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Abstract: Trypanosoma cruzi is the aetiologic agent of Chagas disease, which affects people in the
Americas and worldwide. The parasite has a complex life cycle that alternates among mammalian
hosts and insect vectors. During its life cycle, T. cruzi passes through different environments
and faces nutrient shortages. It has been established that amino acids, such as proline, histidine,
alanine, and glutamate, are crucial to T. cruzi survival. Recently, we described that T. cruzi can
biosynthesize glutamine from glutamate and/or obtain it from the extracellular environment, and the
role of glutamine in energetic metabolism and metacyclogenesis was demonstrated. In this study,
we analysed the effect of glutamine analogues on the parasite life cycle. Here, we show that glutamine
analogues impair cell proliferation, the developmental cycle during the infection of mammalian
host cells and metacyclogenesis. Taken together, these results show that glutamine is an important
metabolite for T. cruzi survival and suggest that glutamine analogues can be used as scaffolds for the
development of new trypanocidal drugs. These data also reinforce the supposition that glutamine
metabolism is an unexplored possible therapeutic target.

Keywords: Chagas disease; Trypanosoma cruzi; azaserine; acivicin; glutamine metabolism; cell
death; differentiation

1. Introduction

Chagas disease (CD) is caused by the flagellate protist Trypanosoma cruzi and affects approximately
8 million people worldwide [1], with some 25 million further people at risk of infection. It is endemic
in the Americas where the vector transmission occurs [2]. However, cases of CD have been reported
not only in the Americas but also in Europe, Asia and Oceania, mostly due to migration of infected
people from endemic countries. Although the worldwide distribution, the CD treatment available
nowadays is based in two drugs discovered many years ago: nifurtimox and beznidazole. The effect of
these drugs is controversial, depending on the stage of disease, age and immune response of patient
and the susceptibility of the T. cruzi genotype, moreover cause many side effects and the treatment
required a prolonged course. [3–6].

T. cruzi has a complex life cycle, alternating between two hosts, a reduviid insect and many
mammalian species, including humans. During its life cycle, this parasite differentiates several times
into replicative and non-replicative forms. The insect vectors become infected during the blood meal,
when they ingest the non-replicative, infective trypomastigotes present in the host bloodstream. In the
insect midgut, the trypomastigotes differentiate into the replicative epimastigotes, which colonize the
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insect digestive tract. Once in the posterior part of the midgut, epimastigotes differentiate into infective,
non-replicative metacyclic trypomastigotes, which are later expelled with faeces during the intake of
the next blood meal. The infection of the mammalian host occurs when these parasites enter into contact
with mucosae or wounds in the skin. Once inside the host cells, metacyclic trypomastigotes must infect
the mammalian host cells to reach the host cell cytoplasm, where they differentiate into the replicative
form, the amastigotes. After intracellular proliferation, amastigotes differentiate into trypomastigotes,
passing through a transient form called the intracellular epimastigote. Trypomastigotes burst from host
cells by lysis and can (i) invade neighbouring cells, colonizing the tissue; (ii) and reach the bloodstream,
allowing the infection of other tissues; and (iii) can be ingested by a new triatomine insect during its
blood meal [3,4,7,8].

During its life cycle, T. cruzi faces different physicochemical, chemical and nutritional conditions
in each environment. In addition, the availability of energy and carbon sources is highly variable,
contributing to the selection of parasites with remarkable metabolic flexibility (reviewed elsewhere [9]).
For example, it is well documented that T. cruzi is able to consume glucose preferentially at the
beginning of the exponential proliferation phase, and after exhaustion of this metabolite, they switch to
a metabolism that is mainly based on the consumption of amino acids [10–12]. It is well known that a
variety of amino acids are robust energy sources [13–18]. In addition, amino acids are important to crucial
processes such as energy management [19], cell proliferation [20,21], cell differentiation [13,22–24],
host cell infection [15], intracellular survival [23,25], osmotic control [26] and resistance to different
types of stress conditions [14,27–29].

Glutamine (Gln) is a non-essential amino acid synthesized by most organisms. Its participation in
nitrogen metabolism inside cells has been well documented, mainly in yeast [30] and cyanobacteria [31].
In humans, this amino acid is found at high concentrations in the plasma and in skeletal muscle.
In cancer cells, Gln also has a large range of functions, acting as an ATP and carbon source for the
biosynthesis of lipids and stimulating cell proliferation, enhancing the redox potential and serving as a
substrate for nucleotide biosynthesis [32].

Gln can be internalized from the external medium and/or synthesized through the enzyme
glutamine synthetase (GS), which uses ammonium, ATP and glutamate (Glu) as substrates. In turn,
Gln is used as an amide- or amine-group donor or as a substrate, being a true metabolic hub for the
distribution of -NH2 groups through various biochemical pathways, such as those for amino sugar,
guanosine, or pyrimidine biosynthesis. [32–35]. Recently, we demonstrated that T. cruzi is able to
take up Gln from external medium [13] and synthesize it using a canonical biosynthesis pathway [36].
In those studies, we showed that the biosynthesis and uptake of Gln are developmentally regulated
according to Gln availability in the extracellular environment and cell demand. We also showed that
Gln biosynthesis participates in ammonium detoxification, which is critical for the parasite to escape
the parasitophorous vacuole during host-cell infection [13,36].

In the present study, we evaluated the impact of the Gln analogues acivicin (ACV), azaserine
(AZA) and 2,4-diaminopentanedioic acid (DPA, Figure 1) on the cell biology and life cycle of T. cruzi
according to the hypothesis that they will preferentially interfere with enzymes that recognize Gln as a
substrate, product or allosteric modulator. Our results showed that these Gln analogues impair parasite
proliferation and differentiation and affect the intracellular cycle and metacyclogenesis. Our data
demonstrated that Gln metabolism in T. cruzi can be explored as therapeutic target.
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Figure 1. Structure of Gln and its analogues. Gln analogues used to evaluate its interference in the
biological process during the T. cruzi life cycle.

2. Results

2.1. Gln analogues Impair the Proliferation of the Epimastigote Form

To determine the possible trypanocidal or trypanostatic effect of the Gln analogues on T. cruzi,
we initially evaluated their effect on epimastigote proliferation. Proliferating parasites were treated
with different concentrations of each Gln analogue (5 µM to 200 µM), and their cell densities were
observed for as many as 10 days. All the analogues showed a dose-dependent effect on parasite
proliferation. At the time corresponding to the mid-exponential growth phase (5th day of proliferation),
the concentration corresponding to 50% inhibition (IC50) was calculated, with values of 6.2 ± 1.01 µM,
6.1 ± 2.1 µM and 6.2 ± 0.72 µM for ACV, AZA and DPA, respectively (Figure 2). These results showed
that all three analogues had relevant activity against parasite proliferation at low micromolar range.
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Figure 2. The effect of the Gln analogues on the proliferation of the epimastigote form. Left panels: 
Epimastigote proliferation in LIT medium in the presence of ACV (A), AZA (B) or DPA (C) (from 0.5 µM 
to 200 µM) was observed for as many as ten days. Symbols: black circle: 0 µM; black up-pointing triangle: 
0.5 µM; black down-pointing triangle: 2.5 µM; black diamond: 5 µM; white circle: 10 µM; white square: 25 
µM; white up-pointing triangle: 50 µM; white down-pointing triangle: 100 µM; white diamond: 150 µM; 
and star: 200 µM. Inhibition control: 60 µM rotenone and 0.5 µM antimycin. Right panels: dose response 
curves derived from the proliferation curves (data from the 5th day) when the parasites were in the 
mid-exponential growth phase. Data were processed and plotted using the GraphPad Prism 6.1 software 
program. The assay was performed in biological triplicates. 
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Figure 2. The effect of the Gln analogues on the proliferation of the epimastigote form. Left panels:
Epimastigote proliferation in LIT medium in the presence of ACV (A), AZA (B) or DPA (C) (from 0.5
µM to 200 µM) was observed for as many as ten days. Symbols: black circle: 0 µM; black up-pointing
triangle: 0.5 µM; black down-pointing triangle: 2.5 µM; black diamond: 5 µM; white circle: 10 µM;
white square: 25 µM; white up-pointing triangle: 50 µM; white down-pointing triangle: 100 µM;
white diamond: 150 µM; and star: 200 µM. Inhibition control: 60 µM rotenone and 0.5 µM antimycin.
Right panels: dose response curves derived from the proliferation curves (data from the 5th day) when
the parasites were in the mid-exponential growth phase. Data were processed and plotted using the
GraphPad Prism 6.1 software program. The assay was performed in biological triplicates.

2.2. Gln analogue ACV Induces Extracellular Phosphatidylserine Exposure

Once Gln analogues impaired cell proliferation, we evaluated whether they induced
programmed cell death (PCD) or necrosis in the parasites. PCD is a process characterized by
morphological, biochemical, and cellular events, such as extracellular phosphatidylserine exposure,
DNA fragmentation, decreased ATP levels, and increased levels of ROS, Ca2+ and cytochrome c
release [37,38]. To analyse whether the treatments of cells with the Gln analogues induced PCD,
we treated epimastigotes with concentrations of the analogues equivalent to the IC50 value of each
for 48 h. After the treatments, the parasites were labelled with propidium iodide (PI) to analyse
membrane integrity and annexin V-FITC to evaluate phosphatidylserine exposure (PS) as determined
by flow cytometry (Figure 3). Although all Gln analogues impaired cell proliferation, only ACV at
a concentration corresponding to the IC50 induced PS exposure in approximately 34% of the cells.
AZA and DPA at concentrations corresponding to their respective IC50 had no detectable effect on PS
exposure. Under all conditions, the parasites maintained membrane integrity similar to that of the
control. These data suggest that treatment with ACV affects parasite metabolism, triggering PCD,
whereas AZA and DPA likely had only a trypanostatic effect.
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were washed away, and the parasites were maintained in LIT medium without Gln analogues. 
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Figure 3. The effect of Gln analogues on the extracellular phosphatidylserine exposure and membrane
integrity. Parasites in the exponential growth phase were treated with Gln analogues (IC50 value) for 48
h. After incubation, the parasites were labelled with propidium iodide (PI) and annexin V-FITC (ANX)
and analysed by flow cytometry; (A) Control, (B) ACV, (C) AZA, (D) DPA. (E) Bars correspond to three
independent mean values from three independent experiments. Error bars represent the standard
deviation among biological replicates.

2.3. Recovery of Parasites after Treatment with Gln analogues

To evaluate whether the effect of the Gln analogues is reversible, epimastigotes were treated for
48 h with Gln analogues (concentrations corresponding to their IC50 values). Then, the compounds
were washed away, and the parasites were maintained in LIT medium without Gln analogues. Parasite
proliferation was observed for as many as ten days to analyse the recovery of their proliferative
profile (Figure 4E). We also evaluated parasite cell death on the fifth day of recovery. To make these
observations, the parasites were labelled with PI and annexin V-FITC (Figure 4A–D). Surprisingly,
the obtained data showed that, in the case of ACV-induced membrane PS exposure, the PS exposure
was reversed, and in all cases, the proliferation was recovered to the expected level when the treatments
were removed. These data show that the Gln analogue effect (at the used concentrations) is trypanostatic
rather than trypanocidal.
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Figure 4. Recovery of the epimastigotes after Gln analogues treatment. The parasites were treated
for 48 h with Gln analogues (IC50 value concentration). Then, the treatment was removed, and the
parasites were cultivated in LIT medium. Proliferation was observed for as many as 10 days (E). On the
fifth day, the parasites were labelled with propidium iodide (PI) and annexin V-FITC to evaluate cell
death by flow cytometry: (A) control, (B) ACV, (C) AZA and (D) DPA. (F) Bars correspond to three
independent mean values from three independent experiments. Error bars represent the standard
deviation among biological replicates.

2.4. Effect of Gln analogues on Metacyclogenesis

Metacyclogenesis is a crucial differentiation process involving intensive cell remodelling.
This process can be performed in vitro by submitting epimastigotes to controlled (2 h) metabolic stress
in TAU medium and then supplying carbon and energy sources. Contreras et al. showed that a
combination of glucose, aspartate, glutamate and proline trigger and support this differentiation [22];
more recently, it was shown that Gln by itself is able to support metacyclogenesis to levels comparable
to those of parasites in standard medium (TAU 3AAG) [13]. To evaluate the effect of the Gln analogues
on the metacyclogenesis promoted by Gln, parasites in the epimastigote form in the stationary growth
phase were induced to differentiation in TAU-Gln in the presence of each Gln analogue (IC50 value).
The obtained data showed that the Gln analogues acted as metacyclogenesis inhibitors, decreasing
the differentiation from the epimastigote to the metacyclic trypomastigote form. The inhibition was
approximately 59%, 90% and 35% for ACV, AZA and DPA, respectively (Figure 5).
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Figure 5. Effect of Gln analogues on the metacyclogenesis process. The epimastigote parasites
(stationary growth phase) were maintained in TAU Gln medium in the presence of each Gln analogue
(IC50 value concentrations) or not (control). The differentiation was evaluated by counting in a
Neubauer chamber on the 6th day. This experiment was performed in triplicate. Statistical analysis:
One-way ANOVA followed by Tukey post-test; p < 0.05, using the GraphPad Prism 6.1 software
program. The assays were performed in biological triplicates and error bars represent the standard
deviation. We represent in this figure the level of statistical significance as follow: *** p value < 0.001;
** p value < 0.01; * p value < 0.05.

2.5. Effect of the Gln analogues on the Intracellular Infection of T. cruzi

To evaluate the effect of the Gln analogues on the infection in mammalian host cells, we initially
evaluated the analogues toxicity in CHO-K1 cells, the cell system chosen as the parasitic host cell.
The AZA and ACV analogues were toxic at concentrations above 0.5 µM, whereas the DPA analogue
had no toxic effect at concentrations up to 200 µM (Figure S1). Then, CHO-K1 cells were infected with
trypomastigotes and treated with Gln analogues at concentrations up to their toxicity limit, and the
number of trypomastigotes released into the culture medium from the infected cells was quantified.
AZA at a concentration of 0.5 µM inhibited 20% of trypomastigote burst (Figure S2). ACV and DPA
showed a dose-dependent inhibition of trypomastigote burst in the infected cells, with IC50 values of
0.152 µM and 53.3 µM, respectively (Figure 6). Given that DPA has a relevant effect on intracellular
parasites at a high concentration, our data re-establish interest in the use of ACV as a potential starting
compound for developing a trypanocidal agent against T. cruzi.Molecules 2020, 24, x 8 of 14 
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calculated using a classical sigmoidal dose-response curve, and the statistical analysis was performed
with one-way ANOVA followed by Tukey post-test p < 0.05, using the GraphPad Prism 6.1 software
program. We represent in this figure the level of statistical significance as follow: *** p value < 0.001;
** p value < 0.01; * p value < 0.05. For p value > 0.05 we consider the differences not significant (ns).

3. Discussion

In this study, we demonstrate the effect of the Gln analogues ACV, AZA and DPA on the life cycle
of T. cruzi. We had previously shown that T. cruzi can take up Gln and/or engage in biosynthesis in all
stages of the T. cruzi life cycle, except for the bloodstream trypomastigotes. We also demonstrated
that Gln supports the differentiation from the epimastigote to the metacyclic trypomastigote form,
maintaining cell viability during metacyclogenesis and participating in energy metabolism [13,36].
In addition, in T. cruzi, Gln can be the substrate for extremely important metabolic pathways of cell
survival (Figure 7).
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aminotransferase (GF6PA) activity (Figure S4). GF6PA is an enzyme that utilizes Gln as an amino
donor for glucosamine biosynthesis and is the first step in the hexosamine biosynthetic pathway (HBP).
Particularly, AZA has been described as an inhibitor of HBP, and its effects are related to glucose
homeostasis and glycosylation of proteins associated with insulin resistance in type II diabetes [39,40].
In trypanosomatids, AZA was studied many years ago mainly to assess its action as an inhibitor
of nucleic acid metabolism, with the findings demonstrating that AZA does not affect purine or
pyrimidine biosynthesis [41]. In early infections in mice with Trypanosoma equiperdum, treatment with
AZA diminished the number of parasites [42]. In this parasite, the analogue inhibits the incorporation
of sugar nucleotides, impairing nucleic acid metabolism. The same study showed that Gln and
other amino acids diminish the effects of AZA [43]. Interestingly, the findings reported herein on the
inhibition of HBP by AZA are in agreement with the absence of effects previously reported for T. cruzi
nucleic acid metabolism.

The analogue DPA also had an anti-proliferative effect on the epimastigote forms, inhibiting
GF6PA activity and impairing the intracellular cycle of the parasite. Moreover, DPA was well tolerated
by the host cell compared with other analogues studied in this study (four hundred-fold less toxicity).
Interestingly, we did not find any description in the literature about the mechanism of action for this
compound, and to our knowledge, this is the first study to report the possible cell targets for this
Gln analogue.

ACV is a Gln analogue produced by fermentation of Streptomyces sviceus and was previously
studied as a potential anticancer drug [44]. The best-known mechanism of action depends on the
inhibition of CTP synthetase, an enzyme critical for the biosynthesis of sugar nucleotides. Many side
effects were reported from the clinical trials of ACV as an anticancer drug and are explained by several
instances of off-targeting inside the cell. ACV is an inhibitor of not only Gln-dependent enzymes
but also enzymes with aldehyde dehydrogenase activity [45]. When studied in trypanosomatids,
this Gln analogue was found to act as an inhibitor of CTPs in T. brucei, and was thus proposed as a
compound useful for guiding the synthesis of new anti-T. brucei drugs [46]. Additionally, for T. brucei,
ACV was described as an inhibitor of GMP synthase, another enzyme that utilizes Gln as an amide
donor [47]. Our results showed that ACV is a T. cruzi proliferation inhibitor, specifically of those in
the epimastigote form, in a dose-dependent manner. In addition, this analogue induced extracellular
phosphatidylserine exposure, indicating that the PCD process was triggered. PCD in trypanosomatids is
a well-characterized process, and parasites can trigger PCD after drug treatment or cultivation [48–50].
Interestingly, in this case, the effect of phosphatidylserine exposure was reversed after the ACV
treatment was removed. ACV has also been shown to be effective in the intracellular cycle, diminishing
the number of burst trypomastigotes in a dose-dependent response at concentrations in the nanomolar
range. Importantly, ACV inhibits TcGF6PA activity, making TcGF6PA a putative new target for ACV.
These data suggest that, as described for T. brucei, ACV can be used as a scaffold compound to guide
the synthesis of new molecules against T. cruzi with few or no side effects in the host.

Finally, we demonstrated that Gln analogues impair the differentiation from the epimastigote to
the metacyclic trypomastigote form that had been promoted by Gln, reinforcing the importance of this
amino acid in the metacyclogenesis process. Taken together, these results showed the importance of Gln
for T. cruzi survival. Gln analogues impaired important biological processes, such as cell proliferation,
differentiation and the intracellular cycle.

4. Materials and Methods

4.1. Parasites and Mammalian Cells

The epimastigote form of the T. cruzi CL strain and 14 clones were maintained in the exponential
phase by sub-culturing every 48 h in liver infusion tryptose (LIT) medium supplemented with
heat-inactivated FCS (foetal calf serum) 10% at 28 ◦C [51]. Chinese hamster ovary cells (CHO-K1 cells)
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were maintained in RPMI medium supplemented with FCS 10%, 0.15% (w/v) NaCO3, 100 units·mL−1

penicillin and 100 g·mL−1 streptomycin in a humidified atmosphere with 5% CO2 [23].

4.2. Proliferation Inhibition Assays

T. cruzi epimastigote forms in the exponential growth phase (4.0–6.0 × 107 mL−1) were treated
with different concentrations of each analogue: ACV, AZA and DPA (purchased from Sigma-Aldrich,
San Luis, MO, USA) or not treated (negative control) in LIT medium. As a positive control, we used a
combination of rotenone (60 µM) and antimycin (0.5 µM) [28]. The parasites (2.5 × 106 mL−1) were
transferred to 96-well plates and incubated at 28 ◦C. Quantification of cell proliferation was performed
by reading the optical density (OD) at λ 620 nm for eight days. The OD values were converted
to cell numbers using a linear regression equation previously obtained under the same conditions.
The IC50 was calculated by using the cell numbers obtained in the exponential growth phase (5th
day of proliferation). To determine the IC50 value, the obtained values were fitted to a nonlinear
regression function: a sigmoidal dose-response curve [28,48]. Each compound was evaluated in
biological triplicates with technical quadruplicates in each experiment.

4.3. Extracellular Phosphatidylserine Exposure Analysis

Epimastigotes in the exponential growth phase were maintained in LIT and treated with Gln
analogues (concentrations corresponding to the IC50) for 48 h. Then, the parasites were washed in
annexin buffer (10 mM HEPES, 140 mM NaCl, and 5 mM CaCl2, pH 7.4) and resuspended in 50 µL of
annexin buffer. The cells were incubated with a mixture of propidium iodide (1 µg·µL−1) and annexin
(1 µM) for 15 min at room temperature. After incubation, the reaction was stopped by the addition of
annexin buffer (450 µL), and the cells were analysed by flow cytometry (FACSCalibur, BD Biosciences,
Franklin Lakes, NJ, USA) as previously described [48].

4.4. Effect of the Gln analogues on Metacyclogenesis

Epimastigotes were maintained in LIT medium until reaching the stationary phase (~1.0 ×
108 cells·mL−1), washed twice with PBS, resuspended in triatomine artificial urine (TAU) medium
(190 mM NaCl, 17 mM KCl, 2 mM MgCl2, 2 mM CaCl2, and 8 mM potassium phosphate buffer,
pH 6.0) [22], and incubated for 2 h at 28 ◦C. Then, the cells were centrifuged (5 min, 1600× g at room
temperature) and resuspended in TAU Gln (190 mM NaCl, 17 mM KCl, 2 mM MgCl2, 2 mM CaCl2,
8 mM potassium phosphate buffer, and 10 mM Gln, pH 6.0) [13] in the presence or absence (control)
of each Gln analogue: ACV, AZA or DPA (concentration corresponding to the IC50). On the 6th day,
after triggering metacyclogenesis, the parasites were counted in a Neubauer chamber, and the number
and percentage of the MTs were calculated.

4.5. Effect of the Gln analogues on Mammalian Cell Viability

Chinese hamster ovary cell line (CHO-K1) cells (5.0 × 105 per well) were maintained in 24-well
plates in RPMI medium supplemented with FCS (10% v/v) at 37 ◦C and 5% CO2 in the presence or
absence (control) of different concentrations of each Gln analogue for 48 h. After the incubation time,
cell viability was evaluated by MTT assay [52]. The cells were washed twice in PBS, and PBS (200 µl)
and MTT (0.25 mg/mL) were added to each well. The cells were incubated for 3 h (37 ◦C in 5% CO2),
and the reaction was stopped by the addition of SDS (200 µL of 10% SDS per well). The cells were lysed
by up and down pipetting. The viability (colorimetric reaction) was measured by spectrophotometry
at 595–690 nm in a SpectraMax i3 spectrophotometer (Molecular Devices, San Jose, CA, USA).

4.6. Effect of the Gln analogues on Trypomastigote Bursting

CHO-K1 cells (5.0 × 104 per well) were maintained in 24-well plates as described previously.
Briefly, the cells were infected with the trypomastigote form (2.5 × 106 trypomastigotes per well) for
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3 h. Then, the parasites remaining in the supernatant were removed, the cells were washed twice
with PBS, and RPMI medium was added to the culture. The infected cells were treated with different
concentrations of each Gln analogue and kept in an incubator (37 ◦C with a 5% CO2 humid atmosphere).
On the fifth day after infection, the trypomastigotes present in the supernatant were counted in a
Neubauer chamber.

Supplementary Materials: The following are available online: Figure S1: Viability of CHO-K1 cells treated with
different concentrations of ACV and DPA. Figure S2: Effect of AZA on cell viability and trypomastigote burst.
Figure S3: Effects of Gln analogues on GS activity in the extracts from the epimastigotes. Figure S4: Effects of Gln
analogues on GF6PA activity in the extracts from the epimastigotes.
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