Supplementary Material for:

Structure Elucidation of Prenyl- and Geranyl Substituted Coumarin Derivatives in *Gerbera piloselloides* by NMR Spectroscopy, Electronic Circular Dichroism Calculations, and Single Crystal X-ray Crystallography

Tuo Li,¹ Xue Ma,² Daniil Fedotov,³ Louise Kjaerulff,¹ Karla Frydenvang,¹ Sonia Coriani,² Paul Robert Hansen,¹ Kenneth T. Kongstad,¹ and Dan Staerk^{1,*}

¹ Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences,
 ¹ University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
 ² Engineering Research Center for the Development and Application of Ethnic Medicine and TCM,
 Guizhou Medical University, No.4 Beijing Road, Yunyan District, Guiyang 550004, People's
 Republic of China

³ Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark

*Correspondence: ds@sund.ku.dk; Tel.: +45 35336177

Table of Contents

Table S1. Retention time, name, structure, (+)HRESIMS, and ¹ H NMR data of compounds 1, 3, 4 and 7-9, 12 and 16. 7
Figure S1. Chiral separation of 6, 11, 14 and 159
Figure S2. Chiral separation of 17, 18, 19 and 2310
Figure S3. Chiral separation of 24 and 2511
Scheme 1. Possible biosynthesis of 11, 14, 15 and 17 via a [4+2] cycloaddition
Figure S4. Optimized geometries of the predominant conformers of 6a at the B3LYP/6-31G(d,p) level in CH ₃ CN (PCM)13
Table S2. Conformational analysis of 6a at 298K 14
Table S3. Cartesian coordinates of optimized 6a conformers. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)15
Figure S5. Optimized geometries of the predominant conformers of 11b at the B3LYP/6-31G(d,p) level in CH ₃ CN (PCM)20
Table S4. Conformational analysis of 11b at 298K 20
Table S5. Cartesian coordinates of optimized 11b conformers. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)21
Figure S6. Optimized geometries of the predominant conformers of 14b at the B3LYP/6-31G(d,p) level in CH ₃ CN (PCM)22
Table S6. Conformational analysis of 14b at 298K
Table S7. Cartesian coordinates of the optimized 14b conformers. B3LYP/6-31G(d,p) in CH ₃ CN (PCM) 23
Table S8. Cartesian coordinates of the optimized 15b. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)24
Table S9. Cartesian coordinates of the optimized 17b. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)25
Table S10. Cartesian coordinates of the optimized 18b. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)26
Table S11. Cartesian coordinates of the optimized 19a. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)
Figure S7. Optimized geometries of the predominant conformers of 23b at the B3LYP/6-31G(d,p) level in CH ₃ CN solvent as described by PCM
Table S12. Conformational analysis of 23b at 298K
Table S13. Cartesian coordinates of the optimized 23b conformers. B3LYP/6-31G(d,p) in CH ₃ CN (PCM) 31
Table S14. Cartesian coordinates of the optimized 24a. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)
Table S15. Cartesian coordinates of the optimized 25b. B3LYP/6-31G(d,p) in CH ₃ CN (PCM)
Figure S8. ECD spectra of 2 and 8
Figure S9. ECD spectra of 6a and 6b
Figure S10. ECD spectra of 11a and 11b
Figure S11. ECD spectra of 14a and 14b
Figure S12. ECD spectra of 15a and 15b40

Figure S13. ECD spectra of 17a and 17b	41
Figure S14. ECD spectra of 18a and 18b	
Figure S15. ECD spectra of 19a and 19b	
Figure S16. ECD spectra of 23a and 23b	
Figure S17. ECD spectra of 24a and 24b	
Figure S18. ECD spectra of 25a and 25b	
Figure S19. UV spectra obtained from HPLC-PDA-HRMS analysis of new compounds ident piloselloides	tified in <i>G.</i> 47
Figure S20. ¹ H NMR spectrum of 1 (600 MHz, methanol- <i>d</i> ₄).	
Figure S21. ¹ H NMR spectrum of 2 (600 MHz, methanol- <i>d</i> ₄)	
Figure S22. ¹³ C NMR spectrum of 2 (151 MHz, methanol- d_4)	51
Figure S23. HSQC spectrum of 2 (600 MHz, methanol-d ₄)	52
Figure S24. COSY spectrum of 2 (600 MHz, methanol- d_4))	53
Figure S25. HMBC spectrum of 2 (600 MHz, methanol- d_4)	54
Figure S26. ROESY spectrum of 2 (600 MHz, methanol- d_4)	55
Figure S27. ¹ H NMR spectrum of 3 (600 MHz, methanol- <i>d</i> ₄).	
Figure S28. COSY spectrum of 3 (600 MHz, methanol-d ₄)	57
Figure S29. HSQC spectrum of 3 (600 MHz, methanol-d ₄)	
Figure S30. ¹ H NMR spectrum of 4 (600 MHz, methanol- <i>d</i> ₄).	
Figure S31. COSY spectrum of 4 (600 MHz, methanol-d ₄)	
Figure S32. HSQC spectrum of 4 (600 MHz, methanol- <i>d</i> ₄)	61
Figure S33. ¹ H NMR spectrum of 5 (600 MHz, methanol- <i>d</i> ₄)	
Figure S34. ¹³ C NMR spectrum of 5 (151 MHz, methanol- d_4)	
Figure S35. HSQC spectrum of 5 (600 MHz, methanol- <i>d</i> ₄)	
Figure S36. COSY spectrum of 5 (600 MHz, methanol-d ₄)	
Figure S37. HMBC spectrum of 5 (600 MHz, methanol-d ₄)	
Figure S38. ROESY spectrum of 5 (600 MHz, methanol- d_4)	
Figure S39. ¹ H NMR spectrum of 6 (600 MHz, methanol- <i>d</i> ₄)	
Figure S40. ¹³ C NMR spectrum of 6 (151 MHz, methanol- d_4)	
Figure S41. HSQC spectrum of 6 (600 MHz, methanol- <i>d</i> ₄)	
Figure S42. COSY spectrum of 6 (600 MHz, methanol-d ₄)	71
Figure S43. HMBC spectrum of 6 (600 MHz, methanol-d₄)	72
Figure S44. ROESY spectrum of 6 (600 MHz, methanol- d_4)	73

Figure S45.	¹ H NMR spectrum of 7 (600 MHz, chloroform- <i>d</i>)	74
Figure S46.	COSY spectrum of 7 (600 MHz, chloroform-d)	75
Figure S47.	HQSC spectrum of 7 (600 MHz, chloroform-d)	76
Figure S48.	¹ H NMR spectrum of 8 (600 MHz, methanol- <i>d</i> ₄)	77
Figure S49.	HSQC spectrum of 8 (600 MHz, methanol- d_4)	78
Figure S50.	COSY spectrum of 8 (600 MHz, methanol-d ₄).	79
Figure S51.	HMBC spectrum of 8 (600 MHz, methanol-d ₄)	80
Figure S52.	ROESY spectrum of 8 (600 MHz, methanol-d ₄)	81
Figure S53.	¹ H NMR spectrum of 9 (600 MHz, methanol- d_4)	82
Figure S54.	HSQC spectrum of 9 (600 MHz, methanol- d_4)	83
Figure S55.	HMBC spectrum of 9 (600 MHz, methanol-d ₄)	84
Figure S56.	¹ H NMR spectrum of 10 (600 MHz, methanol- <i>d</i> ₄)	85
Figure S57.	HSQC spectrum of 10 (600 MHz, methanol-d ₄)	86
Figure S58.	COSY spectrum of 10 (600 MHz, methanol-d ₄)	87
Figure S59.	HMBC spectrum of 10 (600 MHz, methanol-d ₄)	88
Figure S60.	ROESY spectrum of 10 (600 MHz, methanol-d ₄)	89
Figure S61.	¹ H NMR spectrum of 11 (600 MHz, methanol- <i>d</i> ₄)	90
Figure S62.	¹³ C NMR spectrum of 11 (151 MHz, methanol-d ₄)	91
Figure S63.	HSQC spectrum of 11 (600 MHz, methanol-d ₄)	92
Figure S64.	COSY spectrum of 11 (600 MHz, methanol-d ₄)	93
Figure S65.	HMBC spectrum of 11 (600 MHz, methanol-d ₄)	94
Figure S66.	ROESY spectrum of 11 (600 MHz, methanol-d ₄)	95
Figure S67.	¹ H NMR spectrum of 12 (600 MHz, methanol-d ₄)	96
Figure S68.	HSQC spectrum of 12 (600 MHz, methanol-d ₄)	97
Figure S69.	COSY spectrum of 12 (600 MHz, methanol-d ₄).	98
Figure S70.	HMBC spectrum of 12 (600 MHz, methanol-d ₄)	99
Figure S71.	ROESY spectrum of 12 (600 MHz, methanol- d_4)	00
Figure S72.	¹ H NMR spectrum of 14 (600 MHz, methanol-d ₄)1	.01
Figure S73.	¹³ C NMR spectrum of 14 (151 MHz, methanol- <i>d</i> ₄)	.02
Figure S74.	HSQC spectrum of 14 (600 MHz, methanol-d ₄)1	.03
Figure S75.	COSY spectrum of 14 (600 MHz, methanol-d ₄)1	.04
Figure S76.	HMBC spectrum of 14 (600 MHz, methanol- <i>d</i> ₄)1	.05
Figure S77.	ROESY spectrum of 14 (600 MHz, methanol- d_4)	.06

Figure S78. ¹ H NMR spectrum of 15 (600 MHz, methanol- d_4)	107
Figure S79. ¹³ C NMR spectrum of 15 (151 MHz, methanol- <i>d</i> ₄)	
Figure S80. HSQC spectrum of 15 (600 MHz, methanol-d ₄)	109
Figure S81. COSY spectrum of 15 (600 MHz, methanol-d ₄)	110
Figure S82. HMBC spectrum of 15 (600 MHz, methanol-d ₄)	111
Figure S83. ROESY spectrum of 15 (600 MHz, methanol- d_4)	112
Figure S84. ¹ H NMR spectrum of 16 (600 MHz, methanol-d ₄).	113
Figure S85. ¹³ C NMR spectrum of 16 (150 MHz, methanol- <i>d</i> ₄)	114
Figure S86. COSY spectrum of 16 (600 MHz, methanol-d ₄)	115
Figure S87. HSQC spectrum of 16 (600 MHz, methanol-d ₄)	116
Figure S88. ¹ H NMR spectrum of 17 (600 MHz, methanol-d ₄)	117
Figure S89. ¹³ C NMR spectrum of 17 (151 MHz, methanol- <i>d</i> ₄)	118
Figure S90. HSQC spectrum of 17 (600 MHz, methanol-d ₄)	119
Figure S91. COSY spectrum of 17 (600 MHz, methanol-d ₄)	120
Figure S92. HMBC spectrum of 17 (600 MHz, methanol- d_4)	121
Figure S93. ROESY spectrum of 17 (600 MHz, methanol- d_4)	122
Figure S94. ¹ H NMR spectrum of 18 (600 MHz, methanol-d ₄)	123
Figure S95. J-MOD NMR spectrum of 18 (600 MHz, methanol-d ₄)	124
Figure S96. HSQC spectrum of 18 (600 MHz, methanol-d ₄)	125
Figure S97. COSY spectrum of 18 (600 MHz, methanol- d_4)	126
Figure S98. HMBC spectrum of 18 (600 MHz, methanol- d_4)	127
Figure S99. ROESY spectrum of 18 (600 MHz, methanol- d_4)	128
Figure S100. ¹ H NMR spectrum of 19 (600 MHz, methanol- d_4)	129
Figure S101. J-MOD NMR spectrum of 19 (151 MHz, methanol-d ₄)	130
Figure S102. HSQC spectrum of 19 (600 MHz, methanol-d ₄)	131
Figure S103. COSY spectrum of 19 (600 MHz, methanol- d_4)	132
Figure S104. HMBC spectrum of 19 (600 MHz, methanol-d ₄)	133
Figure S105. ROESY spectrum of 19 (600 MHz, methanol- d_4)	134
Figure S106. ¹ H NMR spectrum of 23 (600 MHz, methanol-d ₄)	135
Figure S107. ¹³ C NMR spectrum of 23 (151 MHz, methanol- <i>d</i> ₄)	136
Figure S108. HSQC spectrum of 23 (600 MHz, methanol-d₄)	137
Figure S109. COSY spectrum of 23 (600 MHz, methanol- d_4)	138
Figure S110. HMBC spectrum of 23 (600 MHz, methanol-d ₄)	139

Figure S111. ROESY spectrum of 23 (600 MHz, methanol- d_4)	. 140
Figure S112. ¹ H NMR spectrum of 24 (600 MHz, methanol- d_4)	.141
Figure S113. 13 C NMR spectrum of 24 (151 MHz, methanol- d_4)	. 142
Figure S114. HSQC spectrum of 24 (600 MHz, methanol-d ₄)	.143
Figure S115. COSY spectrum of 24 (600 MHz, methanol-d ₄)	.144
Figure S116. HMBC spectrum of 24 (600 MHz, methanol- d_4)	. 145
Figure S117. ROESY spectrum of 24 (600 MHz, methanol- d_4)	.146
Figure S118. ¹ H NMR spectrum of 25 (600 MHz, methanol- <i>d</i> ₄)	. 147
Figure S119. 13 C NMR spectrum of 25 (151 MHz, methanol- d_4)	.148
Figure S120. HSQC spectrum of 25 (600 MHz, methanol-d ₄)	. 149
Figure S121. COSY spectrum of 25 (600 MHz, methanol- d_4)	. 150
Figure S122. HMBC spectrum of 25 (600 MHz, methanol- d_4)	. 151
Figure S123. ROESY spectrum of 25 (600 MHz, methanol-d ₄)	. 152
Table S16. Crystal data, data collection and structure refinement data of 19	. 153

No.	RT (min)	Name	Structure	<i>m/z</i> (MF, ppm)	¹ H NMR (nH, m, J (in Hz)) ^{a,b}
1	18.6	Marmesin	H_{1} 9 16 5 44 4 3	255.1016 [M + H] ⁺	7.84 (1H, d, 9.4 Hz, H-4); 7.39 (1H, s, H-5); 6.71 (1H, s,
				$(C_{16}H_{15}O_3^+, \Delta M - 0.1)$	H-8); 6.18 (1H, d, 9.4 Hz, H-3); 4.75 (1H, t, 9.3 Hz, H-
					10); 3.23-3.25 (2H, m, H-9); 1.28 (3H, s, H-12); 1.22
					(3H, s, H-13)
3	28.4	7-Demethyl-	13	$231.1021 [M + H]^+$	7.82 (1H, d, 9.4 Hz, H-4); 7.28 (1H, s, H-5); 6.70 (1H, s,
		suberosin	12 11 9 5 4	$(C_{14}H_{15}O_{3}^{+}, \Delta M - 2.3)$	H-8); 6.16 (1H, d, 9.4 Hz, H-3); 5.33 (1H, t, 7.4 Hz, H-
					10); 3.32 (2H, overlapping, H-9); 1.75 (3H, s, H-12);
					1.71 (3H, s, H-13)
4	29.6	Apigravin	13	261.1118 [M + H] ⁺	7.84 (1H, d, 9.5 Hz, H-4); 6.90 (1H, s, H-5); 6.28 (1H, d,
			12 11 9 5 4	$(C_{15}H_{17}O_4^+, \Delta M \ 1.3)$	9.5 Hz, H-3); 5.27 (1H, t, 7.2 Hz, H-10); 3.89 (3H, s, 8-
				$283.094 [M + Na]^+$	<i>O</i> CH ₃); 3.37 (2H, m, H-9); 1.74 (3H, s, H-12); 1.74 (3H,
			OCH ₃	$(C_{15}H_{16}O_4Na^+, \Delta M 0.3)$	s, H-13)
7	34.1	Bothrioclinin	13 14	243.1018 [M + H] ⁺	7.36 (1H, dd, 8.3, 7.6 Hz, H-7); 7.17 (1H, d, 8.3 Hz, H-
				$(C_{15}H_{15}O_{3}^{+}, \Delta M - 0.9)$	6); 7.03 (1H, d, 7.6 Hz, H-8); 6.56 (1H, d, 10.0 Hz, H-9);
				$265.0826 \ [M + Na]^+$	5.49 (1H, d, 10.0 Hz, H-10); 2.74 (3H, s, H-12); 1.60
				$(C_{15}H_{14}O_3Na^+, \Delta M \ 3.4)$	(6H, s, H-13, H-14)
8	34.7	(+) 2-[(2 <i>R</i>)-6-acetyl-	0 12	319.1535 [M + H] ⁺	7.16 (1H, s, H-7); 6.79 (1H, s, H-4); 5.33 (1H, br s, H-
		2,3-Dihydro-5-		$(C_{18}H_{23}O_5^+, \Delta M \ 1.6)$	12); 5.29 (1H, t, 8.5 Hz, H-2), 5.24 (1H, br s, H-12); 4.72
		hydroxy-benzofuran-	9 $6 \frac{7a}{3a} \frac{2}{3} \frac{10}{11} \frac{13}{11} \frac{15}{16} \frac{16}{16}$	341.1355 [M + Na] ⁺	(1H, d, 13.3 Hz, H-11), 4.63 (1H, d, 13.3 Hz, H-11), 3.45
		2-yl]prop-2-enyl 15-	HO' V 0 117	$(C_{18}H_{22}O_5Na^+, \Delta M 1.3)$	(1H, dd, 16.9, 8.5 Hz, H-3); 3.17 (1H, dd, 16.9, 8.5, H-
		methylbutanoate			3); 2.56 (3H, s, H-9); 2.14 (2H, m, H-14), 2.00 (1H, m,
		-			H-15), 0.91 (3H, d, 5.2 Hz, H-17), 0.90 (3H, d, 5.2 Hz,
					H-16)

Table S1. Retention time, name, structure, (+)HRESIMS, and ¹H NMR data of compounds 1, 3, 4 and 7-9, 12 and 16.

7

9	35.7	3,5-Bis-(isopent-2-	0	273.1849 [M + H] ⁺	7.60 (2H, s, H-2, H-6); 5.33 (2H, t, 7.3 Hz, H-2', H-2");
		en-1-yl)-4-		$(C_{18}H_{25}O_2^+, \Delta M 0)$	3.35 (2H, br s, H-1', H-1"); 3.34 (2H, br s, H-1'. H-1");
		hydroxyacetophenone	2" 5 3 2'	295.1652 [M + Na] ⁺	2.49 (3H, s, H-8); 1.76 (6H, s, H-4', H-4"); 1.73 (6H, s,
			4" 3" 1" OH 5'	$(C_{18}H_{24}O_2Na^+, \Delta M 5.6)$	H-5', H-5")
12	38.5	6-Acetyl-2,2-	0	271.1701 [M + H] ⁺	7.64 (1H, d, 2.1 Hz, H-7); 7.53 (1H, d, 2.1 Hz, H-5); 6.42
		dimethyl-8-(3'-		$(C_{18}H_{23}O_2^+, \Delta M - 3.1)$	(1H, d, 9.9 Hz, H-4); 5.75 (1H, d, 9.9 Hz, H-3); 5.25
		methyl-2'-butenyl)-	8 2	293.1515 [M + Na] ⁺	(1H, tsep, 7.4, 1.4 Hz, H-2'); 3.28 (2H, d, 7.4 Hz, H-1');
		2H-chromen		$(C_{18}H_{22}O_2Na^+, \Delta M - 1.0)$	2.51 (3H, s, H-10); 1.74 (3H, s, H-4'); 1.73 (3H, s, H-5');
			5/ 2		1.44 (6H, s, H-11, H-12)
16	43.2	Mutisicoumarin B	16	$311.1629 [M + H]^+$	7.44 (1H, dd, 8.3, 7.5 Hz, H-7); 7.17 (1H, dd, 8.3, 1.3
			14 17	$(C_{20}H_{23}O_{3}^{+}, \Delta M 4.1)$	Hz, H-8); 7.12 (1H, dd, 7.5, 1.3 Hz, H-6); 6.50 (1H, d,
			12 19	333.1469 [M + Na] ⁺	10.1 Hz, H-9); 5.56 (1H, d, 10.1 Hz, H-10); 5.13 (1H, tq,
				$(C_{20}H_{22}O_3Na^+, \Delta M - 2.4)$	7.2, 1.4 Hz, H-14); 2.20 (2H, m, H-13); 1.88 (2H, m, H-
					12); 2.75 (3H, s, H-18); 1.57 (3H, s, H-19); 1.54 (3H, d,
					1.43 Hz, H-16); 1.52 (3H, br s, H-17)

^{*a*} NMR data obtained at 600 MHz with samples in methanol- d_4 . ^{*b*} Multiplicities reported as apparent splittings: s = singlet, d = doublet, t = triplet, q = quartet, sep = septet, m = multiplet, br = broad.

Figure S1. Chiral separation of 6, 11, 14 and 15.

91 sample			
Sample Name: Vial Number:	sample 86	Injection Volume: Channel:	20,0 UV VIS 1
Sample Type:	unknown	Wavelength:	210.0
Control Program:	45min-1,0mL_min_1A_99B	Bandwidth:	4
Quantif. Method:	Default1_do not change	Dilution Factor:	1,0000
Recording Time:	28-12-2018 20:36	Sample Weight:	1,0000
Run Time (min):	30,36	Sample Amount:	1,0000

I	No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
Į		min		mAU	mAU*min	%		
ĺ	1	10,73	n.a.	4,947	4,676	49,16	n.a.	BMB
l	2	15,61	n.a.	6,322	4,835	50,84	n.a.	BMB
l	Total:			11,270	9,511	100,00	0,000	

79 sample			
Sample Name: Vial Number:	sample 74	Injection Volume: Channel:	20,0 UV VIS 1
Sample Type:	unknown	Wavelength:	210.0
Control Program:	45min-1,0mL_min_1A_99B	Bandwidth:	4
Quantif. Method:	Default1_do not change	Dilution Factor:	1,0000
Recording Time:	19-12-2018 17:07	Sample Weight:	1,0000
Run Time (min):	23,95	Sample Amount:	1,0000

69,172

51,146

100,00

2

Total:

n.a.

n.a.

0,000

Figure S2. Chiral separation of 17, 18, 19 and 23.

0,969

2,456

1,801 100,00

BMB*

0,000

2

Total:

15,10

62 sample			
Sample Name:	sample	Injection Volume:	20,0
Vial Number:	57	Channel:	UV_VIS_1
Sample Type:	unknown	Wavelength:	210.0
Control Program:	35min-1,0mL_min_10A_90B	Bandwidth:	4
Quantif. Method:	Default1_do not change	Dilution Factor:	1,0000
Recording Time:	16-12-2018 17:52	Sample Weight:	1,0000
Run Time (min):	27,77	Sample Amount:	1,0000

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре	
	min		mAU	mAU*min	%			
1	10,67	n.a.	88,237	56,270	50,78	n.a.	BMB	
2	20,92	n.a.	53,716	54,550	49,22	n.a.	BMB	
Total:			141,953	110,820	100,00	0,000		
								_

sample	Injection Volume:	20,0
48	Channel:	UV_VIS_1
unknown	Wavelength:	210.0
35min-1,0mL_min_5A_95B	Bandwidth:	4
Default1_do not change	Dilution Factor:	1,0000
15-12-2018 20:12	Sample Weight:	1,0000
21,36	Sample Amount:	1,0000
	sample 48 unknown 35min-1,0mL_min_5A_95B Default1_do not change 15-12-2018 20:12 21,36	sample Injection Volume: 48 Channel: unknown Wavelength: 35min-1,0mL_min_5A_95B Bandwidth: Default1_do not change Dilulion Factor: 15-12-2018 20:12 Sample Weight: 21,36 Sample Amount:

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	6,33	n.a.	12,536	5,297	49,80	n.a.	BM
2	7,31	n.a.	12,162	5,339	50,20	n.a.	MB
Total:			24,697	10,636	100,00	0,000	

Figure S3. Chiral separation of 24 and 25.

91.066

74.319

100,00

n.a.

0,000

BMB

2 28,23 n.a

Total:

Scheme 1. Possible biosynthesis of 11, 14, 15 and 17 via a [4+2] cycloaddition.

Figure S4. Optimized geometries of the predominant conformers of 6a at the B3LYP/6-31G(d,p) level in CH₃CN (PCM).

Conformation	Gibbs Free Energies (in Hartree)	Boltzmann Percentage Weights (%) Population Fractions
6a- Conf-1	-1151.194235	20.16%
6a- Conf-2	-1151.194780	35.93%
6a- Conf-3	-1151.194255	20.59%
6a- Conf-4	-1151.190931	0.61%
6a -Conf-5	-1151.191999	1.88%
6a- Conf-6	-1151.190891	0.58%
6a -Conf-7	-1151.177568	0.00%
6a -Conf-8	-1151.180052	0.00%
6a -Conf-9	-1151.188758	0.06%
6a -Conf-10	-1151.194236	20.18%

 Table S2. Conformational analysis of 6a at 298K

		6a- Conf-1				6a-Conf-2	
С	4.964225	0.499828	0.568809	С	4.968104	0.475198	0.575713
С	5.269251	-0.86568	0.643671	С	5.278107	-0.89071	0.611968
С	4.297894	-1.82409	0.393086	С	4.312306	-1.8449	0.326131
С	3.009282	-1.40041	0.064366	С	3.023986	-1.41709	0.001317
С	2.683996	-0.02613	-0.01856	С	2.693784	-0.04194	-0.04209
С	3.686203	0.9478	0.241324	С	3.690318	0.927565	0.253163
0	2.096262	-2.39261	-0.1726	0	2.117555	-2.40561	-0.27287
С	0.757841	-2.15419	-0.50864	С	0.779135	-2.16248	-0.61044
С	0.406699	-0.77345	-0.59815	С	0.423394	-0.78038	-0.65511
С	1.310799	0.227874	-0.37358	С	1.321115	0.217453	-0.39593
С	-0.93728	-0.18177	-0.88961	С	-0.92369	-0.18801	-0.92847
С	-0.59486	1.341521	-0.95023	С	-0.58714	1.337962	-0.94989
0	0.812097	1.459236	-0.53156	0	0.816335	1.450865	-0.51821
С	3.407395	2.430052	0.178523	С	3.405703	2.409932	0.232174
0	0.056394	-3.13268	-0.6955	0	0.081662	-3.13364	-0.83687
0	-1.85978	-0.52574	0.153442	0	-1.84363	-0.56616	0.104837
С	-3.26675	-0.38366	-0.194	С	-3.24586	-0.4239	-0.24752
С	-3.75146	1.016743	0.174617	С	-3.74351	0.972958	0.146541
С	-2.95151	2.159574	-0.46979	С	-2.94928	2.137551	-0.46483
С	-1.45374	2.264295	-0.05502	С	-1.45417	2.239549	-0.0413
С	-3.99045	-1.54949	0.459707	С	-4.01102	-1.54685	0.427621
С	-3.59365	-2.90715	-0.06577	С	-3.77544	-1.76168	1.901523
С	-4.91279	-1.39329	1.414328	С	-4.86546	-2.2913	-0.28133
Н	-0.62371	1.694742	-1.98474	Н	-0.60974	1.713474	-1.97676
Н	-1.35611	-0.52118	-1.84395	Н	-1.34131	-0.50372	-1.89143
Н	-3.34893	-0.51139	-1.28516	Н	-3.33845	-0.54215	-1.33535
0	-1.25935	1.924577	1.318805	0	-1.26485	1.873817	1.32665
С	-0.97981	3.712862	-0.20462	С	-0.9851	3.692632	-0.15974
Н	5.740581	1.231015	0.77051	Н	5.740127	1.203107	0.804163
Н	6.276386	-1.17801	0.901089	Н	6.284755	-1.20677	0.866773
Н	4.508512	-2.88605	0.445198	Н	4.527125	-2.90709	0.347638
Н	2.627746	2.721637	0.888235	Н	3.0624	2.739578	-0.75253
Н	4.31408	2.992305	0.41202	Н	4.308405	2.968763	0.488241
Н	3.058643	2.732073	-0.81308	Н	2.620056	2.67752	0.944696
Н	-4.80058	1.114085	-0.12494	Н	-4.79133	1.059542	-0.16189
Н	-3.72106	1.13717	1.262455	Н	-3.72937	1.069503	1.237257
Н	-3.01916	2.104052	-1.56442	Н	-3.01208	2.10828	-1.56077
Н	-3.43658	3.099036	-0.18426	Н	-3.44149	3.066632	-0.15799
Н	-2.50719	-3.03664	-0.03412	Н	-4.03047	-0.87092	2.487715
Н	-4.0663	-3.71086	0.504557	Н	-2.71896	-1.97538	2.0949
Н	-3.8923	-3.01542	-1.11714	Н	-4.37285	-2.59625	2.276376
Н	-5.41176	-2.25333	1.852307	Н	-5.45273	-3.07879	0.182941
Н	-5.21089	-0.42101	1.790791	Н	-5.0134	-2.13539	-1.3466
Н	-1.45671	0.974394	1.388798	Н	-1.45186	0.920701	1.377011
Н	-1.16169	4.080299	-1.21898	Н	-1.16413	4.079813	-1.16721
Н	-1.53219	4.344846	0.496223	Н	-1.5428	4.308324	0.551318
Н	0.086376	3.79841	0.015102	Н	0.079808	3.777626	0.066245

Table S3. Cartesian coordinates of optimized 6a conformers. B3LYP/6-31G(d,p) in CH₃CN (PCM)

		6a-Conf-3				6a -Conf-4	
С	4.996574	0.48926	0.553066	С	4.919849	0.528807	0.673249
С	5.311432	-0.87573	0.580842	С	5.258502	-0.83082	0.672358
С	4.346048	-1.83201	0.300621	С	4.316171	-1.79555	0.346912
С	3.053267	-1.4071	-0.00986	С	3.022454	-1.38434	0.022514
С	2.718054	-0.03297	-0.04461	С	2.661807	-0.01623	0.020211
С	3.714226	0.938692	0.244797	С	3.635954	0.964486	0.352124
0	2.147361	-2.39748	-0.27905	0	2.140309	-2.38182	-0.29454
С	0.804995	-2.15759	-0.60196	C	0.801156	-2.15763	-0.63701
C	0.443789	-0.77659	-0.63766	C	0.415121	-0.78198	-0.65205
С	1.341182	0.223199	-0.38413	C	1.287354	0.221309	-0.34019
C	-0.9073	-0.18662	-0.89728	C	-0.95371	-0.21171	-0.88902
С	-0.57506	1.339574	-0.91644	C	-0.62404	1.312022	-0.94402
0	0.831734	1.45545	-0.49754	0	0.748893	1.450917	-0.41442
С	3.424513	2.420151	0.232707	C	3.324622	2.441684	0.36686
0	0.10859	-3.1307	-0.82423	0	0.128246	-3.14004	-0.89254
0	-1.81633	-0.56419	0.145896	0	-1.81993	-0.62417	0.156632
С	-3.21358	-0.44707	-0.18769	С	-3.2291	-0.45865	-0.11221
С	-3.72187	0.950745	0.202419	С	-3.69256	0.939769	0.289778
С	-2.93591	2.121334	-0.40738	C	-3.00812	2.089754	-0.46478
С	-1.43846	2.232426	0.00413	С	-1.50938	2.31692	-0.17135
С	-3.99117	-1.56775	0.481766	С	-3.9314	-1.6211	0.57491
С	-5.46716	-1.61618	0.166058	С	-3.57719	-2.98042	0.023614
С	-3.40403	-2.462	1.281859	С	-4.7968	-1.46394	1.581318
H	-0.60872	1.719608	-1.9413	Н	-0.56086	1.6149	-1.99388
H	-1.33427	-0.50192	-1.85607	Н	-1.38157	-0.52325	-1.85123
Н	-3.31821	-0.56725	-1.27842	Н	-3.3826	-0.58095	-1.19885
0	-1.23505	1.864264	1.369121	0	-1.32012	2.163463	1.234983
C	-0.97963	3.688762	-0.11429	C	-1.1116	3.744584	-0.59043
Н	5.768398	1.218799	0.776938	н	5.674834	1.265469	0.928953
H	6.321548	-1.18943	0.824586	Н	6.269227	-1.13316	0.92753
H	4.564495	-2.89356	0.315831	Н	4.553169	-2.85317	0.336743
Н	2.644984	2.682148	0.953984	н	2.547614	2.68232	1.098588
H	4.327813	2.980928	0.482288	Н	4.221072	3.010964	0.621746
H	3.070496	2.75267	-0.74722	Н	2.96029	2.786258	-0.60486
H	-4.76835	1.047085	-0.10364	Н	-4.77085	1.011467	0.107002
Н	-3.70608	1.033089	1.295204	Н	-3.53276	1.076192	1.362581
Н	-3.00763	2.097813	-1.50295	Н	-3.13629	1.968773	-1.54852
H	-3.43164	3.045716	-0.09198	Н	-3.53027	3.016206	-0.20174
H	-5.64387	-1.58763	-0.91646	Н	-2.49215	-3.12268	0.006531
Н	-5.91894	-2.52917	0.561183	Н	-4.03335	-3.78287	0.609074
Н	-6.00573	-0.76309	0.594929	Н	-3.92244	-3.07789	-1.01444
H	-3.97995	-3.26079	1.740414	Н	-5.27803	-2.32235	2.042141
Н	-2.34165	-2.4273	1.489969	Н	-5.06265	-0.49132	1.980648
Н	-1.42493	0.911715	1.420306	Н	-0.37086	2.25732	1.401636
Н	-1.16913	4.077454	-1.11926	Н	-1.34922	3.933368	-1.64235
Н	-1.5352	4.299204	0.602926	Н	-1.65693	4.465452	0.024315
Н	0.086578	3.779705	0.103272	Н	-0.0392	3.910297	-0.44912

		6a-Conf-5				6a- Conf-6	
С	4.915189	0.516165	0.69252	С	4.955379	0.511552	0.649991
С	5.267037	-0.83911	0.641476	С	5.299628	-0.84605	0.610552
С	4.336715	-1.79923	0.270917	С	4.359609	-1.80563	0.263809
С	3.041562	-1.38832	-0.04838	С	3.062455	-1.39172	-0.04318
С	2.667759	-0.02435	-3.5E-05	С	2.696286	-0.02539	-0.00639
С	3.629569	0.951716	0.37809	С	3.667929	0.950047	0.347319
0	2.172657	-2.38114	-0.41281	0	2.183396	-2.38431	-0.3831
С	0.832919	-2.15672	-0.75703	С	0.840776	-2.15664	-0.71286
C	0.434386	-0.78484	-0.71838	C	0.450459	-0.78212	-0.6886
C	1.293646	0.214104	-0.3615	C	1.318723	0.216135	-0.35269
C	-0.94025	-0.22087	-0.93565	C	-0.92324	-0.21381	-0.90016
C	-0.62177	1.305834	-0.94646	C	-0.60283	1.312812	-0.91202
0	0.742059	1.440294	-0.39293	0	0.772975	1.444509	-0.38828
C	3.303333	2.424106	0.448711	C	3.350208	2.424898	0.404036
0	0.170453	-3.13139	-1.05961	0	0.168119	-3.13188	-0.99062
0	-1.79989	-0.67405	0.09839	0	-1.77983	-0.65972	0.138729
C	-3.20731	-0.51884	-0.17067	C	-3.17968	-0.51495	-0.11966
C	-3.69345	0.877683	0.240441	C	-3.66079	0.877411	0.319452
C	-3.01723	2.04947	-0.48662	C	-2.98751	2.058928	-0.39411
С	-1.52578	2.286685	-0.16581	C	-1.48909	2.286879	-0.10218
С	-3.93515	-1.63108	0.564221	C	-3.9367	-1.64066	0.568574
C	-3.622	-1.81188	2.028176	C	-5.42637	-1.67988	0.322532
С	-4.82101	-2.39604	-0.08154	C	-3.31901	-2.55219	1.325284
Н	-0.54474	1.63291	-1.98826	Н	-0.54966	1.647836	-1.95258
Н	-1.36691	-0.50735	-1.9061	Н	-1.35505	-0.50107	-1.86797
Н	-3.37494	-0.64855	-1.25073	Н	-3.35174	-0.61569	-1.20639
0	-1.35543	2.104456	1.239675	0	-1.29043	2.089978	1.297377
C	-1.13556	3.726403	-0.54842	C	-1.10341	3.729651	-0.47836
Н	5.66088	1.249413	0.98299	Н	5.708557	1.244289	0.92182
Н	6.278617	-1.14166	0.893017	Н	6.31288	-1.15092	0.852372
Н	4.584294	-2.85332	0.221422	Н	4.601083	-2.86154	0.223871
Н	2.521413	2.628405	1.186327	Н	2.577227	2.642083	1.147298
Н	4.193029	2.991897	0.729283	Н	4.245878	2.991167	0.668184
Н	2.939103	2.802634	-0.51028	Н	2.977728	2.793945	-0.55553
Н	-4.77105	0.926619	0.04351	Н	-4.73803	0.952212	0.137179
Н	-3.55489	1.003681	1.317321	Н	-3.50737	0.967906	1.398849
Н	-3.12818	1.944114	-1.5739	Н	-3.12246	1.976095	-1.48064
Н	-3.55554	2.964494	-0.2159	Н	-3.51501	2.971177	-0.09416
Н	-3.86926	-0.91476	2.607967	Н	-5.65473	-1.62139	-0.74912
Н	-4.17918	-2.65243	2.449283	Н	-5.86086	-2.60317	0.713487
Н	-2.55191	-1.99347	2.171637	Н	-5.94346	-0.83912	0.799597
Н	-5.37662	-3.1775	0.42992	Н	-3.8771	-3.35652	1.79643
Н	-5.02686	-2.26411	-1.14048	Н	-2.24772	-2.52523	1.483227
Н	-0.40845	2.195146	1.420636	Н	-0.34125	2.188635	1.461947
Н	-1.36057	3.935742	-1.59921	Н	-1.34829	3.949623	-1.5225
Н	-1.69594	4.428848	0.074049	Н	-1.65007	4.427135	0.161654
Н	-0.06677	3.898486	-0.38872	Н	-0.03137	3.898208	-0.33793

		6a- Conf-7				6a -Conf-8	
С	-3.94187	-1.85823	0.672708	С	-4.16098	-1.51527	0.706216
С	-4.77487	-0.76272	0.408485	С	-4.8278	-0.30876	0.455063
С	-4.26153	0.401355	-0.14498	С	-4.15453	0.771562	-0.09677
С	-2.89669	0.460457	-0.43087	C	-2.79812	0.632875	-0.39448
С	-2.04058	-0.6355	-0.17087	C	-2.10776	-0.5768	-0.14581
С	-2.57744	-1.8249	0.393132	C	-2.80801	-1.67897	0.416561
0	-2.45106	1.630137	-0.98517	0	-2.19215	1.72841	-0.94825
С	-1.11193	1.873737	-1.31401	C	-0.83863	1.773099	-1.29976
C	-0.22257	0.793045	-1.03313	C	-0.10809	0.577464	-1.01739
C	-0.66837	-0.3994	-0.53556	C	-0.71556	-0.5384	-0.51266
С	1.271349	0.729762	-1.24876	C	1.356207	0.303598	-1.24989
С	1.474684	-0.80869	-1.15212	C	1.387464	-1.23807	-1.0281
0	0.292626	-1.33286	-0.43729	0	0.107886	-1.59422	-0.38003
C	-1.72232	-3.0314	0.697214	C	-2.13719	-2.99982	0.708475
0	-0.85344	2.960921	-1.80029	0	-0.43664	2.802927	-1.8106
0	2.07819	1.600423	-0.45054	0	2.312486	1.059129	-0.50836
С	2.241751	1.477871	0.987283	C	2.217609	1.198073	0.931492
С	3.20414	0.341813	1.367313	C	1.869863	-0.10093	1.656959
С	2.863356	-1.10294	0.980872	C	2.697979	-1.3209	1.227612
С	2.733495	-1.41668	-0.52091	С	2.550955	-1.85249	-0.2351
С	0.948988	1.629024	1.78109	C	1.384811	2.419205	1.308936
С	0.257425	2.959511	1.588406	C	1.769606	3.691882	0.595033
С	0.517155	0.744334	2.686579	C	0.426839	2.396561	2.242364
Н	1.384307	-1.21482	-2.16511	Н	1.348062	-1.73749	-2.00062
Н	1.538119	1.047049	-2.25997	Н	1.643138	0.517641	-2.2827
Н	2.799187	2.400814	1.199481	Н	3.257033	1.446595	1.191002
0	2.633679	-2.84361	-0.67505	0	2.342564	-3.27609	-0.21314
С	3.962188	-1.00664	-1.33431	С	3.844838	-1.65768	-1.0323
Н	-4.36685	-2.75822	1.105736	Н	-4.70934	-2.34702	1.136976
Н	-5.83376	-0.82511	0.638509	Н	-5.88281	-0.21808	0.693305
Н	-4.88518	1.261205	-0.3607	Н	-4.64785	1.714294	-0.30347
Н	-0.92289	-2.78955	1.403693	Н	-1.32024	-2.88588	1.427246
Н	-2.33426	-3.82551	1.130299	Н	-2.86151	-3.70436	1.122777
Н	-1.24033	-3.41959	-0.20465	Н	-1.7045	-3.43964	-0.19449
Н	4.175476	0.598296	0.931449	Н	2.056709	0.068671	2.723005
Н	3.345315	0.38574	2.453145	Н	0.804292	-0.32159	1.57447
Н	3.66189	-1.75099	1.35828	Н	3.758811	-1.11829	1.414766
Н	1.941079	-1.43158	1.469768	Н	2.433742	-2.15033	1.890936
Н	-0.74021	2.962844	2.034981	Н	2.842555	3.894084	0.706214
Н	0.843126	3.756224	2.066633	Н	1.563973	3.60843	-0.47569
Н	0.172974	3.226497	0.532806	Н	1.216083	4.54831	0.988875
Н	-0.37669	0.940865	3.272712	Н	-0.10537	3.303607	2.516005
Н	1.029783	-0.18724	2.89481	Н	0.136751	1.493558	2.768281
Н	1.861064	-3.13408	-0.16813	Н	1.498307	-3.43565	0.233847
Н	3.864062	-1.36199	-2.3642	Н	4.115758	-0.60148	-1.07305
Н	4.857331	-1.46111	-0.90048	Н	4.64958	-2.21259	-0.54201
Н	4.088217	0.07724	-1.34778	Н	3.73668	-2.04146	-2.05132

		6a -Conf-9				6a- Conf-10	
С	4.924798	0.757228	0.610139	С	4.964185	0.499908	0.568777
C	5.324729	-0.58398	0.674402	С	5.269331	-0.86558	0.643413
C	4.42874	-1.60493	0.392211	С	4.297984	-1.82403	0.392888
C	3.119583	-1.26955	0.043091	С	3.009286	-1.4004	0.064397
C	2.697996	0.079421	-0.02642	С	2.683932	-0.02615	-0.01842
C	3.624104	1.117806	0.264197	C	3.686092	0.947825	0.241502
0	2.286297	-2.32129	-0.22813	0	2.096246	-2.39262	-0.17243
C	0.942904	-2.17301	-0.59775	С	0.757886	-2.15425	-0.50852
C	0.492233	-0.81986	-0.65554	С	0.40668	-0.77354	-0.59806
C	1.315266	0.240709	-0.40034	C	1.310744	0.227825	-0.37354
C	-0.87704	-0.3264	-1.0009	C	-0.93732	-0.1819	-0.8896
C	-0.67208	1.229265	-0.94445	С	-0.59487	1.341402	-0.95038
0	0.732531	1.435634	-0.55306	0	0.812095	1.459146	-0.53183
C	3.242829	2.577537	0.214301	С	3.407139	2.430055	0.178877
0	0.318679	-3.19102	-0.83381	0	0.056427	-3.13275	-0.69539
0	-1.83475	-0.7996	-0.04393	0	-1.85979	-0.52571	0.153474
C	-3.21223	-0.7455	-0.50224	C	-3.2668	-0.38358	-0.19393
C	-3.53639	0.625949	-1.11245	C	-3.75138	1.016796	0.174876
C	-3.07436	1.86879	-0.32911	С	-2.95146	2.159577	-0.46967
С	-1.57179	1.968334	0.075303	С	-1.45366	2.264277	-0.05515
C	-4.05585	-1.2202	0.669527	C	-3.99051	-1.54949	0.459673
C	-3.62408	-2.53709	1.26914	C	-3.59366	-2.90707	-0.06595
C	-5.13259	-0.5638	1.112839	C	-4.91277	-1.39332	1.41436
Н	-0.7687	1.674742	-1.93813	Н	-0.62378	1.694536	-1.98492
Н	-1.1949	-0.64919	-1.99909	Н	-1.3561	-0.52142	-1.84391
Н	-3.31368	-1.49963	-1.30076	Н	-3.34899	-0.51116	-1.28509
0	-1.34429	1.427358	1.380155	0	-1.25915	1.924687	1.318704
С	-1.17414	3.4444	0.174313	С	-0.97975	3.712832	-0.20495
Н	5.643471	1.538912	0.834931	Н	5.740493	1.23113	0.770547
Н	6.346594	-0.82775	0.947356	Н	6.276528	-1.17786	0.900649
Н	4.713508	-2.64993	0.433812	Н	4.508661	-2.88598	0.444896
Н	2.445667	2.807633	0.927345	Н	4.313309	2.992358	0.414232
Н	4.108056	3.199437	0.453894	Н	3.060274	2.732393	-0.81333
Н	2.873083	2.863967	-0.77411	Н	2.626061	2.721233	0.887133
Н	-3.09656	0.657783	-2.11564	Н	-4.80056	1.114274	-0.12447
Н	-4.61603	0.686571	-1.28163	Н	-3.72077	1.137159	1.262714
Н	-3.32812	2.739517	-0.94332	Н	-3.01929	2.104012	-1.56429
Н	-3.63474	1.972725	0.604894	Н	-3.43645	3.099067	-0.1841
Н	-2.61546	-2.4685	1.687922	Н	-3.89211	-3.01518	-1.11738
Н	-3.59026	-3.32138	0.502313	Н	-2.5072	-3.03657	-0.03406
Н	-4.30986	-2.85588	2.057733	Н	-4.06641	-3.71086	0.504193
Н	-5.7313	-0.96531	1.925431	Н	-5.41174	-2.25337	1.852336
Н	-5.46666	0.377664	0.691375	Н	-5.21083	-0.42104	1.79087
Н	-1.58376	0.486101	1.315359	Н	-1.4569	0.974626	1.388892
Н	-1.23476	3.937055	-0.80033	Н	-1.53196	4.34486	0.495984
Н	-1.85311	3.955729	0.863003	Н	0.086495	3.798385	0.01447
Н	-0.1561	3.540344	0.556338	Н	-1.16188	4.080197	-1.21929

Figure S5. Optimized geometries of the predominant conformers of **11b** at the B3LYP/6-31G(d,p) level in CH₃CN (PCM).

 Table S4. Conformational analysis of 11b at 298K

Conformation	Gibbs Free Energies (in Hartree)	Boltzmann Percentage Weights (%) Population Fractions
11b- Conf-1	-1000.768682	88.93%
11b-Conf-2	-1000.766881	11.07%

		11b-Conf-1				11b-Conf-2	
C	4.755122	0.300156	-0.39365	С	-4.97094	0.345207	0.236045
C	4.685218	-0.95137	-1.01741	С	-4.96177	-1.02605	0.518499
C	3.479657	-1.63254	-1.08209	C	-3.77087	-1.73522	0.497549
C	2.355878	-1.03386	-0.51234	С	-2.59886	-1.04399	0.189707
C	2.388114	0.219629	0.1212	С	-2.57096	0.330548	-0.10362
C	3.635598	0.903932	0.181058	С	-3.80355	1.043004	-0.077
0	1.197403	-1.77258	-0.59258	0	-1.45452	-1.81068	0.196454
C	0.042477	-1.24886	-0.13772	С	-0.26675	-1.23622	-0.07559
C	-0.0828	-0.00437	0.403487	C	-0.1046	0.082484	-0.37183
C	1.122592	0.762154	0.68417	С	-1.26431	0.953579	-0.4408
0	1.093042	1.806071	1.356498	0	-1.15516	2.144807	-0.77876
C	3.797919	2.257026	0.831878	C	-3.89968	2.52139	-0.36988
0	-0.92544	-2.14663	-0.30417	0	0.679263	-2.16694	-0.02824
C	-2.16791	-1.9232	0.471001	C	2.092618	-1.70977	0.034108
C	-2.5816	-0.44226	0.306756	C	2.250998	-0.56214	-1.00056
C	-1.46217	0.502221	0.823919	C	1.262103	0.604399	-0.76784
C	-2.97781	-0.06986	-1.13415	C	3.677177	-0.00276	-1.18438
C	-3.50805	1.364856	-1.21008	С	4.165371	0.928489	-0.06205
C	-2.63287	2.34882	-0.47241	C	3.087046	1.829293	0.494843
C	-1.70995	1.942733	0.408611	C	1.795424	1.663426	0.181577
C	-1.88373	-2.29562	1.931332	С	2.873146	-2.95582	-0.38155
C	-3.15845	-2.91572	-0.13459	С	2.356417	-1.37077	1.503777
C	-2.86339	3.80771	-0.77195	С	3.550191	2.913904	1.433194
Н	-1.48496	0.497074	1.923754	Н	1.116371	1.099262	-1.7408
Н	-3.46146	-0.29354	0.945695	Н	1.971379	-1.029	-1.95363
Н	5.707463	0.820318	-0.35407	Н	-5.91255	0.885443	0.260117
Н	5.577607	-1.39064	-1.45197	Н	-5.88973	-1.53636	0.756502
Н	3.385608	-2.60413	-1.55387	Н	-3.72313	-2.79672	0.712796
Н	4.825653	2.608158	0.706273	Н	-4.93389	2.856394	-0.25414
Н	3.115865	2.994826	0.402527	Н	-3.26079	3.105649	0.296908
Н	3.565485	2.218331	1.899122	Н	-3.56455	2.751102	-1.38436
Н	-2.10597	-0.17219	-1.79146	Н	4.395489	-0.81333	-1.34096
Н	-3.74199	-0.75311	-1.51288	Н	3.660852	0.5685	-2.12006
Н	-4.52945	1.411937	-0.80136	Н	4.987406	1.547163	-0.44787
Н	-3.60222	1.670273	-2.26076	Н	4.613135	0.356738	0.762807
Н	-1.08318	2.675011	0.906169	Н	1.052229	2.344592	0.588003
Н	-2.79492	-2.17645	2.524729	Н	2.66177	-3.22324	-1.42061
Н	-1.56615	-3.33971	1.995466	Н	3.94724	-2.78785	-0.27583
Н	-1.10472	-1.6728	2.375167	Н	2.598013	-3.79881	0.258076
Н	-3.24217	-2.79477	-1.2156	Н	3.413458	-1.15157	1.664772
Н	-2.83321	-3.93945	0.069178	Н	1.774392	-0.5095	1.834674
Н	-4.14708	-2.77458	0.311143	Н	2.093481	-2.23396	2.12174
Н	-2.68459	4.026445	-1.8329	Н	4.087479	2.489765	2.291907
Н	-3.90501	4.090864	-0.56979	Н	4.252734	3.594621	0.9347
Н	-2.21379	4.453631	-0.17469	Н	2.713316	3.505787	1.814352

Table S5. Cartesian coordinates of optimized 11b conformers. B3LYP/6-31G(d,p) in CH₃CN (PCM)

Figure S6. Optimized geometries of the predominant conformers of **14b** at the B3LYP/6-31G(d,p) level in CH₃CN (PCM).

 Table S6. Conformational analysis of 14b at 298K

Conformation	Gibbs Free Energies (in Hartree)	Boltzmann Percentage Weights (%)
		Population Fractions
14b -Conf-1	-1001.338791	8.57%
14b-Conf-2	-1001.340836	91.43%

		14b-Conf-1				14b-Conf-2	
С	4.50405	0.826642	0.42911	С	3.67115	-1.91252	-0.21664
С	4.963438	-0.49471	0.411895	С	2.40256	-1.41496	0.07289
С	4.075702	-1.53487	0.189376	С	2.04851	-0.07039	-0.13834
С	2.728936	-1.23117	-0.01401	С	3.03294	0.81	-0.67381
С	2.235434	0.089688	0.003998	С	4.29477	0.29188	-0.95897
С	3.160936	1.151735	0.231822	С	4.61829	-1.04847	-0.73539
0	1.915159	-2.30823	-0.23315	0	1.52293	-2.31643	0.59869
С	0.55832	-2.18306	-0.48325	С	0.20632	-2.00116	0.90147
С	-0.00782	-0.8591	-0.43403	С	-0.24003	-0.66353	0.59931
C	0.796064	0.231404	-0.20843	C	0.67498	0.28324	0.2097
C	-1.47979	-0.72216	-0.77252	C	-1.70954	-0.32015	0.83457
C	-1.84015	0.753887	-1.04373	C	-2.01802	1.11771	0.3513
C	-1.12992	1.723312	-0.06524	C	-0.87042	2.06687	0.74945
0	0.325293	1.48618	-0.18485	0	0.37168	1 58386	0 11478
0	-0.04599	-3.21693	-0.72818	C	-2.65744	-1 33328	0.2138
C C	2.779369	2.614759	0.2705	C	-3 50153	-1.08569	-0 79135
C	-2.39771	-1.38808	0.239264	C	-3 55013	0.25912	-1 47158
C C	-3.61165	-0.9377	0.581564	C	-2 32992	1 12617	-1 15526
C C	-4.18546	0.333328	-0.00065	C	2.79235	2 27296	-0.96845
C	-3.37027	0.900326	-1.17473	0	-0.44553	-2.88676	1 41878
C	-1.45679	1.579191	1.425013	C	-1 03283	3 48784	0.21539
C	-1.28289	3.178475	-0.50897	C	-0.64207	2.10785	2.26553
C	-4.47908	-1.65828	1.581335	C	-4.46522	-2.12639	-1.29828
Н	5.212278	1.63098	0.601782	Н	-1.88458	-0.36622	1.91736
Н	6.016345	-0.70488	0.57094	Н	-2.91232	1.46188	0.88266
Н	4.390413	-2.57198	0.16522	Н	3.88073	-2.95744	-0.02751
Н	-1.61386	-1.26406	-1.72197	н	5.04665	0.95526	-1.37017
Н	-1.41556	1.01086	-2.02263	Н	5.61184	-1.4119	-0.96997
Н	2.313257	2.938465	-0.66316	Н	-2.6406	-2.31719	0.66644
Н	2.061609	2.826329	1.066979	Н	-4.47138	0.77889	-1.17227
Н	3.672065	3.22152	0.44013	Н	-3.63403	0.11774	-2.55553
Н	-2.03004	-2.31657	0.668726	Н	-1.46435	0.75247	-1.7122
Н	-5.21224	0.141427	-0.34148	Н	-2.51552	2.1435	-1.50303
Н	-4.29466	1.075004	0.802981	Н	1.95609	2.41628	-1.6543
Н	-3.65159	0.353224	-2.08241	Н	2.55378	2.83343	-0.06321
Н	-3.64592	1.943581	-1.35649	Н	3.6873	2.70543	-1.41814
Н	-1.30193	0.559677	1.78065	Н	-1.97869	3.9094	0.56331
Н	-0.81281	2.253368	1.996959	Н	-0.22059	4.11884	0.58153
Н	-2.49367	1.85652	1.623313	Н	-1.01888	3.51338	-0.87358
Н	-2.31298	3.515371	-0.37138	Н	-1.541	2.48238	2.76109
Н	-0.63395	3.822845	0.090011	Н	-0.4094	1.12649	2.6792
Н	-1.01509	3.297422	-1.56272	Н	0.18465	2.78189	2.49823
Н	-5.43265	-1.96258	1.130335	Н	-4.27997	-2.34996	-2.35534
Н	-3.9875	-2.55158	1.976648	Н	-4.39201	-3.05696	-0.73185
Н	-4.73154	-1.00478	2.426971	Н	-5.49861	-1.76563	-1.23283

Table S7. Cartesian coordinates of the optimized 14b conformers. B3LYP/6-31G(d,p) in CH₃CN (PCM)

С	4.899619	0.469312	-0.23382
С	4.933224	-0.84784	-0.70724
С	3.766098	-1.59196	-0.78392
С	2.575285	-0.98881	-0.37905
С	2.503588	0.328764	0.102361
С	3.712426	1.077588	0.176934
0	1.458164	-1.78859	-0.46457
С	0.247376	-1.27722	-0.16962
С	0.030069	0.014317	0.215714
С	1.175108	0.86412	0.503917
0	1.046923	1.971908	1.052349
С	3.763783	2.502866	0.673345
0	-0.65805	-2.24041	-0.31504
С	-2.0205	-2.00205	0.227646
С	-2.38901	-0.5506	-0.1285
С	-1.39795	0.462757	0.481133
С	-3.81929	-0.11136	0.212959
С	-4.12458	1.234518	-0.46782
С	-2.95955	2.202682	-0.45837
С	-1.73539	1.850192	-0.04089
С	-2.87311	-3.02625	-0.51705
С	-1.97537	-2.30417	1.726759
С	-3.25853	3.591075	-0.96388
Н	-1.54103	0.479492	1.57442
Н	-2.27769	-0.48688	-1.22073
Н	5.823038	1.038362	-0.18331
Н	5.875883	-1.28865	-1.01587
Н	3.751427	-2.61478	-1.14306
Н	3.449401	2.573813	1.717601
Н	4.781919	2.890911	0.583326
Н	3.086306	3.149892	0.110942
Н	-4.55422	-0.85583	-0.10741
Н	-3.92132	-0.01011	1.300419
Н	-4.99517	1.704925	0.008845
Н	-4.42622	1.063104	-1.5125
Н	-0.93409	2.580917	-0.03278
Н	-2.44604	-4.02515	-0.39352
Н	-2.91876	-2.79554	-1.58509
Н	-3.88997	-3.04143	-0.11864
Н	-1.26273	-1.66264	2.25039
Н	-2.96316	-2.15052	2.170159
Н	-1.68535	-3.34543	1.890913
Н	-2.36738	4.224795	-0.96031
Н	-3.65282	3.56126	-1.9884
Н	-4.02814	4.078597	-0.35107

Table S8. Cartesian coordinates of the optimized 15b. B3LYP/6-31G(d,p) in CH₃CN (PCM)

С	-4.5013	-2.183	-3.6711
С	-4.4555	-3.5145	-3.265
С	-5.1064	-3.8933	-2.1022
С	-5.7955	-2.9315	-1.3611
С	-5.865	-1.5852	-1.7315
С	-5.1952	-1.2071	-2.921
0	-6.4445	-3.4147	-0.2131
С	-7.2256	-2.5962	0.5798
С	-7.1684	-1.1407	0.3162
С	-6.6122	-0.6885	-0.8245
С	-7.8752	-0.211	1.2796
С	-7.5271	1.2605	0.9423
С	-7.6317	1.5019	-0.5728
0	-6.7099	0.6196	-1.2461
С	-7.5932	-0.4312	2.7562
С	-7.6399	0.554	3.6749
С	-7.9597	1.9851	3.3129
С	-8.3528	2.1878	1.8428
0	-7.9409	-3.0783	1.4515
С	-7.1543	2.917	-0.9399
С	-9.0365	1.3021	-1.1606
Н	-6.4656	1.4181	1.2016
Н	-8.9531	-0.3813	1.1461
С	-5.1691	0.2038	-3.4497
С	-7.3794	0.2936	5.1315
Н	-3.9837	-1.9029	-4.5874
Н	-3.9154	-4.2492	-3.856
Н	-5.0858	-4.9283	-1.7728
Н	-7.4021	-1.4458	3.0988
Н	-8.7692	2.3614	3.9494
Н	-7.0731	2.5958	3.5267
Н	-9.423	1.9804	1.719
Н	-8.2025	3.2414	1.5872
Н	-7.0666	3.0265	-2.0277
Н	-7.8345	3.6932	-0.5773
Н	-6.1548	3.1097	-0.5333
Н	-9.401	0.2792	-1.026
Н	-9.7632	1.9886	-0.7154
Н	-9.0259	1.4717	-2.244
Н	-4.7014	0.8781	-2.7254
Н	-4.5819	0.2776	-4.372
Н	-6.1811	0.5421	-3.693
Н	-7.1467	-0.7582	5.3282
Н	-6.531	0.8929	5.4774
Н	-8.2589	0.558	5.7274

Table S9. Cartesian coordinates of the optimized 17b. B3LYP/6-31G(d,p) in CH₃CN (PCM)

С	6.53727	0.34714	-0.75713
С	6.76473 -0.97659		-1.14931
С	5.71659	-1.88241	-1.17786
С	4.44501	-1.44189	-0.80885
С	4.18478	-0.11449	-0.41368
С	5.27263	0.80847	-0.38824
0	3.45653	-2.38342	-0.87437
С	2.1454	-2.12893	-0.50291
С	1.84299	-0.81206	0.00379
С	2.79902	0.17748	-0.05533
С	0.43918	-0.52524	0.50363
С	0.3816	0.87961	1.13245
С	1.1185	1.91411	0.25686
0	2.52946	1.46314	0.21397
0	1.35816	-3.05114	-0.65724
С	5.14454	2.25657	0.02806
С	-0.0634	-1.5646	1.53333
С	-1.4225	-1.19356	2.14934
С	-1.39714	0.21079	2.7476
С	-1.06015	1.21018	1.62655
С	-2.16824	1.0851	0.60187
0	-2.43337	-1.23751	1.06551
С	-2.79534	-0.12634	0.41013
С	-3.90356	-0.27316	-0.52807
С	-4.32658	0.91543	-1.15851
0	-3.73717	2.12356	-0.90493
С	-2.66333	2.27002	-0.04458
С	-4.57737	-1.48819	-0.85305
С	-5.6235	-1.43516	-1.77515
С	-6.02469	-0.23967	-2.38166
С	-5.37636	0.94637	-2.07706
0	-2.22922	3.40713	0.08954
С	-4.22191	-2.83489	-0.2646
С	-1.89021	-2.25087	3.14281
С	1.19879	3.28692	0.91856
С	0.64517	2.03747	-1.19389
Н	0.98691	0.84465	2.05009
Н	-0.24397	-0.5621	-0.35546
Н	-1.07629	2.2277	2.02257
Н	7.36979	1.04339	-0.73588
Н	7.7638	-1.29454	-1.43013
Н	5.85001	-2.91613	-1.47586
Н	6.12878	2.73067	0.01299
Н	4.4826	2.81323	-0.64008
Н	4.72784	2.35595	1.03322
Н	0.66127	-1.64451	2.35342
Н	-0.13464	-2.54647	1.06434
Н	-2.3677	0.44848	3.19523
Н	-0.64701	0.24171	3.54371
Н	-6.13917	-2.35617	-2.02826
Н	-6.84384	-0.24182	-3.09369
Н	-5.65522	1.89269	-2.5263
Н	-3.17773	-3.09704	-0.45165

Table S10. Cartesian coordinates of the optimized 18b. B3LYP/6-31G(d,p) in CH₃CN (PCM)

Н	-4.35879	-2.85279	0.81953
Н	-4.85693	-3.60675	-0.70568
Н	-1.18377	-2.3188	3.9747
Н	-2.87456	-1.99339	3.54339
Н	-1.95207	-3.23107	2.66211
Н	1.54594	3.20539	1.9529
Н	1.89516	3.9255	0.36815
Н	0.21455	3.75926	0.90678
Н	-0.34285	2.49738	-1.22514
Н	1.33687	2.68342	-1.74215
Н	0.6044	1.0724	-1.70335

С	-6.61388	-1.35549	-1.08761
С	-5.98186	-2.51813	-0.63047
С	-4.64882	-2.52113	-0.21748
С	-3.91974	-1.2988	-0.26285
С	-4.58765	-0.15095	-0.72315
С	-5.91931	-0.15687	-1.13822
С	-2.49251	-1.17431	0.130948
С	-1.92758	0.163995	0.073721
С	-2.68124	1.193826	-0.40187
0	-3.96332	1.075057	-0.79424
С	-0.46682	0.384472	0.39339
С	0.003037	1.772744	-0.11528
С	-1.04425	2.908067	0.066847
0	-2.29567	2.451779	-0.58836
0	-1.80412	-2.15054	0.474373
С	-4.04178	-3.81763	0.262787
С	-0.12149	0.085233	1.872992
С	1.321263	0.445056	2.262431
С	1.618531	1.898348	1.907241
С	1.445491	2.080435	0.392001
С	-1.44504	3.301382	1.491864
С	-0.66827	4.152018	-0.73907
0	2.245888	-0.43695	1.514189
С	2.764536	-0.05286	0.338266
С	2.423496	1.132371	-0.26756
С	2.968802	1.492721	-1.54793
0	3.875387	0.613697	-2.1177
С	4.240223	-0.56311	-1.52181
С	3.718611	-0.97167	-0.27565
С	5.161811	-1.32938	-2.23637
С	5.578705	-2.53703	-1.69995
С	5.077081	-2.9677	-0.4669
С	4.1546	-2.21795	0.264302
0	2.707728	2.502155	-2.1859
С	1.601748	0.122406	3.725725
С	3.677391	-2.77829	1.585198
Н	0.08197	-0.3616	-0.19385
Н	0.086561	1.684892	-1.2051
Н	1.720765	3.095868	0.098192
Н	-7.65203	-1.39132	-1.40233
Н	-6.54241	-3.44738	-0.59467
Н	-6.37451	0.764255	-1.48411
Н	-3.19576	-4.11859	-0.35991
Н	-4.79509	-4.60967	0.244467
Н	-3.64952	-3.72533	1.278584
Н	-0.78386	0.637402	2.547738

Table S11. Cartesian coordinates of the optimized 19a. B3LYP/6-31G(d,p) in CH₃CN (PCM)

Н	-0.2966	-0.97744	2.055222
Н	2.643861	2.1549	2.194481
Н	0.952197	2.54025	2.485294
Н	-2.26535	4.02258	1.441174
Н	-0.61492	3.781214	2.013647
Н	-1.78267	2.446642	2.080553
Н	-0.38951	3.889645	-1.7628
Н	0.170755	4.672941	-0.27229
Н	-1.51635	4.841019	-0.77186
Н	5.525462	-0.96115	-3.18891
Н	6.295033	-3.15012	-2.23758
Н	5.412932	-3.91663	-0.0606
Н	1.421903	-0.93725	3.927614
Н	2.639684	0.356303	3.978508
Н	0.94592	0.71237	4.37199
Н	2.59425	-2.92235	1.59712
Н	4.15693	-3.74261	1.769
Н	3.91263	-2.1111	2.41818

Figure S7. Optimized geometries of the predominant conformers of **23b** at the B3LYP/6-31G(d,p) level in CH₃CN solvent as described by PCM.

Conformer 1 of 23b

Conformer 2 of 23b

Table S12. Conformational analysis of **23b** at 298K

Conformation	Gibbs Free Energies (in Hartree)	Boltzmann Percentage Weights (%)
		Population Fractions
23b -Conf-1	-1000.765921	60.87
23b -Conf-2	-1000.765539	39.13

		23b-Conf-1				23b -Conf-2	
C	4.36793	0.800757	0.2986	С	4.129357	-1.05003	-0.59345
C	4.788291	-0.52969	0.401356	С	4.716074	0.208761	-0.4233
C	3.871251	-1.55938	0.264871	С	3.934283	1.297261	-0.07074
С	2.535348	-1.23639	0.024054	С	2.563971	1.105294	0.10918
С	2.081267	0.094995	-0.08129	С	1.945766	-0.15367	-0.04803
С	3.036333	1.145716	0.061407	С	2.761769	-1.26467	-0.41563
0	1.690931	-2.30577	-0.10128	0	1.858506	2.226074	0.454245
С	0.338908	-2.16446	-0.36518	С	0.484137	2.223136	0.63011
С	-0.18593	-0.82434	-0.44957	С	-0.19213	0.956533	0.50559
С	0.650175	0.258819	-0.32482	С	0.505931	-0.181	0.189013
С	-1.62685	-0.67658	-0.83489	С	-1.67578	0.932135	0.669603
С	-2.12505	0.784984	-0.94766	С	-2.27509	-0.46918	0.950056
С	-1.20676	1.831042	-0.28542	С	-1.35244	-1.68946	0.774774
0	0.218191	1.525672	-0.44034	0	-0.10769	-1.36698	0.037888
С	-2.80092	-1.00973	0.176566	С	-2.6017	1.053545	-0.62538
С	-3.27777	0.489692	0.064393	С	-3.16563	-0.38799	-0.32321
С	-1.57542	1.817478	1.218184	С	-2.14146	-2.58922	-0.18775
С	-3.06492	1.438072	1.258678	С	-2.78988	-1.61358	-1.18988
Н	-4.29268	0.571877	-0.33465	Н	-4.24051	-0.3727	-0.12046
Н	-2.40688	1.088069	-1.95827	Н	-2.80128	-0.54514	1.90441
Н	-1.77728	-1.23174	-1.76707	Н	-1.95848	1.678192	1.415387
С	-3.81416	-1.96885	-0.45812	С	-3.67374	2.131519	-0.43647
С	-2.41283	-1.52614	1.562107	С	-1.88236	1.262879	-1.95563
С	-1.3663	3.211457	-0.91233	С	-0.91829	-2.35083	2.078845
С	2.696732	2.616908	-0.02861	С	2.233963	-2.66544	-0.63107
0	-0.29883	-3.1967	-0.5109	0	-0.03748	3.299614	0.87847
Н	5.09832	1.596452	0.407138	Н	4.754473	-1.89201	-0.87398
Н	5.833545	-0.75536	0.587332	Н	5.784241	0.333358	-0.57014
Н	4.155236	-2.60317	0.336573	Н	4.349139	2.289266	0.067521
Н	-0.96878	1.060982	1.725031	Н	-1.50431	-3.34932	-0.6498
Н	-1.35877	2.777681	1.69542	Н	-2.91436	-3.10774	0.391764
Н	-3.68316	2.332496	1.119554	Н	-3.65655	-2.05231	-1.69209
Н	-3.3582	0.997523	2.216606	Н	-2.0669	-1.35256	-1.96768
Н	-4.71242	-2.05491	0.164687	Н	-4.41313	2.090561	-1.24508
Н	-3.37801	-2.96704	-0.57257	Н	-3.22643	3.131923	-0.43515
Н	-4.12773	-1.62168	-1.44904	Н	-4.20822	2.001799	0.511186
Н	-1.65702	-0.9097	2.055099	Н	-1.06904	0.550789	-2.11658
Н	-3.29113	-1.56432	2.216544	Н	-2.58507	1.164355	-2.79112
Н	-2.00858	-2.53948	1.481857	Н	-1.45021	2.268902	-1.99952
Н	-2.40177	3.54896	-0.81008	Н	-1.79562	-2.66762	2.650006
Н	-0.71655	3.938758	-0.41731	Н	-0.29886	-3.23	1.880258
Н	-1.11857	3.183466	-1.97725	Н	-0.34429	-1.65314	2.696586
н	1.972309	2.913865	0.733847	Н	3.051263	-3.32122	-0.94086
Н	2.256125	2.874707	-0.99467	Н	1.456876	-2.69433	-1.39838
Н	3.603733	3.210838	0.107356	Н	1.789894	-3.07676	0.279048

Table S13. Cartesian coordinates of the optimized **23b** conformers. B3LYP/6-31G(d,p) in CH₃CN (PCM).

С	6.654666	-0.1966	-2.11318
С	6.630926	-1.31228	-1.26781
С	5.58222	-1.54285	-0.37599
С	4.506121	-0.61104	-0.33697
С	4.563388	0.495477	-1.2003
С	5.616351	0.721579	-2.08642
С	3.329251	-0.74817	0.562059
С	2.257986	0.216411	0.362327
С	2.479757	1.291474	-0.44805
0	3.575153	1.454505	-1.21268
С	0.957518	0.141342	1.136819
С	-0.06911	1.145933	0.569905
С	0.561017	2.535444	0.328724
0	1.684411	2.34036	-0.62286
0	3.26253	-1.6332	1.431673
С	-0.36065	3.483422	-0.43072
С	1.137245	3.194233	1.583943
С	-1.3953	1.154168	1.427389
С	0.317856	-1.26546	1.145374
С	-1.09549	-1.27597	1.787539
С	-1.37171	0.045011	2.49844
0	-2.09221	-1.46371	0.69537
С	-2.86081	-0.46061	0.250922
С	-2.60371	0.852215	0.571563
С	-4.81713	0.236641	-1.00018
С	-3.98213	-0.83011	-0.60571
0	-4.59974	1.523548	-0.58998
С	-3.52494	1.891614	0.204777
0	-3.46972	3.070168	0.528298
С	-4.29276	-2.14178	-1.07155
С	-5.40826	-2.30247	-1.89447
С	-6.22057	-1.22614	-2.26866
С	-5.92934	0.05318	-1.82284
С	-3.47805	-3.36978	-0.73357
С	-1.30184	-2.49426	2.680548
С	5.633736	-2.77286	0.4987
Н	1.181988	0.402143	2.17952
Н	-0.3323	0.781429	-0.43128
Н	-1.53887	2.126363	1.902774
Н	7.488248	-0.0493	-2.79255
Н	7.451397	-2.02254	-1.30441
Н	5.599055	1.598422	-2.72372
Н	0.174367	4.406489	-0.67114
Н	-1.24251	3.72919	0.162531
Н	-0.69451	3.023194	-1.36521
Н	1.898591	2.570922	2.058886
Н	1.591022	4.154479	1.325558

Table S14. Cartesian coordinates of the optimized 24a. B3LYP/6-31G(d,p) in CH₃CN (PCM).

Н	0.344236	3.37988	2.313661
Н	0.235575	-1.64653	0.121818
Н	0.974744	-1.9454	1.687555
Н	-0.60171	0.209871	3.255881
Н	-2.33369	0.013821	3.01857
Н	-5.64866	-3.29785	-2.25473
Н	-7.07992	-1.39356	-2.91018
Н	-6.53409	0.912413	-2.08969
Н	-2.43378	-3.26072	-1.03633
Н	-3.47187	-3.56904	0.341037
Н	-3.89716	-4.24033	-1.24367
Н	-1.11301	-3.41566	2.122058
Н	-0.60582	-2.4561	3.523357
Н	-2.32287	-2.52237	3.071146
Н	5.667927	-2.50894	1.558672
Н	4.743864	-3.39421	0.372399
Н	6.518761	-3.3659	0.253227

C	-5.86526	-1.40462	-1.92256
C	-6.496	-0.16969	-2.10916
С	-5.92893	0.984509	-1.59349
С	-4.72676	0.880357	-0.89273
С	-4.0695	-0.34891	-0.68711
С	-4.66404	-1.5304	-1.22286
0	-4.23319	2.05488	-0.3986
С	-3.0351	2.139629	0.293173
С	-2.26781	0.926369	0.442699
C	-2.8165	-0.27733	0.061239
C	-0.91981	0.990897	1.132582
C	-0.18267	-0.35512	0.993835
С	-1.12293	-1.53847	1.295672
0	-2.24463	-1.45685	0.336712
0	-2.74857	3.245589	0.727786
С	-4.06767	-2.91383	-1.09198
С	0.003425	2.11414	0.605405
С	1.435875	2.037071	1.199883
С	1.481886	1.051736	2.363227
С	1.176858	-0.34961	1.79707
С	2.34571	-0.67578	0.896574
0	2.35298	1.569469	0.122831
C	2.849728	0.325254	0.099153
C	3.947978	0.080378	-0.82895
C	4.497972	-1.21821	-0.78335
0	4.044613	-2.17249	0.085817
C	2.987458	-1.95962	0.957364
C	4.493052	1.014836	-1.75829
С	5.543608	0.595765	-2.57564
C	6.070897	-0.69872	-2.50804
C	5.550088	-1.61598	-1.60935
0	2.708059	-2.88626	1.705471
C	3.993486	2.432962	-1.91722
C	1.972361	3.41816	1.559534
C	-1.72219	-1.52443	2.705013
С	-0.49464	-2.89073	0.972175
Н	1.146117	-1.07971	2.608033
Н	0.068543	-0.46088	-0.06927
Н	-1.10477	1.194877	2.19548
Н	-6.32077	-2.29918	-2.33549
Н	-7.43021	-0.11596	-2.65907
Н	-6.38532	1.960363	-1.71421
Н	-3.05754	-2.96215	-1.50579
Н	-3.99192	-3.22578	-0.04739

Table S15. Cartesian coordinates of the optimized 25b. B3LYP/6-31G(d,p) in CH₃CN (PCM).

Н	-4.69379	-3.63444	-1.62342
Н	-0.43959	3.080365	0.845269
Н	0.078368	2.056457	-0.48576
Н	0.761241	1.363427	3.123114
Н	2.468518	1.052838	2.83593
Н	5.961189	1.30146	-3.28697
Н	6.888959	-0.98517	-3.16132
Н	5.931279	-2.62739	-1.52599
Н	4.547245	2.929602	-2.71746
Н	2.928995	2.464121	-2.16217
Н	4.119344	3.01243	-0.99913
Н	1.359139	3.858044	2.351185
Н	3.005518	3.35421	1.912079
Н	1.93733	4.081628	0.690573
Н	-2.3904	-2.38002	2.832924
Н	-0.93078	-1.59795	3.456242
Н	-2.29252	-0.61281	2.89792
Н	0.357275	-3.0919	1.623371
Н	-1.23503	-3.68503	1.1018
Н	-0.14403	-2.90981	-0.06393

Figure S8. ECD spectra of 2 and 8.

Figure S9. ECD spectra of 6a and 6b.

Figure S10. ECD spectra of 11a and 11b.

Figure S11. ECD spectra of 14a and 14b.

Figure S12. ECD spectra of 15a and 15b.

Figure S13. ECD spectra of 17a and 17b.

Figure S14. ECD spectra of 18a and 18b.

Figure S15. ECD spectra of 19a and 19b.

Figure S16. ECD spectra of 23a and 23b.

Figure S17. ECD spectra of 24a and 24b.

Figure S18. ECD spectra of 25a and 25b.

Figure S19. UV spectra obtained from HPLC-PDA-HRMS analysis of new compounds identified in *G. piloselloides*.

47

Figure S20. ¹H NMR spectrum of **1** (600 MHz, methanol-*d*₄).

Figure S21. ¹H NMR spectrum of **2** (600 MHz, methanol- d_4).

Figure S22. ¹³C NMR spectrum of 2 (151 MHz, methanol- d_4).

Figure S23. HSQC spectrum of 2 (600 MHz, methanol-*d*₄).

52

Figure S24. COSY spectrum of **2** (600 MHz, methanol-*d*₄)).

Figure S25. HMBC spectrum of 2 (600 MHz, methanol-*d*₄).

₹7.8369 7.8212 €.1645 6.1489 1.7675 7.2804 6.7094 1 0.9614 0.9314 0.9501 1.0940 2.9473 2.9445 **0**00 8 [ppm] ź 5 6 4 3 7

Figure S27. ¹H NMR spectrum of **3** (600 MHz, methanol-*d*₄).

Figure S28. COSY spectrum of 3 (600 MHz, methanol-*d*₄).

Figure S29. HSQC spectrum of **3** (600 MHz, methanol-*d*₄).

Figure S30. ¹H NMR spectrum of **4** (600 MHz, methanol-*d*₄).

Figure S31. COSY spectrum of 4 (600 MHz, methanol-*d*₄).

Figure S32. HSQC spectrum of 4 (600 MHz, methanol-*d*₄).

Figure S34. ¹³C NMR spectrum of 5 (151 MHz, methanol-*d*₄).

Figure S35. HSQC spectrum of 5 (600 MHz, methanol-*d*₄).

Figure S36. COSY spectrum of 5 (600 MHz, methanol-*d*₄).

Figure S38. ROESY spectrum of 5 (600 MHz, methanol-*d*₄).

Figure S39. ¹H NMR spectrum of 6 (600 MHz, methanol- d_4).

Figure S40. ¹³C NMR spectrum of 6 (151 MHz, methanol- d_4).

Figure S41. HSQC spectrum of **6** (600 MHz, methanol-*d*₄).

Figure S42. COSY spectrum of 6 (600 MHz, methanol-*d*₄).

Figure S43. HMBC spectrum of 6 (600 MHz, methanol-*d*₄).

72

Figure S44. ROESY spectrum of 6 (600 MHz, methanol-*d*₄).

Figure S45. ¹H NMR spectrum of 7 (600 MHz, chloroform-*d*).

Figure S47. HQSC spectrum of 7 (600 MHz, chloroform-*d*).

Figure S48. ¹H NMR spectrum of **8** (600 MHz, methanol-*d*₄).

Figure S49. HSQC spectrum of 8 (600 MHz, methanol-*d*₄).

Figure S50. COSY spectrum of 8 (600 MHz, methanol-*d*₄).

Figure S51. HMBC spectrum of 8 (600 MHz, methanol-*d*₄).

Figure S52. ROESY spectrum of 8 (600 MHz, methanol-*d*₄).

Figure S53. ¹H NMR spectrum of 9 (600 MHz, methanol-*d*₄).

Figure S56. ¹H NMR spectrum of **10** (600 MHz, methanol-*d*₄).

Figure S57. HSQC spectrum of 10 (600 MHz, methanol-*d*₄).

Figure S58. COSY spectrum of 10 (600 MHz, methanol-*d*₄).

Figure S59. HMBC spectrum of 10 (600 MHz, methanol-*d*₄).

Figure S60. ROESY spectrum of 10 (600 MHz, methanol-*d*₄).

Figure S61. ¹H NMR spectrum of 11 (600 MHz, methanol-*d*₄).

Figure S62. ¹³C NMR spectrum of 11 (151 MHz, methanol-*d*₄).

Figure S63. HSQC spectrum of 11 (600 MHz, methanol-*d*₄).

Figure S64. COSY spectrum of 11 (600 MHz, methanol-*d*₄).

Figure S65. HMBC spectrum of 11 (600 MHz, methanol-*d*₄).

Figure S66. ROESY spectrum of 11 (600 MHz, methanol-*d*₄).

95

Figure S68. HSQC spectrum of 12 (600 MHz, methanol-*d*₄).

Figure S69. COSY spectrum of 12 (600 MHz, methanol-*d*₄).

Figure S70. HMBC spectrum of 12 (600 MHz, methanol-*d*₄).

Figure S71. ROESY spectrum of 12 (600 MHz, methanol-*d*₄).

Figure S72. ¹H NMR spectrum of **14** (600 MHz, methanol-*d*₄).

Figure S73. ¹³C NMR spectrum of 14 (151 MHz, methanol- d_4).

Figure S75. COSY spectrum of 14 (600 MHz, methanol-*d*₄).

104

Figure S76. HMBC spectrum of 14 (600 MHz, methanol-*d*₄).

Figure S77. ROESY spectrum of 14 (600 MHz, methanol-*d*₄).

106

Figure S78. ¹H NMR spectrum of **15** (600 MHz, methanol-*d*₄).

Figure S79. ¹³C NMR spectrum of **15** (151 MHz, methanol-*d*₄).

Figure S80. HSQC spectrum of 15 (600 MHz, methanol-*d*₄).

Figure S81. COSY spectrum of 15 (600 MHz, methanol-*d*₄).

Figure S82. HMBC spectrum of 15 (600 MHz, methanol-*d*₄).

Figure S83. ROESY spectrum of 15 (600 MHz, methanol-*d*₄).

F1 [ppm]

- N

4

ω

- 00

Figure S84. ¹H NMR spectrum of **16** (600 MHz, methanol-*d*₄).

113

Figure S87. HSQC spectrum of **16** (600 MHz, methanol-*d*₄).

Figure S88. ¹H NMR spectrum of 17 (600 MHz, methanol-*d*₄).

Figure S89. ¹³C NMR spectrum of 17 (151 MHz, methanol- d_4).

Figure S90. HSQC spectrum of 17 (600 MHz, methanol-*d*₄).

Figure S91. COSY spectrum of 17 (600 MHz, methanol-*d*₄).

Figure S92. HMBC spectrum of 17 (600 MHz, methanol-*d*₄).

Figure S93. ROESY spectrum of 17 (600 MHz, methanol-*d*₄).

122

Figure S94. ¹H NMR spectrum of **18** (600 MHz, methanol-*d*₄).

Figure S9	5. J-MOD NMF	R spectrum of 18	(600 MHz, methanol- d_4).
	-	-	

[ppm]

Figure S96. HSQC spectrum of 18 (600 MHz, methanol-*d*₄).

Figure S97. COSY spectrum of 18 (600 MHz, methanol-*d*₄).

Figure S98. HMBC spectrum of 18 (600 MHz, methanol-*d*₄).

Figure S99. ROESY spectrum of 18 (600 MHz, methanol-*d*₄).

Figure S100. ¹H NMR spectrum of **19** (600 MHz, methanol- d_4).

Figure S101. J-MOD NMR spectrum of 19 (151 MHz, methanol-*d*₄).

Figure S102. HSQC spectrum of 19 (600 MHz, methanol-*d*₄).

Figure S103. COSY spectrum of 19 (600 MHz, methanol-*d*₄).

Figure S104. HMBC spectrum of 19 (600 MHz, methanol-*d*₄).

Figure S105. ROESY spectrum of 19 (600 MHz, methanol-*d*₄).

Figure S106. ¹H NMR spectrum of 23 (600 MHz, methanol- d_4).

Figure S107. ¹³C NMR spectrum of **23** (151 MHz, methanol-*d*₄).

Figure S108. HSQC spectrum of 23 (600 MHz, methanol-*d*₄).

Figure S109. COSY spectrum of 23 (600 MHz, methanol-*d*₄).

Figure S110. HMBC spectrum of 23 (600 MHz, methanol-*d*₄).

Figure S111. ROESY spectrum of 23 (600 MHz, methanol-*d*₄).

Figure S112. ¹H NMR spectrum of **24** (600 MHz, methanol- d_4).

Figure S113. ¹³C NMR spectrum of 24 (151 MHz, methanol-*d*₄).

Figure S114. HSQC spectrum of 24 (600 MHz, methanol-*d*₄).

Figure S115. COSY spectrum of 24 (600 MHz, methanol-*d*₄).

Figure S116. HMBC spectrum of 24 (600 MHz, methanol-*d*₄).

Figure S117. ROESY spectrum of 24 (600 MHz, methanol-*d*₄).

146

Figure S119. ¹³C NMR spectrum of 25 (151 MHz, methanol- d_4).

Figure S120. HSQC spectrum of 25 (600 MHz, methanol-*d*₄).

Figure S121. COSY spectrum of 25 (600 MHz, methanol-*d*₄).

150

Figure S122. HMBC spectrum of 25 (600 MHz, methanol-*d*₄).

Figure S123. ROESY spectrum of 25 (600 MHz, methanol-*d*₄).

Parameter	Value
Formula:	C ₃₀ H ₂₈ O ₆ ; 2 CD ₃ OD
Mw (g/mol)	556.7
Temperature, K	123(2)
Crystal class	monoclinic
Space group	C2/c
Cell parameters	a = 17.720(4) Å
	b = 15.753(3) Å
	c = 20.547(4) Å
	$\beta = 107.81(3)^{\circ}$
$V(Å^3), Z$	5461(2) / 8
F(000)	2336
d _{calc} (g/cm3)	1.354
λ	1.54178 Å (CuKα)
θ _{max} (°)	$3.84 < \theta < 70.17$
Reflections total/unique	24636/5191
R _{merge}	0.0302
No. parameters	374
Reflections $(I > 2 \sigma(I))$	4591
$R1/wR2 (I > 2 \sigma(I))$	0.0357/0.0868
<i>R1/wR2</i> (all reflections)	0.0416/0.0909
Goodness-of-fit on F^2	1.037
ρ _{max} / ρ _{min} (eÅ ⁻³)	0.35 / -0.33

 Table S16. Crystal data, data collection and structure refinement data of 19