₃), 3.52-3.39 (m, 1H, CHAr), 2.98 (dd, 3 J = 9.4 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₂₀ClNO₆): C, 60.36; H, 4.82; N, 3.35. Found: C, 60.50; H, 4.71; N, 3.46.

10.8. (±)-*trans* 3-(1,3-Benzodioxol-5-yl)-1-[(4-methoxyphenyl)methyl]-5-oxo-proline methyl ester (**30h**)

The title compound was obtained as a pure oil (73%). IR (NaCl, cm⁻¹, selected lines): 2943, 1742, 1695, 1508, 1246, 1035, 931, 815. 1 H NMR (CDCl₃): δ 7.19-7.09 (m, 2H, Ar), 6.86-6.78 (m, 2H, Ar), 6.70-6.62 (m, 1H, Ar), 6.56-6.47 (m, 2H, Ar), 5.90 (s, 2H, OCH₂O), 4.99 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.87 (d, J = 3.4 Hz, 1H, CHCOOCH₃), 3.77 (s, 3H, OCH₃), 3.69 (s, 3H, COOCH₃), 3.48-3.37 (m, 1H, CHAr), 2.99 (dd, 3 J = 9.4 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B), 2.48 (dd, 3 J = 4.4 Hz, 2 J = 17.0 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₂₁NO₆): C, 65.79; H, 5.52; N, 3.65. Found: C, 65.94; H, 5.41; N, 3.76.

10.9. (±)-*trans* 1-[(1,3-Benzodioxol-5-yl)methyl]-3-(1,3-benzodioxol-5-yl)-5-oxo-proline methyl ester (**30i**)

The title compound was obtained as a pure oil (87%). IR (NaCl, cm⁻¹, selected lines): 2911, 1742, 1695, 1495, 1246, 1038, 929, 812. 1 H NMR (CDCl₃): δ 6.75-6.60 (m, 2H + 1H + 1H, Ar), 6.60-6.49 (m, 2H, Ar), 5.93 (s, 2H + 2H, OCH₂O), 4.98 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.90 (d, J = 14.6 Hz, 1H, NCH_AH_B), 3.88 (d, J = 3.8 Hz, 1H, CHCOOCH₃), 3.72 (s, 3H, COOCH₃), 3.52-3.38 (m, 1H, CHAr), 2.98 (dd, 3 J = 9.4 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₁₉NO₇): C, 63.47; H, 4.82; N, 3.52. Found: C, 63.28; H, 4.72; N, 3.64.

10.10. (±)-*trans* 3-(1,3-Benzodioxol-5-yl)-1-[(3,4-dimethoxyphenyl)methyl]-5-oxo-proline methyl ester (**30j**)

Molecules S13 of S20

The title compound was obtained as a pure oil (77%). IR (NaCl, cm⁻¹, selected lines): 2948, 1741, 1695, 1445, 1238, 1032, 930, 812. 1 H NMR (CDCl₃): δ 6.81-6.62 (m, 3H + 1H, Ar), 6.62-6.50 (m, 2H, Ar), 5.92 (s, 2H, OCH₂O), 5.05 (d, J = 14.7 Hz, 1H, NCH_AH_B), 3.93 (d, J = 14.7 Hz, 1H, NCH_AH_B), 3.88 (d, J = 4.4 Hz, 1H, CHCOOCH₃), 3.85 (s, 3H, OCH₃), 3.82 (s, 3H, OCH₃), 3.73 (s, 3H, COOCH₃), 3.49-3.37 (m, 1H, CHAr), 3.01 (dd, 3 J = 9.0 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 2.50 (dd, 3 J = 3.6 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₂H₂₃NO₇): C, 63.91; H, 5.61; N, 3.39. Found: C, 63.76; H, 5.49; N, 3.50.

10.11. (±)-*trans* 3-(1,3-Benzodioxol-5-yl)-1-[(6-chloro-1,3-benzodioxol-5-yl)methyl]-5-oxo-proline methyl ester (**30k**)

The title compound was obtained as a pure oil (81%). IR (NaCl, cm⁻¹, selected lines): 2918, 1741, 1697, 1441, 1241, 1037, 928, 875. 1 H NMR (CDCl₃): δ 6.82-6.75 (m, 2H, Ar), 6.75-6.66 (m, 1H, Ar), 6.62-6.52 (m, 2H, Ar), 5.97 (s, 2H, OCH₂O, form A), 5.96 (s, 2H, OCH₂O, form B), 5.93 (s, 2H, OCH₂O), 4.99 (d, J = 14.8 Hz, 1H, NCH_AH_B), 4.20 (d, J = 14.8 Hz, 1H, NCH_AH_B), 3.90 (d, J = 3.4 Hz, 1H, CHCOOCH₃), 3.74 (s, 3H, COOCH₃), 3.48-3.34 (m, 1H, CHAr), 2.96 (dd, 3 J = 9.4 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B), 2.49 (dd, 3 J = 4.4 Hz, 2 J = 17.2 Hz, 1H, COCH_AH_B). Anal. Calcd. for (C₂₁H₁₈ClNO₇): C, 58.41; H, 4.20; N, 3.24. Found: C, 58.56; H, 4.13; N, 3.09.

Molecules S14 of S20

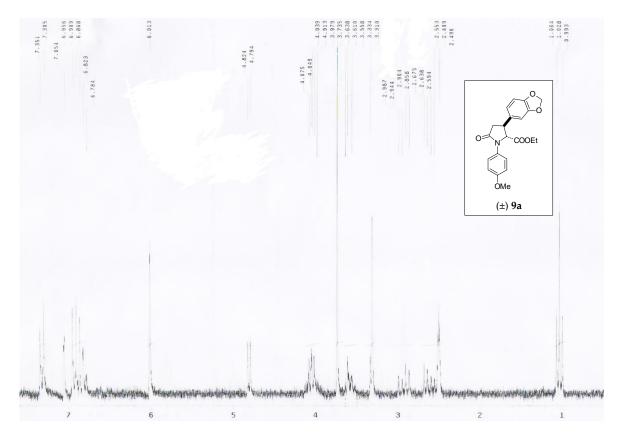


Figure S1. ¹H NMR spectrum of compound (±) 9a

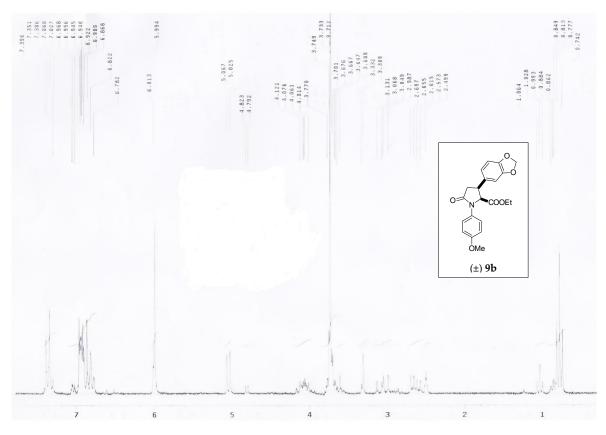


Figure S2. ^1H NMR spectrum of compound (±) 9b

Molecules S15 of S20

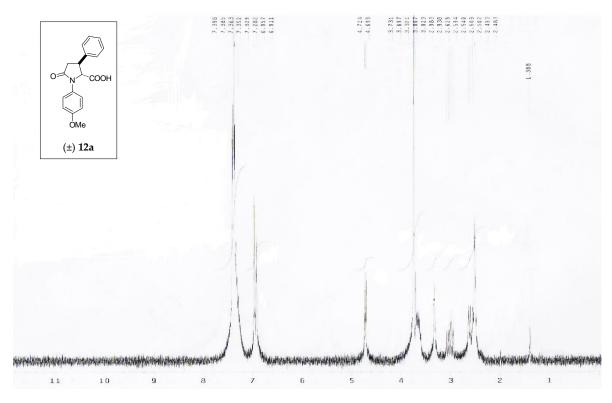


Figure S3. ¹H NMR spectrum of compound (±) 12a

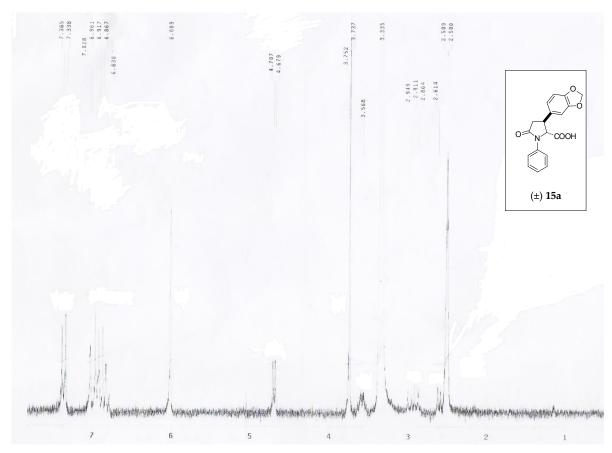


Figure S4. ¹H NMR spectrum of compound (±) 15a

647

Molecules S16 of S20

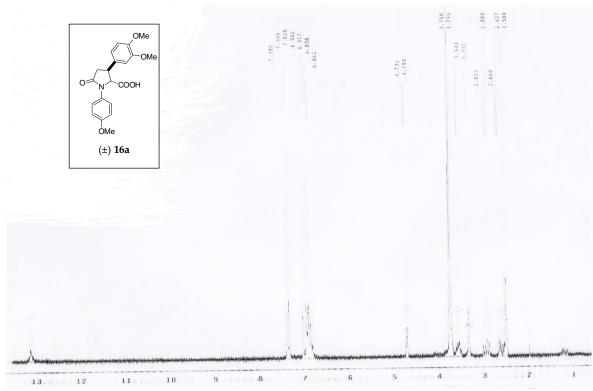


Figure S5. ¹H NMR spectrum of compound (±) 16a

649

650

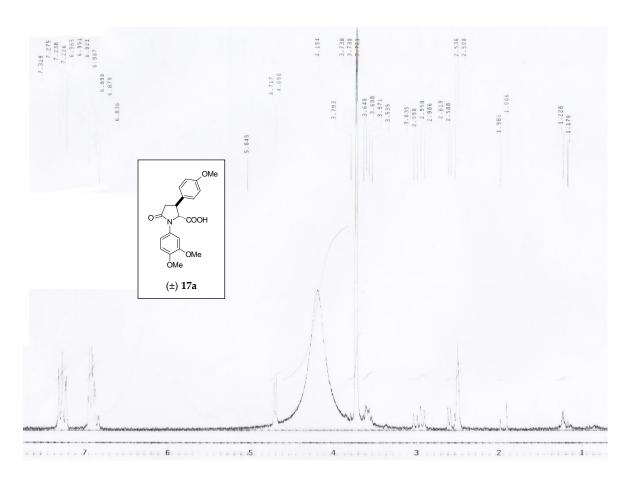
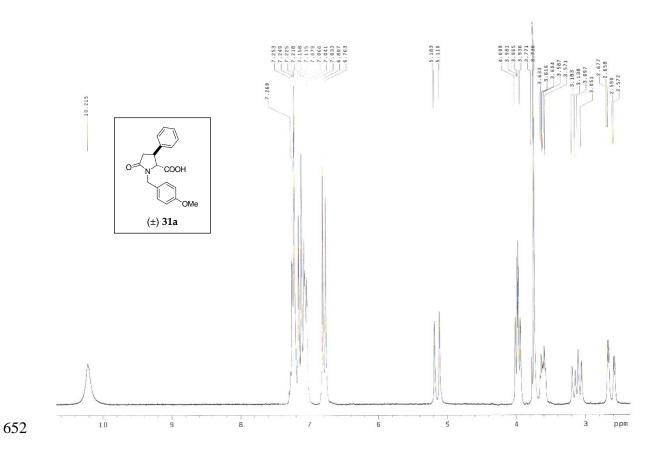



Figure S6. ¹H NMR spectrum of compound (±) 17a

Molecules S17 of S20

653 Figure S7. ¹H NMR spectrum of compound (±) 31a

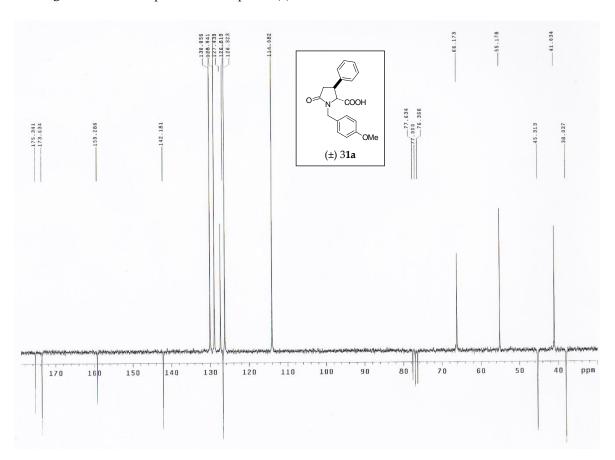
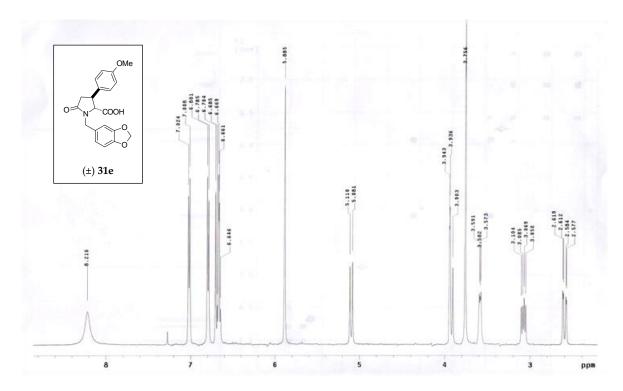
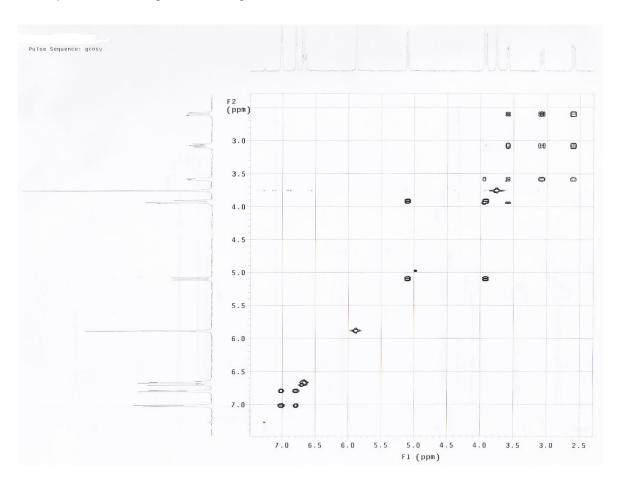



Figure S8. ¹³C Attached Proton Test spectrum of compound (±) 31a


654

Molecules S18 of S20

656657

Figure S9. ¹H NMR spectrum of compound (±) 31e

658

Figure S10. ¹H-¹HgCOSY spectrum of compound (±) 31e

Molecules S19 of S20

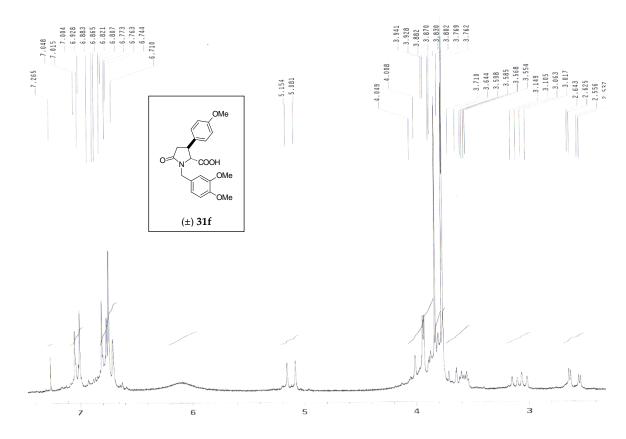


Figure S11. ¹H NMR spectrum of compound (±) 31f

660

662

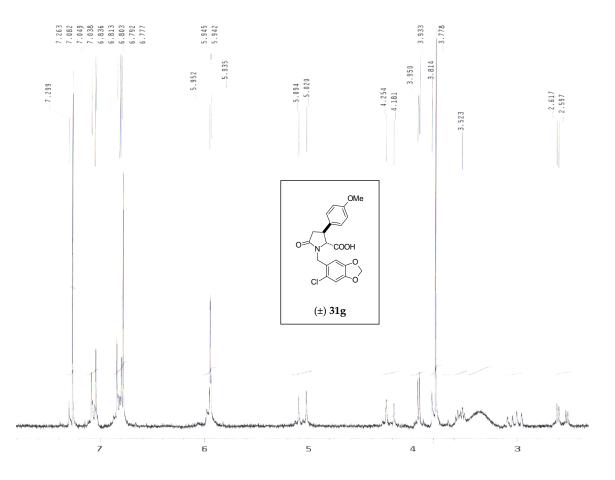
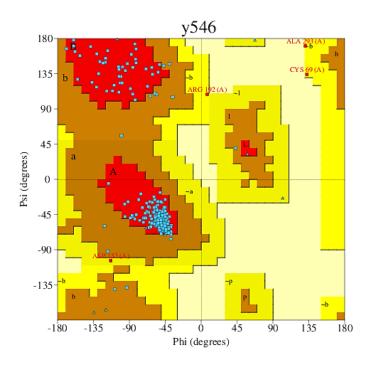



Figure S12. ¹H NMR spectrum of compound (±) 31g

Molecules S20 of S20

Figure S13. Ramachandran plot analysis of the final refined model. Residues in most favoured regions 279 (93.9%), residues in additional allowed regions 14 (4.7%), residues in generously allowed regions 4 (1.3%), and residues in disallowed regions 0 (0.0%).

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).