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Abstract: Mediterranean plants, such as fig and olive leaves, are well-known to exert beneficial
effects in humans because of the presence of a wide range of bioactive compounds. However,
scarce information regarding the impact of extraction methods, such as ultrasound and types of
solvents, on their profile of antioxidant and anti-inflammatory compounds is provided. In addition,
no information is available on the effects of extraction methods and solvents on the inhibition
of pathogenic bacteria or promoting probiotic growth. In this scenario, this study was aimed
to study the effects of ultrasound-assisted extraction (UAE) and solvent on the phenolic profile
(Triple TOF-LC-MS/MS), antioxidant and anti-inflammatory compounds of olive and fig leaves.
Results showed that UAE extracted more carotenoids compared to conventional extraction, while the
conventional extraction impacted on higher flavonoids (olive leaves) and total phenolics (fig leaves).
The antioxidant capacity of aqueous extract of fig leaves was three times higher than the extract
obtained with ethanol for conventional extraction and four times higher for UAE. In general terms,
hydroethanolic extracts presented the highest bacterial growth inhibition, and showed the highest
anti-inflammatory activity. In conclusion, these side streams can be used as sources of bioactive
compounds for further development of high-added-value products.

Keywords: bioactive compounds; extraction techniques; reactive oxygen species; antioxidant methods;
anti-inflammatory response; LC-MS
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1. Introduction

From ancient times, Mediterranean plants and trees have attracted the interest of human being
due to their beneficial properties such as antiviral, anti-inflammatory, prevention of cardiovascular
diseases, and improvement of lipid metabolism to reduce obesity [1]. Most of these health-related
effects have been attributed to their high content in bioactive compounds, such as polyphenols and
carotenoids [2–4]. Among the different Mediterranean fruits, olive and fig, especially their leaves,
have attracted the consumer’s attention because of their potential use as a source of traditional
medicines, food additives, and preservatives. Additionally, some research studies showed that these
materials can be used in nutrition and pharmaceutical industries [5,6]. As has been reported,
fig leaves contain considerable amounts of antioxidants, especially phenolic compounds [1,5].
Oleuropein, hydroxytyrosol, luteolin-7-O-glucoside, verbascoside and apigenin-7-O-glucoside are the
most abundant compounds and all display biologic activities including antioxidant, antimicrobial
and antiproliferative properties [7]. Their chemical composition makes them well known for their
therapeutic and medicinal properties for a long time showing great benefits on metabolism [8].

The daily consumption of the antioxidant compounds from olive and fig leaves may reduce the
risk of non-communicable diseases, such as cardiovascular diseases by inhibiting in vivo oxidation of
low density lipoproteins [9,10]. Therefore, at this stage of development, improving/intensification of
extraction processes coupling novel technologies, such as ultrasound, to conventional treatments is
of paramount importance for consumers and food/pharmaceutical companies. Ultrasound assisted
extraction (UAE) allows either avoiding or minimizing the use of organic solvents to extract high-added
value compounds, along with other beneficial properties including the reduction of treatment time,
intensification of heat and mass transfer transport, increasing the extraction yields, better preserving
high extract quality, and reducing the energy consumption [11,12]. Thereby, ultrasound assisted
extraction (UAE) may involve energy, solvent and time savings, which have positive implications not
only on process productivity and cost reduction but also on environmental impact (Figure 1).
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Figure 1. Experimental set-up for ultrasound assisted extraction.

For instance, the studies evaluating the use of UAE at mild temperatures (<40 ◦C) from
Mediterranean plant matrices is limited. In fact, there is only one previous study addressing the impact
of UAE of polyphenols from olives leaves below room temperature [13]. The effect of UAE in liquid
media is mainly attributed to cavitation phenomena, thus promoting stirring, and also to temperature
increase associated to gas bubble implosion. However, although high temperatures could promote
polyphenols extraction by increasing diffusion and solubility it could promote the degradation of
thermolabile compounds [13,14]. Moreover, the phenomena linked to UAE are largely dependent on
the extraction solvent used, which may also modify the phenolic profile of the extract as well as its
bioactivity. In this regard, this works aims to assess the effect of conventional and ultrasound extraction
at mild temperatures on the profile of antioxidant compounds of the different extracts obtained from
dried fig and olive leaves using aqueous or hydroethanolic mixtures. Moreover, the impact of these
extracts on the antioxidant capacity and anti-inflammatory response as well as their effect on bacterial
growth, either pathogenic or potential beneficial bacteria will be evaluated.
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2. Results and Discussion

2.1. Contents of Total Phenolics, Flavonoids, and Carotenoids

The analysis of total phenolic content of different plant extracts obtained suggested that
conventional extraction was more effective compared to an ultrasound assisted extraction regardless of
solvent type (Figure 2).
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conventional (CE) or ultrasound-assisted (UAE) extraction using either aqueous (a–c) or hydroethanolic
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flavonoid content (mg catechin (CT)/g DM) (b,e) and the carotenoids content (mg carotenoids/g DM
sample) (c,f). Bars represent mean and standard error. Different letters comparing treatments represent
statistically different mean values (p < 0.05).

In particular, results showed a higher total phenolic content for conventional extraction than
for UAE. Our data displayed that the total phenolic content varied widely and ranged from 21.0
to 25.4 mg GAE/g DM for olive leaves and 11.1 to 21.2 mg GAE/g DM for fig leaves, taking into
consideration two extraction techniques and two types of solvent. The highest total phenolic content
was obtained by the conventional method in both plant extracts. Regardless of the solvent type,
olive leaves showed higher total phenolic content when extracted with hydroethanolic solutions for
both CE (25.4 mg GAE/g DM) and UAE (22.2 mg GAE/g DM) procedures, which is lower than the
results available in the literature for UAE [15–17]. The total phenolic content obtained with water
using the CE was 24.1 mg GAE/g DM, a concentration that was in line with values reported in the
literature [18]. For fig leaves, higher total phenolic contents were obtained by aqueous extraction, both
by CE and UAE (21.2 mg GAE/g DM versus 17.1 mg GAE/g DM in water-CE and hydroethanolic-CE
method, respectively). For UAE, the total phenolic content was lower: 15.8 mg GAE/g DM in water
and 11.128 mg GAE/g DM in hydroethanolic solution. Lower contents were recently described by
Mopuri, Ganjayi, Meriga, Koorbanally, and Islam [19].

The total flavonoids content was measured in both hydroethanolic and aqueous extracts of olive
and fig leaves with ultrasound assisted and conventional extractions (Figure 2). Plant extracts obtained
with the CE presented a higher (p < 0.05) total flavonoids content than extracts obtained with UAE,
except for fig leaves where with UAE water extracts showed slightly higher values (5.2 mg CT/g DM)
than in ethanol (3.7 mg CT/g DM). Hydroethanolic extracts obtained with the CE method showed a
concentration of 5.1 mg CT/g DM in ethanol and 5.0 mg CT/g DM in water. Total carotenoids content
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was influenced by the extraction method, mainly by the UAE extraction, especially for fig leaves which
aqueous extracts had shown the significant highest level of 0.16 mg carotenoids/g (Figure 2). Regarding
CE, no significant difference between two solvents was found (p > 0.05) in fig leaves. On the other
hand, the extracts obtained with UAE presented higher total carotenoid content for olive leaves (0.12
mg carotenoid/g DM in water and 0.14 mg carotenoids/g DM in ethanol).

Although the benefits of ultrasound assisted extraction are well established in the previous
literature, the results reported here confirm that its performance is strongly dependent on the process
parameters used. Furthermore, ultrasound application is not efficient for every plant equally, as well
as for extraction of certain compounds. The used process parameters were chosen from the literature
research of optimal conditions for the highest values of extracted compounds [13,15]. Ultrasound
exerts different phenomena when applied at high power in a liquid medium. The main effect of UAE
is linked to the cavitation of air bubbles which involves large local release of mechanical and thermal
energy into the medium, creating high local turbulence and temperature rise. In addition, alternating
compression and expansions produced by ultrasound wave when propagating through the liquid bulk
also increase turbulence [13,15]. Thereby, ultrasound application mainly reduces external resistance to
mass transport improving the contact between the solvent and the sold matrix. In addition, it has also
been reported the ultrasound ability to release components strongly attached to the solid matrix as
well as to speed-up the molecular internal diffusion.

2.2. Individual Phenolic Composition, Antioxidant Capacity and Anti-Inflammatory Effects

Olive leaves were rich in total phenolic content and demonstrated a good antioxidant capacity.
This is mainly caused by phenolic compounds such as oleuropein, hydroxytyrosol and verbascoside
(and derivatives), detected in the aqueous extract (Table 1) and to a much lesser extent by, for instance,
tocopherols. The antioxidant capacity results are reported in Figure 3A.

Table 1. Triple TOF-LC-MS-MS analysis of the polyphenols (mg/kg) in aqueous olive leaves extracts
obtained with conventional (CE) and ultrasound-assisted (UAE) procedures.

Compound Name Formula Expected m/z CE UAE

Oleoside 11-methylester C17H24O11 403.1246 18537 ± 151 18128 ± 290
Rhoifolin C27H30O14 577.1563 6932 ± 574 6123 ± 429

Demethyloleuropein C24H30O13 525.1614 5676 ± 317 4692 ± 143
Querc-3-O-gal-7-O-rhamnoside C27H30O16 609.1461 3555 ± 319 2651 ± 137

Phloretin xylosyl-galactoside C26H32O14 567.1719 4164 ± 222 3369 ± 124
3-Hydroxyphloretin 2-O-xylosyl-gluc C26H32O15 583.1668 ND 956 ± 57

Kaempferol 3-rutinoside C27H30O15 593.1512 ND 2682 ± 213
Kaempferol 3-O-sophoroside C27H30O16 609.1461 3555 ± 319 2651 ± 137

Verbascoside C29H36O15 623.1981 2692 ± 21 2250 ± 122
Apigenin 6-C-glucoside C21H20O10 431.0984 1956 ± 61 1593 ± 100

1-Sinapoyl-2-feruloylgentiobiose C33H40O18 723.2142 1622 ± 124 1601 ± 153
Isorhamnetin 7-O-rhamnoside C22H22O11 461.1089 1457 ± 125 1083 ± 101

Hydroxytyrosol C8H10O3 153.0557 766 ± 26 646 ± 13
Diosmin C28H32O15 607.1668 649 ± 21 548 ± 36

Kaempferol
3-O-rhamnosyl-rhamnosyl-gluc C33H40O19 739.2091 639 ± 32 616 ± 19

Hydroxytyrosol 1-O-glucoside C14H20O9 331.1035 667 ± 81 671 ± 23
Protocatechuic acid 4-O-glucoside C13H16O9 315.0722 595 ± 17 488 ± 17

Sinapoyl glucose C17H22O10 385.114 488 ± 24 ND
Matairesinol C20H22O6 357.1344 455 ± 27 506 ± 18
Kaempferol C15H10O6 285.0405 474 ± 65 216 ± 50
p-HPEA-EA C19H22O7 361.1293 350 ± 61 ND

3,4-DHPEA-EA C19H22O8 377.1242 ND 929 ± 139
3-Methylcatechol C7H8O2 123.0452 339 ± 58 ND

Quercetin 3-O-glucoside C21H20O12 463.0882 294 ± 8 171 ± 28
Oleoside dimethylester C18H26O11 417.1402 285 ± 9 201 ± 22

4-Hydroxybenzoic acid 4-O-gluc C13H16O8 299.0772 185 ± 5 156 ± 11
p-Coumaric acid C9H8O3 163.0401 170 ± 1 126 ± 23

Dihydroquercetin 3-O-glucoside C21H22O12 465.1039 163 ± 16 117 ± 12
3-Sinapoylquinic acid C18H22O10 397.114 111 ± 13 ND

Quercetin C15H10O7 301.0354 46 ± 5 ND
Rosmadial C20H24O5 343.1551 ND 79 ± 45

ND: Not detected. Querc-3-O-gal-7-O-rhamnoside: Quercetin 3-O-galactoside 7-O-rhamnoside. Gluc: glucoside.
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Figure 3. Antioxidant capacity and anti-inflammatory effects of the fig and olive leaves extracts.
Antioxidant capacity (TEAC; Trolox Equivalent Antioxidant Capacity (mmol Trolox/g dry matter)) in
(A) aqueous and (B) hydroethanolic (50:50, v/v, ethanol: water) extracts. (C) The effect of plant extracts
on the TNF-α inhibition determined in olive and fig leaves after conventional (CE) or ultrasound-assisted
(UAE) extraction. Differences (p < 0.05) between treatments are denoted by *.

In particular, extracts obtained with the conventional method presented a higher antioxidant
activity compared to the extracts obtained with UAE. Among the plants analyzed, olive leaves extracted
with ethanol/water mixture in the CE way showed the largest antioxidant activity (7.8 mmol TE) which
was indicated by their high level of phenolic compounds, so the processing of olives changes the profile
of phenolic compounds and therefore, both the organoleptic properties and the antioxidant capacity of
the product.

The aqueous extract of fig leaves showed an antioxidant capacity three times higher than the
extract obtained with ethanol for conventional extraction and four times higher for UAE. This might
be attributed to the different polarity of water, thus modifying the solubility of the different target
compounds [3,20]. Fig leaves presented the lowest antioxidant activity compared to the olive leaves
(Figure 2). The levels of phytochemical phenolics and flavonoids compounds found in figs are strongly
influenced by various factors such as the color, the part of fruit, the maturity and the drying process.
Gallic acid, chlorogenic acid, quercetin-3-rutinoside and (−)-epicatechin are the most predominant
phenolic acids and flavonoids in dried and fresh fig varieties [21] (Table 2).
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Table 2. Triple TOF-LC-MS-MS analysis of the polyphenols (mg/kg) in aqueous fig leaves extracts
obtained with conventional (CE) and ultrasound-assisted (UAE) extraction procedures.

Compound Name Formula Expected m/z CE UAE

Apigenin 6-C-glucoside
8-C-arabinoside C26H28O14 563.1406 16475 ± 2471 11765.26 ± 1038

Apigenin 6-C-glucoside C21H20O10 431.0984 886 ± 30 509 ± 112
Quercetin 3- rutinoside C27H30O16 609.1461 5008 ± 504 3539 ± 114

Rhoifolin C27H30O14 577.1563 860 ± 83 578 ± 29
3-Feruloylquinic acid C17H20O9 367.1035 2115 ± 126 417 ± 63
4-Hydroxycoumarin C9H6O3 161.0244 1280 ± 180 719 ± 157

Ferulic acid C10H10O4 193.0506 515 ± 97 292 ± 47
Kaempferol 3-O-xylosyl-glucoside C26H28O15 579.1355 864 ± 71 602 ± 86

Kaempferol
3-O-xylosyl-rutinoside C32H38O19 725.1935 ND 238 ± 27

3-Sinapoylquinic acid C18H22O10 397.114 1294 ± 73 395 ± 73
Sinapoyl glucose C17H22O10 385.114 751 ± 162 485 ± 99

Kaempferol 3-O-rhamnoside C21H20O10 431.0984 886 ± 30 509 ± 112
Kaempferol 3-O-rutinoside C27H30O15 593.1512 570 ± 16 368 ± 31

Isorhamnetin 7-O-rhamnoside C22H22O11 461.1089 511 ± 26 285 ± 37
p-Coumaroyl malic acid C13H12O7 279.051 184 ± 25 ND

Resveratrol C14H12O3 227.0714 177 ± 37 98 ± 37
Didymin C28H34O14 593.1876 145 ± 18 ND

Chrysoeriol C16H12O6 299.0561 128 ± 46 ND
Oleoside 11-methylester C17H24O11 403.1246 128 ± 15 70 ± 24
4-Hydroxybenzoic acid

4-O-glucoside C13H16O8 299.0772 104 ± 22 ND

Rosmadial C20H24O5 343.1551 60 ± 26 101 ± 80
Protocatechuic acid 4-O-glucoside C13H16O9 315.0722 187 ± 5 120 ± 14

Cyanidin
3-O-(6-succinyl-glucoside) C25H25O14 548.1172 86 ± 13 39 ± 7

Dihydrocaffeic acid C9H10O4 181.0506 29 ± 10 13 ± 5
Quercetin

3-O-glucosyl-rhamnosyl-glucoside C33H40O21 771.1989 155 ± 138 154 ± 22

Note: ND: Not detected.

The anti-inflammatory activity of fig/olive leaves extracts are shown in Figure 3C and it is possible
to observe that the hydroethanolic extracts presented higher inhibition of TNF-α compared to the
aqueous extracts. The high content of polyphenols in these extracts can easily explain this observation as
these compounds seem to modulate the secretion of pro-inflammatory markers [22]. Peyrol, Riva, and
Amiot [23] reported that the conversion of oleuropein into hydroxytyrosol (HT) has been associated
to health benefits like the improvement of lipid and glycaemia profile and also the reduction of
inflammatory processes and oxidative stress. HT is the major anti-inflammatory compound in aqueous
olive extracts in inflammatory response induced by LPS in macrophages (mediated by inhibition of NO
production, diminished secretion of cytokines and chemokines [24]. The content of HT in aqueous CE
and UAE olive extracts (766 ± 26 and 646 ± 13 mg/kg, respectively) could explain the anti-inflammatory
effect observed in our cellular model of inflammation.

The two main compounds present in aqueous leaves fig extracts, apigenin and quercetin are
flavonoids (a flavone and flavonol, respectively), strongly related to anti-inflammatory activity.
Apigenin, a flavonoid more abundant in the aqueous extract of fig leaves (Table 3) is also found in
parsley and celery and it has been described that it inhibits the LPS-induced pro-inflammatory cytokines
expression by inactivating NF-κB. Moreover, the intake of apigenin also showed immunomodulation
effects triggered by TNF-α in a mouse model of rheumatoid arthritis [25]. Quercetin, a ubiquitous
plant secondary metabolite, is found abundant in onions, broccoli, apples, grapes, wine, tea, and leafy
green vegetables, is well known as a potent antioxidant and anti-inflammatory agent. In aqueous
extracts, this flavonol was very abundant (Table 3) and could be exerting part of the anti-inflammatory
effect observed in the cell line HT-29 clone #16.
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Table 3. Effect of olive and fig leaves extracts in the growth rate and maximal optical density of
bacteria strain.

Condition Composition Method * Specific Growth
Rate (h−1)

‡MOD

Salmonella enterica

Bacteria water - 0.432 ± 0.006 a 1.407 ± 0.033 c

Bacteria EtOH - 0.484 ± 0.047 bcd 1.418 ± 0.037 c

Olive leaves
water

CE 0.334 ± 0.060 a 1.406 ± 0.064 c

UAE 0.398 ± 0.017 ab 1.362 ± 0.006 bc

EtOH
CE 0.322 ± 0.039 a 1.236 ± 0.002 ab

UAE 0.345 ± 0.005 ab 1.187 ± 0.074 a

Fig leaves
water

CE 0.515 ± 0.043 cd 1.471 ± 0.008 c

UAE 0.559 ± 0.051 d 1.457 ± 0.011 c

EtOH
CE 0.571 ± 0.014 d 1.435 ± 0.024 d

UAE 0.550 ± 0.15 d 1.369 ± 0.006 bc

Listeria innocua

Bacteria water - 0.252 ± 0.22 a 1.269 ± 0.017 abc

Bacteria EtOH - 0.248 ± 0.042 a 1.385 ± 0.003 bcd

Olive leaves
water

CE 0.316 ± 0.034 a 1.262 ± 0.037 abc

UAE 0.274 ± 0.079 a 1.208 ± 0.004 a

EtOH
CE 0.358 ± 0.058 a 1.189 ± 0.013 bcd

UAE 0.348 ± 0.063 a 1.254 ± 0.090 d

Fig leaves
water

CE 0.184 ± 0.009 a 1.383 ± 0.008 a

UAE 0.233 ± 0.034 a 1.423 ± 0.058 ab

EtOH
CE 0.235 ± 0.040 a 1.407 ± 0.033 cd

UAE 0.300 ± 0.056 a 1.391 ± 0.013 bcd

Staphylococcus aureus

Bacteria water - 0.556 ± 0.002 a 1.851 ± 0.064 a

Bacteria EtOH - 0.561 ± 0.075 a 1.882 ± 0.001 a

Olive leaves

water CE 0.580 ± 0.024 a 1.939 ± 0.033 a

UAE 0.636 ± 0.016 a 1.899 ± 0.013 a

EtOH CE 0.755 ± 0.144 a 1.970 ± 0.028 a

UAE 0.657 ± 0.031 a 1.989± 0.069 a

Fig leaves

water CE 0.638 ± 0.074 a 1.901 ± 0.031 a

UAE 0.587 ± 0.003 a 1.857 ± 0.028 a

EtOH CE 0.601 ± 0.010 a 1.851 ± 0.012 a

UAE 0.585 ± 0.006 a 1870 ± 0.045 a

Note: EtOH = Ethanol: * Method: Conventional extraction (CE) and ultrasound-assisted extraction (UAE). ‡MOD:
Maximal optical density measured at 595 nm. Different letters in the same column represent statistically significant
differences (p < 0.05).

2.3. Effect of Extracts on Bacterial Growth

Different effects on bacterial growth were observed for the extracts, which seem to depend on the
plant, solvent, methods and bacterial strain used (Tables 3 and 4).

Regardless of the extraction method, only the hydroethanolic extracts had antibacterial effect
against Salmonella enterica. The specific growth rate was reduced between 35%–29% in presence of
CE and UAE hydroethanolic extract, respectively (Table 3). Additionally, the DOmax obtained from
the antimicrobial effect of leaves olive extract against Salmonella enterica can be explained by the
presence of numerous bioactive compounds such as phenolic compounds (oleuropein, verbascoside,
quercetin-3-rutinoside, luteolin 7-glucoside). The main phenolic compounds detected in olive leaves
was oleoside, which could exert an important antibacterial effect as demonstrated by Medina,
Romero-Gil, Garrido-Fernández, and Arroyo-López [26]. This study reported the survival of pathogens
(Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and Salmonella enterica) in olive brines,
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and described that the most influential phenols on microbial survival were EDA (dialdehydic form of
decarboxymethyl elenolic acid), HyEDA (EDA linked to hydroxytyrosol), hydroxytyrosol 4-glucoside,
tyrosol, and oleoside 11-methyl ester. In addition, a review of sources and biological activities of
rhoifolin summarized the effect antimicrobial of this flavonoid compound against E. coli [27]. This is
another of the major components of olive leaves (6932 ± 574 and 61,230 ± 429 mg/kg, for CE and UAE
extraction method, respectively) that may be exerting inhibition against S. enterica.

Table 4. Effect of olive and fig leaves extracts in the growth rate and maximal optical density of probiotic
bacteria strain.

Condition Composition Method Specific Growth
Rate (h−1)

‡MOD

Lactobacillus casei

Bacteria water - 0.392 ± 0.001 a 2.797 ± 0.027 a

Bacteria EtOH - 0.383 ± 0.003 a 2.837 ± 0.018 ab

Olive leaves
water

CE 0.398 ± 0.016 a 2.857 ± 0.058 ab

UAE 0.388 ± 0.005 a 2.884 ± 0.033 ab

EtOH
CE 0.383 ± 0.008 a 2.904 ± 0.071 abc

UAE 0.398 ± 0.007 a 2.852 ± 0.083 ab

Fig leaves
water

CE 0.437 ± 0.002b 3.077 ± 0.023 c

UAE 0.441 ± 0.003b 3.024 ± 0.041 bc

EtOH
CE 0.390 ± 0.009 a 2.873 ± 0.062 ab

UAE 0.389 ± 0.007 a 2.885 ± 0.006 abc

Bifidobacterium lactis

Bacteria water – 0.234 ± 0.021 a 2.451 ± 0.052 a

Bacteria EtOH 0.236 ± 0.016 a 2.463 ± 0.095 a

Olive leaves
water

CE 0.255 ± 0.008 a 2.634 ± 0.081 a

UAE 0.223 ± 0.005 a 2.461 ± 0.013 a

EtOH
CE 0.233± 0.011 a 2.492 ± 0.047 a

UAE 0.229 ± 0.017 a 2.481 ± 0.008 a

Fig leaves

water CE 0.252 ± 0.003 a 2.481 ± 0.013 a

UAE 0.263 ± 0.007 a 2.540 ± 0.036 a

EtOH CE 0.217 ± 0.006 a 2.386 ± 0.050 a

UAE 0.234 ± 0.005 a 2.476 ± 0.012 a

Note: EtOH = Ethanol: * Method: Conventional extraction (CE) and ultrasound-assisted extraction (UAE). ‡MOD:
Maximal optical density measured at 595 nm. Different letters in the same column represent statistically significant
differences (p < 0.05).

Regarding the impact of plant extract on the growth of potential beneficial bacteria, it was
observed an improvement of the Lactobacillus casei growth in aqueous extract of fig leaves, whereas
no impact was found for Bifidobacterium lactis growth (Table 4). Many examples have been described
of the antibacterial activity of flavonoids (such as apigenin and quercetin), which were extracted in
relative high concentrations of fig leaves [28–31]. But little has been studied of a prebiotic effect of
these compounds [32]. Some studies show that polyphenols can stimulate commensal and beneficial
microbiota growth, while pathogenic strains can be inhibited [33]. In addition, Duda-Chodak [34]
demonstrated that flavonoid aglycones, but not their glycosides, may inhibit growth of some intestinal
bacteria. In this study also was observed slight stimulation of the growth of Lactobacillus spp. by
quercetin-3-rutinoside. The extract of fig leaves contains quercetin-3-rutinoside at a high concentration
(5008 ± 504 and 3539 ± 114 mg/kg, for CE and UAE methodology, respectively) that can explain
the enhanced growth of L. casei. It has been suggested that several hydrolyzed and/or derived
products from the catabolism of polyphenols by intestinal bacteria could exert both their physiological
functions in the digestive tract, as well as their prebiotic properties and their modification of the gut
microbiota [35].
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3. Materials and Methods

3.1. Plant Materials

Olive (Olea europaea) and fig (Ficus carica) leaves were collected from MonteVedat-Torrent (Valencia,
Spain) in September 2017, dried in a tunnel microwave dryer (Shandong Adasen Trade Co, JN-100,
Beijing, China) overnight for 12 h (1200 W, 70 ◦C), then milled and stored at room temperature until
being analyzed. Drying conditions were selected according to previous works due to its effect on
antioxidant bioactive properties [36,37]. The authenticity of the plant materials was confirmed by the
evaluation of the morphological structure of the leaves made by experts in the Department of Plant
Biology of the University of Valencia, Spain.

3.2. Chemical Reagents

HPLC-grade solvents (acetonitrile, methanol and formic acid), Folin–Ciocalteu reagent,
gallic acid, (+)-catechin, ABTS radical 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid),
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid, 97% purity) were purchased from
Sigma–Aldrich (St. Louis, MO, USA). De Man, Rogosa, and Sharpe (MRS) agar and broth were acquired
in Sigma-Aldrich (Darmstadt, Germany). All other chemical reagents were of analytical grade.

3.3. Solvents and Extraction Methodology

Extraction experiments were carried out using two approaches: (1) distilled water (100%, v/v) and
(2) hydro-alcoholic solution (50%, v/v). A ratio of 2% (w/v) and a total volume of 400 mL of solvent
were used for each experiment and by use of two methods: (1) UAE and (2) conventional extraction
(CE). It is noteworthy that the plant material:solvent ratio used in the current research is a preliminary
experiment. Thus, any exploitation of the plant materials should be performed under more competitive
conditions, e.g., at higher temperature or under UAE using flow-reactors.

UAE experiments were conducted using an ultrasonic probe system (UP400S, Dr. Hielscher,
Teltow, Germany) at a constant temperature of 40 ◦C. Extraction time was fixed at 10 min according to
the conditions previously described [7]. CE experiments were carried out in the same experimental
conditions but replacing the ultrasonic tip by a mechanical stirrer (F 20520162, VELP Scientifica,
Usmate Velate, Italy) at 1200 rpm. The experiments were performed according to the set-up previously
established [38].

3.4. Total Phenolic, Flavonoid and Carotenoids Contents

The total phenolic content was estimated spectrophotometrically by the Folin–Ciocalteu reaction
with some modifications [39]. Total phenolic content was expressed as milligrams of gallic acid
equivalent per gram of dry plant extract (mg GAE/g DM). The identification and quantification of the
major phenolic compounds present in the olive and fig leaves was carried out on TripleTOF™ 5600 (AB
SCIEX) LC-MS/MS system equipped with Agilent 1260 Infinity (Agilent, Waldbronn, Germany). The
MS acquisition was performed in the negative mode in the range between 80 and 1200 m/z, following
the experimental procedure and methodology described in our previous work [38]. The flavonoid
content was determined according to Sakanaka, Tachibana, and Okada [40]. (+)-Catechin was used for
the analytical curve. The results were expressed as mg of catechin equivalent (CT) per gram of dry
plant extract (mg CT/g DM). The extraction and quantification of total carotenoids was carried out in
accordance to Lee and Castle [41]. All the analyses were performed in triplicate.

3.5. Antioxidant Capacity and Anti-Inflammatory Effects

The antioxidant activity was determined using the ABTS method [42]. The results, obtained from
triplicate analyses, were expressed as mmol Trolox equivalent per gram of dry plant extract—mmol
Trolox/g. The in vitro anti-inflammatory properties of extracts were assessed using a cell-reporter
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plasmid pNiFty2-SEAP (Invivogen) in HT-29 cells (human colon adenocarcinoma). In brief, HT-29
reporter-cells were seeded at 70.000 cells/well in 96-well plates and grown 24 h before the experiment.
To analyze the NF-κB activation, cells were stimulated with/without a pro-inflammatory signal with
TNF-α (20%) in the presence or absence of extracts (10 µL from each extract). After 24 h of stimulation,
SEAP (secreted alkaline phosphatase) activity was quantified using p-nitrophenyl phosphate, as
phosphatase substrate, in the supernatant according to the manufacturer’s instructions (Thermo
Scientific, Ref.: 37620). The yellow-colored reaction products were detected using a microplate reader
(Multiskan Ascent, Thermo-Fischer Scientific, Waltham, Massachusetts, USA) at 414 nm and the results
were expressed as % of inhibition of TNF-α.

3.6. Effect of Extracts on Bacterial Growth

The effect of leaves extracts on the bacterial growth was checked by the use of specific strains
selected in base of their potential beneficial properties as probiotics and other, based on their potential
foodborne and pathogenic properties. The strains used probiotics were Lactobacillus casei BL23 and
Bifidobacterium lactis NCC2818, whereas the potential foodborne bacteria were Listeria innocua CECT
910, Salmonella enterica CECT 4138 and Staphylococcus aureus CECT 86. Probiotic strains were grown in
MRS and MRS + 0.05% L-cysteine respectively in anaerobic and static conditions to 37 ◦C during 20 h
while the potential pathogens were growth in brain heart infusion (BHI) medium in aerobic conditions
to 37 ◦C overnight.

Bacterial growth was monitored in presence or absence of 20 µL of the different extracts. Overnight
cultures for each strain were collected by centrifugation inoculated to a final optical density at 595 nm
of 0.05 in a 200 µL of broth medium in a 96 well microtiter plates and incubated at 37 ◦C. Changes in
optical density at 595 nm were registered in a POLARStar reader (BMG Labtech, Ortenberg, Germany)
and strains growth data were modelled by using the Gompertz equation [43] in order to mathematically
describe the microbial growth and compute the specific growth rate in the exponential phase and
optical density in the stationary one.

3.7. Statistical Analyses

Results were expressed as means followed by the standard deviation (n = 3). Significant differences
between the results were calculated by one-way analysis of variances (ANOVA). Tukey’s test was
applied to compare the mean values [44]. All statistical analyses were performed using the software
Statgraphics® Centurion XV (Statpoint Technologies, Inc., Virgin Islands, VI, USA).

4. Conclusions

Fig and olive leaves extract properties were dependent on extraction methodology (conventional
or ultrasonically-assisted) and the solvent (aqueous or hydroethanolic). The combination of those
factors affected the total phenolic, flavonoid and carotenoids content as well as the antioxidant and
anti-inflammatory properties as well as affected the growth of different bacterial strains. Moreover, it
seems that the use of extracts obtained from fig and olive leaves could have the potential to kill two
birds with one stone and addressing both the stimulation of commensal and beneficial microbiota
growth such as Lactobacillus, while inhibiting growth of pathogenic strains. However, it would be
necessary to study the appropriate combination of polyphenols, as it seems the activity on microbial
growth differs according to the type of polyphenol. Further research is of paramount importance in
order to address the scaling-up of the ultrasonic assisted extraction for industrial purposes. Main
aspects to be analyzed are related to the configuration of the ultrasonic emitter and the extraction
vessel, the increase of the ratio dried material-solvent and the design of the cooling system to keep
mild temperatures during the ultrasonic assisted extraction.
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for the recovery of polyphenols from Croatian olive leaves (Olea europea). Food Bioprod. Process. 2017, 106,
19–28. [CrossRef]

7. Omar, S.H.; Kerr, P.G.; Scott, C.J.; Hamlin, A.S.; Obied, H.K. Olive (Olea europaea L.) Biophenols: A
Nutriceutical against Oxidative Stress in SH-SY5Y Cells. Molecules 2017, 22, 1858. [CrossRef]

8. Rahmanian, N.; Jafari, S.M.; Wani, T.A. Bioactive profile, dehydration, extraction and application of the
bioactive components of olive leaves. Trends Food Sci. Technol. 2015, 42, 150–172. [CrossRef]

9. Bubonja-Sonje, M.; Giacometti, J.; Abram, M. Antioxidant and antilisterial activity of olive oil, cocoa and
rosemary extract polyphenols. Food Chem. 2011, 127, 1821–1827. [CrossRef]
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