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Abstract: Identification of protein-protein interactions (PPIs) plays an essential role in the
understanding of protein functions and cellular biological activities. However, the traditional
experiment-based methods are time-consuming and laborious. Therefore, developing new reliable
computational approaches has great practical significance for the identification of PPIs. In this paper,
a novel prediction method is proposed for predicting PPIs using graph energy, named PPI-GE.
Particularly, in the process of feature extraction, we designed two new feature extraction methods,
the physicochemical graph energy based on the ionization equilibrium constant and isoelectric
point and the contact graph energy based on the contact information of amino acids. The dipeptide
composition method was used for order information of amino acids. After multi-information fusion,
principal component analysis (PCA) was implemented for eliminating noise and a robust weighted
sparse representation-based classification (WSRC) classifier was applied for sample classification.
The prediction accuracies based on the five-fold cross-validation of the human, Helicobacter pylori
(H. pylori), and yeast data sets were 99.49%, 97.15%, and 99.56%, respectively. In addition, in five
independent data sets and two significant PPI networks, the comparative experimental results also
demonstrate that PPI-GE obtained better performance than the compared methods.

Keywords: protein-protein interaction; graph energy; physicochemical properties; contact
information; WSRC classifier

1. Introduction

Protein-protein interaction (PPI) plays a distinctly important role in understanding cellular
biological activities [1]. Its research contributes to understanding the protein function, mechanism of
biological activity, disease diagnosis and prevention, and new drug development [2—4]. The research
methods of PPI can be divided into two types: computational and experimental methods. Over the past
few decades, many innovative experimental technologies have been designed to attempt to validate
PPIs, such as glutathione S-transferase [5], protein chip [6], yeast two-hybrid [7], tandem affinity
purification (TAP) tag [8], and other high-throughput technologies. Some direct interactions data of
different species have been discovered and validated [9]. However, the traditional experiment-based
methods are not only costly and time-consuming, but also have high rates of false-positive predictions
and weak generalization ability. Therefore, developing new reliable computational approaches has
great practical significance for PPI identification at low cost and high efficiency [10].

In recent years, some computational approaches based on various types of information about
proteins have been suggested to predict PPIs, such as genomic information, structure information,
evolutionary knowledge, protein domains, and phylogenetic profiles [11-14]. However, the above prior
information that can be used to predict the PPIs is scarce compared with the rapid growth of amino
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acid sequences [15]. The above methods cannot be applied without prior knowledge of the proteins.
In contrast, it is more significant to only use the protein amino acid sequences for predicting PPIs.

Extensive experiments show that using the protein sequence information alone is enough
for identifying PPIs [16]. Many sequence-based computational methods have been explored to
address the problems, such as support vector machine (SVM) with multi-scale discontinuous and
continuous [16], rotation forest algorithm with position-specific scoring matrix (PSSM) [17], SVM with
auto covariance (AC) [18], average blocks (AB) using relevance vector machine (RVM) [19], discrete
cosine transformation using weighted sparse representation [20], and so on. In 2018, Goktepe et
al. [21] presented a feature representation method named weighted skip-sequential conjoint triads
using principal component analysis (PCA) and SVM to capture the information of protein sequences.
In 2019, Chen et al. [1] designed an end-to-end framework which incorporated a deep residual recurrent
convolutional neural network for capturing the information of protein sequences. In the same year,
Zhang et al. [22] presented a neural network-based model which separately used different descriptors
(auto covariance descriptor, local descriptors, and multi-scale continuous and discontinuous local
descriptor) to explore and represent the patterns of interactions between amino acids. Although the
researches of these approaches have achieved good progress and application prospects, new methods
are needed to further improve the performances of PPI predictions.

The concept of the energy of graph G is due to Gutman [23] and is meaningful for the analysis of
graph theory [24-26]. Nowadays, the energy of the graph has been used in chemistry, bioinformatics,
and related fields [27,28]. In the literature, increasing studies have shown that the physicochemical
properties of amino acids can improve the prediction performances of PPIs [16,29]. The contact
information among amino acids is also significant for prediction of PPIs [30]. The multi-information
fusion of different feature extraction methods can fuse different feature information of interacting
protein sequences, and it is an effective technique in improving the prediction performance of PPIs [22].

In this paper, we present a computational model to predict PPIs using only protein sequences
and graph energy. Inspired by the graph energy theory, we design two feature extraction methods
for PPIs—physicochemical graph energy (PGE) and contact graph energy (CGE)—to capture the
feature information of interactions. Physicochemical graph energy is graph energy based on physical
and chemical properties, while contact graph energy is graph energy based on amino acid contact
information. The dipeptide composition method was also used to extract and supplement effective
information. PCA was implemented to effectively reduce the influence of noise after integrating three
feature extraction methods. The weighted sparse representation-based classification (WSRC) was used
as the classifier of the proposed method after different classifiers were compared. The PPI-GE has been
tested on human, H. pylori, and yeast data sets, and these three data sets achieved prediction accuracies
of 99.49%, 97.15%, and 99.56%, respectively. In addition, we verified the validity of the proposed
method on five independent data sets and two significant PPI networks. The comparative experimental
results indicate that our feature extraction methods have a significant effect on PPI prediction and our
method is superior to other state-of-the-art prediction methods.

2. Results and Discussion

2.1. Evaluation Metrics

In this study, to ensure the reliability of experimental results and avoid over fitting of data, we
implemented five-fold cross-validation to evaluate the effectiveness of PPI-GE and other computational
models. Specifically, the experimental data set was split into five parts; each of the five parts is regarded
as an independent testing data set and the other four parts were selected as training data sets. Several
widely-used evaluation metrics were used, including accuracy (ACC), sensitivity (SEN), precision
(Pre), and Matthews correlation coefficient (MCC), expressed as follows:

TP+ TN
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where TP, TN, FP, and FN denote the number of true positives, true negatives, false positives, and
false negatives, respectively. In the protein—protein interaction data sets, the unknown protein-protein
interactions are considered negative samples, while the known interactions are called positive samples.
The average performance of all evaluation metrics is obtained during the experiment. As the value
of metric is larger, the performance of the method will be better. Moreover, the area under the
receiver-operating characteristics curve (AUC) was calculated to further evaluate the performance
of the method. The AUC value of 1 indicates perfect prediction and AUC value of 0.5 means
random prediction.

2.2. The Performance Comparisons of Different Classifiers

It is well known that the same method using different classifiers may achieve different prediction
results. To further evaluate the proposed method, the K-nearest neighbors (KNN), support vector
machine (SVM), and WSRC classifiers were adopted to predict PPIs using the same feature extraction
methods. To ensure the universality of different data set, we implemented five-fold cross-validation
10 times and obtained the average value of three benchmark data sets for the same evaluation metric
using every classifier, respectively.

The average results of three benchmark data sets with different classifiers are presented in Figure 1.
From the figure, the results of the comparison prove that the performance of the WSRC classifier has
better stability and higher accuracy than the SVM and KNN classifiers for predicting PPIs. In this
work, we used the WSRC classifier as the classifier of our model.

(I wsrc EEKNN JsvM |

|I|7 ||!_\ I|
SEN MCC Pre

Figure 1. The performance comparisons of different classifiers. =~ WSRC: weighted sparse

ACC

representation-based classification; KNN: K-nearest neighbors; SVM: support vector machine.
2.3. Prediction Performances of the Proposed Method

For verifying the efficacy and stability and reducing deviations of PPI-GE based on the WSRC
classifier, five-fold cross-validation was performed in the experiment. The cross-validation results of
three benchmark data sets are shown in Tables 1-3.

When performing on the human data set, ACC, SEN, MCC, Pre, and AUC achieved the average
performance of 99.49%, 99.21%, 98.97%, 99.72%, and 99.99%, respectively (see Table 1). Similarly, the
average results of ACC, SEN, MCC, Pre, and AUC on the H. pylori data set were 97.15%, 98.23%,
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94.35%, 96.17%, and 99.19%, respectively (see Table 2). At the same time, we also gained better average
results of these metrics at 99.56%, 99.14%, 99.13%, 99.98%, and 100% on the yeast data set, respectively
(see Table 3). The experimental results show that PPI-GE is robust and promising for predicting PPIs.
Our method achieved better prediction results which may be attributed to the choice of the classifiers
and novel feature extraction methods.

Table 1. five-fold cross-validation results on the human data set.

Testing Set ACC (%) SEN (%) MCC (%) Pre (%) AUC (%)
1 99.33 98.76 98.66 99.87 99.99
2 99.63 99.34 99.26 99.87 100
3 99.57 99.22 99.14 99.87 100
4 99.39 99.24 98.77 99.49 99.98
5 99.51 99.49 99.02 99.49 99.99
Average 99.49 99.21 98.97 99.72 99.99

Table 2. five-fold cross-validation results on the H. pylori data set.

Testing Set ACC (%) SEN (%) MCC (%) Pre (%) AUC (%)
1 95.55 98.21 91.24 92.88 99.27
2 97.94 98.26 95.89 97.59 99.34
3 98.11 99.65 96.27 96.64 98.94
4 97.94 97.69 95.88 98.34 99.41
5 96.23 97.32 92.46 95.41 99.01
Average 97.15 98.23 94.35 96.17 99.19

Table 3. five-fold cross-validation results on the yeast data set.

Testing Set ACC (%) SEN (%) MCC (%) Pre (%) AUC (%)
1 99.60 99.18 99.20 100 100
2 99.46 98.95 98.93 100 100
3 99.55 99.20 99.11 99.91 100
4 99.51 99.00 99.02 100 100
5 99.69 99.38 99.38 100 100
Average 99.56 99.14 99.13 99.98 100
Note: ACC: accuracy; SEN: sensitivity; MCC: Matthews correlation coefficient; Pre: precision; AUC: area under
the curve.

2.4. Comparison with Other Methods

Currently, many kinds of computational models based on protein sequences have been presented
for predicting PPIs. In this section, to further objectively validate the prediction performance of
the proposed method, seven state-of-the-art methods, including Ensemble Deep Neural Networks
(EnsDNN) [22], 3-mers-based [31], Bio2vec-based [31], pseudo Substitution Matrix Representation
(pseudo-SMR) [32], WSRC with continuous wavelet and discrete wavelet transform (WSRC+CW and
DW) [33], feature weighted rotation forest algorithm (FWRF) [17], and Global encoding [34] were
compared on the human, H. pylori, and yeast data sets. The comparison results of three benchmark
data sets based on five-fold cross-validation of different models are plotted in Figures 2—4, respectively.

Some previous algorithms did not use all three benchmark datasets in their papers, therefore we
first compared the proposed method with the other five methods on the human data set. Figure 2
shows that the proposed method obtained higher average accuracy (99.49%) out of these methods.
Meanwhile, the results of SEN, MCC, and AUC are superior to others. On the H. pylori data set, our
method and six other methods were used for the comparison. From Figure 3, it can be noted that our
method is significantly better than that of others. On the yeast data set, the results of comparison
among six different methods are shown in Figure 4. We obtained similar results. The comparison
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results show that our method obtained satisfactory performance relative to current existing approaches.
This further demonstrates that the proposed method based on the novel feature extraction methods is
robust and effective.

‘- Proposed [ 3-mers-based Bio2Vec-based [ Pseudo-SMR [ WSRC + CW and DW [ Global encoding
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Figure 2. Comparison results of different methods on the human data set.
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Figure 3. Comparison results of different methods on the H. pylori data set.
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Figure 4. Comparison results of different methods on the yeast data set.

2.5. Performance on PPI Networks

Since the development of the disease may involve proteins and pathways in multiple biological
processes, PPI networks may help to understand the deregulated molecular mechanisms of disease
development and progression and the functional organization of proteins. The general PPI networks
are crossover networks from a biological perspective [35]. It is necessary to evaluate the performance
of the proposed method by predicting the PPI network. In this section, the Wnt signaling pathway
network is a significant crossover network, which was used for evaluating.

To keep the same experimental conditions during the comparison, the yeast data set was regarded
as the training data set and the Wnt-related network was regarded as the testing data set. Since they
are different species, in the encoding, the dimension of fused feature vector E was reduced to 20 for
eliminating the influence of more noise. The network and prediction results are shown in Figure 5.
The red line is false prediction. It can be seen from the figure that our method can predict 92 of the 96 PPIs.
We also compared some previous methods with the proposed method, and the comparisons are listed
in Table 4. From the table, it can be noted that the proposed method is significantly better than others.
In addition to this, we also tested our method on the multi-core network (Ras-Raf-Mek-Erk-Elk-Srf
pathway) for predicting. The network is shown in Figure 6. The core protein is colored yellow.
Our method correctly predicts all PPIs. The results suggest that PPI-GE can be applied to predict PPIs
encoded in the network and obtain better prediction results.

Table 4. Comparison of different methods on the Wnt-related network using yeast data set as the
training data set.

Wnt-Related Network Proportion Accuracy (%)
Proposed method 92/96 95.83
Ding’s work [30] 89/96 92.71
Shen’s work [35] 73/96 76.04
Zhou’s work [36] 87/96 90.63

Chen’s work [29] 89/96 92.71
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Figure 6. The prediction results of multi-core network.

2.6. Performance on Independent Data Sets

Finally, to further validate the efficacy and stability of our method, we also tested the proposed
method and compared it with several state-of-the-art methods on five independent data sets (H. pylori,
H. sapien, C. elegans, M. musculus, and D. mela data sets). In the encoding, the yeast data set was regarded
as the training data set and the independent data set was regarded as the testing data set, and the
same feature extraction methods were used during the experiment. The comparison results between
different methods are summarized in Table 5. The accuracies of five independent data sets were 93.80%,
99.93%, 86.24%, 94.57%, and 99.87%, respectively. The proposed method has better performance for
PPI prediction on four data sets (H. pylori, H. sapien, M. musculus, and D. mela). However, our accuracy
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on the C. elegans data set is lower than Du’s work and Ding’s work. Overall, it indicates that our
method can perform across species for PPI predictions.

Table 5. Comparison of the accuracy (%) between different methods on the independent data sets using
yeast data set as the training data set.

Data Set Testing Proposed Huang's Du’s Ding’s Work
Pairs Method Work [34]  Work [37] [30]
H. pylori 1420 93.80 85.77 93.66 92.03
H. sapien 1412 99.93 88.81 93.77 94.58
C. elegans 4013 86.24 72.79 94.84 90.28
M. musculus 313 94.57 83.39 91.37 92.25
D. mela 21975 99.87 89.35 N/A N/A

Note: N/A means not available.

3. Materials and Methods

In this section, a novel method called PPI-GE is described, which depends mainly on three steps.
The flowchart of PPI-GE is shown in Figure 7. First, the method only uses the amino acid sequences
through physicochemical graph energy, contact graph energy, and dipeptide composition for feature
extraction and multi-information fusion. Then, the PCA method was implemented for the descending
dimension and eliminating noise. Finally, the WSRC classifier was applied for sample classification
and predicting PPIs after different classifiers were compared.

(\,b Feature Extraction

Protein sequence

Physicochemical Contact Graph Dipeptide

Graph Energy Energy Composition

0 )

PCA reduction

WSRC KNN SVM
Classifier Classifier Classifier

| | |

Prediction Prediction Prediction
Results Results Results

Figure 7. The flowchart of the proposed method for predicting protein-protein interactions (PPIs).
3.1. Datasets

In this work, three high-quality benchmark data sets were used to ensure generality and evaluate
the performance of the proposed method. The first data set is the human data set constructed by Huang
et al. [20]. They collected 3899 experimentally verified PPIs as a positive sub-dataset and obtained 4262
non-PPI pairs from different subcellular compartments as a negative sub-dataset. The H. pylori data set
is used as the second data set constructed by Martin et al. [38], and the third data set is the yeast data
set collected by Guo et al. [18]. The summary of three benchmark data sets can be seen in Table 6.

In addition, we tested on two significant PPl networks to objectively validate the performance
of the proposed method. The first network is the crossover network (Wnt-related network) [39]
which contains 96 PPIs. It is a significant signaling pathway and plays a distinctly important role
in the understanding of tumor formation, processes of cytoskeletal organization, patterning, and
organogenesis. The second network is the multi-core network (Ras-Raf-Mek-Erk-Elk-Srf pathway) [40]
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which includes 189 PPIs. Itis an important consensus network and implicates a variety of transcriptional
regulations and cellular processes. To further verify the efficacy and stability of our method, we also
tested it on five independent data sets, including H. pylori, H. sapien, C. elegans, M. musculus, and D. mela
data sets [30,34].

Table 6. The details of three benchmark data sets.

Datasets Protein Pairs Interaction Pairs Non-Interaction Pairs References
human 8161 3899 4262 [20]
H. pylori 2916 1458 1458 [38]
yeast 11,188 5594 5594 [18]

3.2. Feature Extraction

In this work, we designed two feature extraction methods to capture the feature information of
sequences: the graph energy based on the physical and chemical properties named physicochemical
graph energy (PGE) and the graph energy based on the amino acid contact information named contact
graph energy (CGE). The concept of the energy of a graph is due to Gutman [23]. If graph G is a simple
graph, the energy of the graph is defined as the sum of the absolute eigenvalues of the adjacency matrix
of the graph G. If E(G) represents the energy of a graph, we get

n

E(G) =) 1A 5)

i=1
where A, is the ith eigenvalue of the adjacency matrix [25,26].

3.2.1. Physicochemical Graph Energy

Amino acids are the basic units of protein sequences and have different physicochemical
properties which have a great significance for the prediction of protein functions and structures [41,42].
Conventionally, the location information of the amino acid sequence is important in the prediction of
PPIs, because amino acids make up protein sequences and have specific positions which are closely
related to the local interaction information of amino acid neighborhoods.

Inspired by previous work [27], we obtained a descending order (D = E—->C—>N—->M — F —
Q-»Y—>S5S->P>T—->V—->L—>1I1-W-—>H-—G—A— R - K)based on the isoelectric point
and ionization equilibrium constant typical physicochemical properties of amino acids. Then, a unit
substitution matrix A € R?%*?9(as shown in Figure 8) was constructed by using this ordering to describe
the location information of amino acids. A protein sequence with the length of # can be transformed
into a (0, 1)-adjacency matrix Ag = (gi, j) Hox, P2sed on the unit substitution matrix A. It is defined as
follows: when the jth amino acid type of protein sequence is the same as the fth amino acid type of
above amino acid order, let Ag (i, j) = A(i,t), where i,t =1,2,---,20; j =1,2,--- ,n.

Next, we constructed a sliding window with the length of 20 to transform the matrix Ag into
n — 19 matrixes of 20 x 20 dimensions. Let A’é € R?20 be a sliding window which starts from the
first amino acid at the left end of the protein sequence and moves the position of one amino acid at a
time. Suppose A’é is the sparse sub-matrix obtained by sliding the window to the kth amino acid of
the sequence, thenAlé(i,j) =Ac(i,k+j—-1), wherei=1,2,---,20;,j=1,2,--- ,20;k=1,2,--- ,n—19.
As shown in Figure 8, Alé can correspond to a sparse bipartite graph Gy one by one, and each amino
acid corresponds to a point in the bipartite graph. Finally, the physicochemical graph energy E(G ;) of
each bipartite graph G4 was calculated as Equation (5). In this way, we turned a protein sequence into
a numerical vector E] = {E(Ga1),E(Ga2), -+, E(Gan-19) }-

Machine learning methods need to input feature vectors with the same lengths, but different
proteins may have different sequence lengths. In the literature, the top 30-dimensional feature vector of
a protein sequence can contain some information for the similarity analysis of proteins [28]. Here, we set
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200 windows to obtain enough information of proteins for PPIs. The algorithm implements zero-padding
if the length of the protein is less than 219 residues. Thus, a protein sequence with the length of # can
be characterized by a 200-dimensional numerical vector E] = {E(Ga1),E(Ga2),---,E(Ga200) }-

Protein Sequence
20 n
N ARREE
20 l AB) g
. T
1 20 H K
A(B) 2 Lo v
k k+19
L n-19 n
»'/ \‘4
G E R F W - D C G E R F W -« D C
0 0 0 0 0 1 0 A 91 Gik+1 Gikrz Gik+s Gik+s o Jik+1s  Jik+19
E 0 1 0 0 0 0 0 R 92k 9z2k+1 G2k+2 G2k+3 Jok+s - J2k+18 J2k+19
0 0 0 0 0 0 1 N 93k G3k+1 Gsk+z G3k43 J3k+a - J3k+18 J3k+19
R 0 0 1 0 0 0 Y 910k Grok+1 Grok+z Y19k+3 Jrok+a ... G1ok+18 J19k+19
K 0 0 0 0 0 0 0 920k G20k+1 20k+2 J20k+3 Jzok+a -+ G20k+18 J20k+19
1 |
¥ ¥
GERFWSTNDPAKGPVILPDC G E R - P D C
DECNMFQYSPTVLIWHGAR DECNMFQYSPTVLIWHGARK

Figure 8. The schematic diagram of protein sequence feature extraction.

3.2.2. Contact Graph Energy

The contact information among different types of amino acids is significant for predicting PPIs as
described by Ding et al. [30]. They considered 20 kinds of amino acid, 8 types of secondary structures,
disability contact solvents, and 6323 complexes [43,44]. Then, the average number of pairwise contacts
observed at the interface was calculated from unbound protein to binding structure. In this section, the
second alternative matrix B € R2%20 (as shown in Figure 8) is the contact matrix of amino acids which
is based on the effective contact energy among different types of amino acids. It is noteworthy that we
used the same amino acid contact matrix as used in Ding’s work.

Next, as the physicochemical graph energy is based on the substitution matrix B, the protein
sequence was transformed into an adjacency matrix Bg € R?>*"". We set a sliding window to slide on
the protein sequence and obtain sub-matrix B’é € R®x20 wherek = 1,2,--- ,n —19. Each matrix B’é
corresponds to a complete bipartite graph one by one. Finally, the contact graph energy E(Ggi) of each
bipartite Gp; was calculated as Equation (5).

Therefore, according to the proposed contact graph energy, we can characterize and transform a
protein sequence into a numerical vector E} = {E(Gg1), E(Gpp), -+, E(Gpooo) }-
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3.2.3. N-peptide Composition Representation

It is generally known that amino acids are the basic units that make up protein sequences.
A protein sequence can be simply expressed as follows:

P=AjAy-- A A 1AL

where A; represents the ith amino acid and each belongs to one of the 20 native amino acid types;
L denotes the number of amino acids in the sequence.

The pseudo amino acid composition is widely used to extract sequence information of proteins.
The simplest one is called n-peptide composition. In this way, it can preserve the protein sequence
order information. When n = 2, this method degenerates the amino acid composition into a
dipeptide composition [21,45,46]. Dipeptide composition treats every two contiguous amino acids as a
combination. Therefore, there are L — 1 combinations in a protein sequence. If the protein sequence
information is known, we can calculate the frequency of these combinations and represent them by a
400-dimensional vector E;. We can calculate the frequency value as the following formula:

fmn:%, 1<m<20,1<n<20 (6)

where Ny, represents the number of combinations that consist of the mth and nth types of amino acids
and appear in the protein sequence.

3.3. Principal Component Analysis

PCA is an effective data analysis technique which can reduce the dimension of the raw data,
eliminate some noise for promoting data processing speed, and save time. It has been widely used to
process data in bioinformatics and related fields [19,47]. It can retain the main information of variable
interactions when the high-dimensional sample data set is transformed into a low-dimensional space.

In this work, we obtained the fused 600-dimensional numerical vector E = (E’i ;EY E’é) by
combining three numerical vectors based on the physicochemical graph energy, contact graph energy,
and dipeptide composition. The multi-information fusion fused different feature information of
interacting protein sequences, which may bring more noise information. Thus, on the fused feature
vector, the PCA method was applied to eliminate the influence of noise and integrate useful information.
Considering that some important information may be ignored if the dimension is too small, the
dimension of fused feature vector E was reduced from 600 to 80 through many experiments to obtain
the new feature vector and improve the prediction accuracy. After using the PCA method, the most
discriminative new feature set was obtained and used as input information to train the classifier for
PPI prediction tasks.

3.4. Weighted Sparse Representation Based Classification

In this paper, the WSRC classifier was used as the classifier for predicting PPIs, which was proposed
by Lu et al. [48] in 2012. It is based on the sparse representation-based classification (SRC), uses the
Gauss kernel function to measure the similarity between samples, and overcomes the shortcomings of
sparse coding [20].

Considering sample data set X € R™", it consists of n samples, and each of the samples is
composed of an m-dimensional feature vector. Set L denotes the number of all classes in the sample
data set. The samples belonging to the Ith class can be represented by a sub-matrix X; = [511/ Sp, e, Sln,]/
where s;; means the label of the ith sample belonging to the /th class and 7; refers to the sample size of
the Ith class. Therefore, the sample matrix can be represented as X = [X1, Xp, -+, Xr].

Assuming test sample y € R" is a sample of the Ith class, y can be expressed as:

Yy ="Dbysn +bipsp + -+ byysi, ()
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This equation can be further expressed as:

y=Xp ®)

where g = [O, ~+,0,Bn, B2, s Binys 0, ,0]. As the number of samples grows larger, @ becomes
sparser, since the non-zero entries in 8 are only related to the Ith class. The key to the principle of
WSRC is to calculate the vector , which not only needs to satisfy Equation (8), but also minimize the
L1-norm of . This can be expressed as follows:

B1 = argmin||WBIl;, subject to [ly — XBll, < ¢ ©9)
where € > 0 is a threshold, and W is a block-diagonal matrix:
diag(W) = [dc(y,x1), -, dc(v, <k, )] (10)

where x{ denotes the ith sample of the jth class and d¢ (-, -) represents the Gaussian distance function:

. i 2
gy xf) = el 27 @)

where o is the Gaussian kernel width, andi =1,...,n;,j =1,...,L. Then, the type of test sample y
will be determined by the sparse representation classifier, and the formula can be described as follows:

minve (y) = lly = XG5l (12)
where c = 1,..., L. In this paper, the WSRC classifier was applied for sample classification.

4. Conclusions

In this paper, we introduce graph energy to encode protein sequences and present a novel
prediction method called PPI-GE for predicting PPIs using amino acid sequences alone. In the process
of feature extraction, we designed two new feature extraction methods: physicochemical graph energy
based on the ionization equilibrium constant and isoelectric point of amino acids and contact graph
energy based on the contact information of amino acids. In addition, the dipeptide composition
method was used to extract and supplement effective order information. These feature extraction
methods can comprehensively consider the physical and chemical properties as well as the contact and
location information of amino acids. The WSRC classifier was used as the classifier of the prediction
model. The proposed method was tested on three benchmark data sets (human, H. pylori, and yeast
data sets), two important PPI networks (Wnt-related pathway and Ras-Raf-Mek-Erk-Elk-Srf pathway),
and five independent data sets (H. pylori, H. sapien, C. elegans, M. musculus, and D. mela data sets); good
prediction results were obtained. The experimental results indicate that our proposed method is robust
and superior compared to previous methods.
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