

Supplementary materials Synthesis, Characterization and Photodynamic Activity Against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives

Ana T. P. C. Gomes ^{1,*}, Rosa Fernandes ^{2,3,*}, Carlos F. Ribeiro ^{2,3}, João P. C. Tomé ⁴, Maria G. P. M. S. Neves ¹, Fernando de C. da Silva ⁵, Vítor F. Ferreira ⁶ and José A. S. Cavaleiro ^{1,*}

- ¹ LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; gneves@ua.pt (M.G.P.M.S.N.)
- ² Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; cribeiro@fmed.uc.pt (C.F.R.)
- ³ Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal
- ⁴ CQE, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; jtome@tecnico.ulisboa.pt (J.P.C.T.)
- ⁵ Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, 24020-150, RJ, Brazil; gqofernando@yahoo.com.br (F.d.C.d.S.)
- ⁶ Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, 24241-000 RJ, Brazil; vitorferreira@id.uff.br (V.F.F.)
- * Correspondence: ana.peixoto@ua.pt (A.T.P.C.G.); rcfernandes@fmed.uc.pt (R.F.); jcavaleiro@ua.pt (J.A.S.C.); Tel.: (optional; include country code; if there are multiple corresponding authors, add author initials) +xx-xxxx-xxxx (F.L.)

Table of contents

1. Photophysical characterization of TZ-POR 7a-f and formulations PVP-TZ-POR 7a-f 2
2. Photostability studies of formulations PVP-TZ-POR 7a-f
3. ¹ H and ¹³ C NMR and HRMS spectra of TZ-POR 6a–f and 7a–f
3. Cellular uptake of PVP-TZ-POR 7a,c,d,f and PVP-TPP13
4. Cell viability of HT-1376 and ARPE-19 cells after PDT treatment with PVP-TZ-POR 7a-d, PVP-TPP and PVP
5. Dark toxicity of PVP-TZ-POR 7a-d, PVP-TPP and PVP in HT-1376 and ARPE-19 cells . 15

1. Photophysical characterization of TZ-POR 7a-f and formulations PVP-TZ-POR 7a-f

TZ- POR	λ_{\max} (nm) (log ϵ) ^a	$\lambda_{ m em}$ (nm) ^a	Stokes shift (nm)ª	${\pmb \phi}^{_F{}^{\mathrm{b}}}$	PVP-TZ- POR	λ_{\max} (nm) (log ϵ) ^a	λ _{em} (nm) ^a	Stokes shift (nm)ª	${\pmb \phi}^{_F{}^{b}}$
7a	424 (5.31)			0.14	7a	424 (5.22)	659, 726	6	0.10
	522 (4.23)		5			521 (4.16)			
	561 (3.99)	659, 728				560 (3.90)			
	599 (3.84)					598 (3.72)			
	654 (3.59)					653 (3.45)			
7b	424 (5.11)	659, 727	5	0.08	7b	424 (5.31)	659, 726	6	0.07
	521 (4.03)					521 (4.27)			
	560 (3.77)					560 (4.00)			
	598 (3.58)					598 (3.82)			
	654 (3.29)					653 (3.54)			
7c	423 (5.99)	660 <i>,</i> 727	6	0.09	7c	422 (5.65)	657 <i>,</i> 726	5	0.11
	521 (3.96)					521 (4.59)			
	561 (3.72)					560 (4.37)			
	598 (3.53)					598 (4.21)			
	654 (3.26)					652 (4.04)			
7d	423 (5.64)		5	0.13	7d	423 (5.12)	659, 727	6	0.09
	521 (4.54)	659, 726				521 (4.04)			
	560 (4.26)					559 (3.78)			
	598 (4.09)					598 (3.61)			
	654 (3.82)					653 (3.37)			
7e	423 (5.21)					423 (5.12)			
	521 (4.12)	659, 727	6	0.09	7e	521 (4.09)	659, 729	6	0.04
	560 (3.84)					559 (3.82)			
	598 (3.67)					598 (3.65)			
	653 (3.36)					653 (3.41)			
	423 (5.35)					424 (5.36)	660, 726	8	0.08
7f	521 (4.31)	659, 727	5	0.11	7f	521 (4.08)			
	560 (4.03)					560 (3.80)			

Table S1. Photophysical data of TZ-POR 7a–f and formulations PVP-TZ-POR 7a–f.

598 (3.86)	598 (3.61)
654 (3.58)	652 (3.28)

^a in DMF/H₂0 (9:1)

^b **TPP** in DMF as reference ($\phi_F = 0.12$)

2. Photostability Studies of Formulations PVP-TZ-POR 7a-f

Table S2. Photostability of 10 μ M of PVP-TZ-POR **7a–f**, after irradiation with white light at a fluence rate of 20 mW.cm⁻² for different periods of time (0-60 min).*

	λ (nm)]	Irradiation Time (min)						
P5		0	10	20	30	40	50	60	
PVP-TZ-POR 7a	420	100	96	94	93	92	90	89	
PVP-TZ-POR 7b	420	100	97	95	93	92	90	89	
PVP-TZ-POR 7c	420	100	96	94	92	91	89	88	
PVP-TZ-POR 7d	420	100	96	94	93	91	90	91	
PVP-TZ-POR 7e	420	100	98	96	95	94	94	94	
PVP-TZ-POR 7f	420	100	95	94	93	91	91	91	
PVP-TPP	420	100	98	97	97	96	95	95	

*The results are presented in percentage calculated by the ratio of residual absorbance at 420 nm at different periods of time and absorbance before irradiation.

3. ¹H and ¹³C NMR and HRMS spectra of TZ-POR 6a–f and 7a–f

Figure S2. ¹³C NMR of TZ-POR 6a in CDCl₃.

Figure S4. ¹³C NMR of TZ-POR 6b in CDCl₃.

Figure S6. ¹³C NMR of TZ-POR 6c in CDCl₃ and DMSO-d₆.

Figure S8. ¹³C NMR of TZ-POR 6d in CDCl₃.

3. Cellular Uptake of PVP-TZ-POR 7a,c,d,f and PVP-TPP

Figure S19. Intracellular uptake of PVP-TZ-POR **7a,c,d,f** and PVP-TPP by HT-1376 and ARPE-19 cells. Data are the mean \pm S.D. of at least three independent experiments performed in triplicates. *(p < 0.05), **(p < 0.01), ***(p < 0.001), significantly different from uptake of PSs.

Figure S20. Representative fluorescence images of HT-1376 and ARPE-19 cell lines incubated with 10 μ M of PSs PVP-TZ-POR **7a,c,d,f** and PVP-TPP (red) for 4 h in darkness and cell nucleus stained with DAPI (blue). *Scale bars* 20 μ m.

4. Cell Viability of HT-1376 and ARPE-19 Cells After PDT Treatment with PVP-TZ-POR 7a-d, PVP-TPP and PVP

Figure S21. Cell survival of HT-1376 and ARPE-19 cells, incubated in the dark during 4 h with PSs PVP-TZ-POR **7a-d**, PVP-TPP and PVP at different concentrations and irradiated with white light for 40 min with an irradiance of 20 mW.cm⁻². Data are the mean value ± S.D. of at least three independent experiments performed in triplicates. *(p < 0.05), **(p < 0.01), ***(p < 0.001), significantly different from MTT reduction (%).

5. Dark toxicity of PVP-TZ-POR 7a-d, PVP-TPP and PVP in HT-1376 and ARPE-19 cells

