A Simple Iron-catalyst for Alkenylation of Ketones Using Primary Alcohols

Motahar Sk, Ashish Kumar, Jagadish Das, and Debasis Banerjee*

Department of Chemistry Laboratory of Catalysis and Organic Synthesis Indian Institute of Technology Roorkee, Roorkee-247667, India <u>E-mail: debasis.banerjee@cy.iitr.ac.in</u>

Table of Contents

Alkenylation of ketones with alcohols	S2
¹ H NMR and ¹³ C NMR Spectra for selected compounds	S 9

[1.1] Alkenylation of ketones with alcohols:

Table S1: Screening of catalysts [a]

	O Fe-Cat. 1a Yee 1a Yee	(5 mol%) (6 mol%) (25 mol%), 10 °C, 12 h, alloon 3a'	OMe
Entry	Fe-Catalyst	GC-MS Conversion	GC-MS Conversion
		3a (%)	3a' (%)
1 ^b	Fe(OAc) ₂	77(75)	3
2	$Fe(acac)_3$	68	4
3	Fe ₂ (CO) ₉	64	4
4	Fe(OAc) ₂ (2.5 mol%), Phen (3 mol%)	53	2
5	No Catalyst, No Ligand	20	-

Reaction conditions: [a] *p*-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.375 mmol), **Fe-catalyst (5 mol%)**, Phen (6 mol%), *t*-BuONa (0.0625 mmol), toluene (1.0 mL), Schlenk tube under nitrogen atmosphere, 110 °C oil bath, 12 h reaction time. [b] Isolated yield.

Table S2: Screening of ligands[a]

Entry	Ligand	GC-MS Conversion 3a (%)	GC-MS Conversion 3a' (%)
1 ^b		77(75)	3
2		68	4
3		54	5
4		67	6
5	$PPh_3(L5)$	70	17
6	_NL6	60	30
7	No Ligand	43	2

Reaction conditions: [a] *p*-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.375 mmol), Fe(OAc)₂ (5 mol%), **Ligand** (6 mol%), *t*-BuONa (0.0625 mmol), toluene (1.0 mL), Schlenk tube under nitrogen atmosphere, 110 °C oil bath, 12 h reaction time. PPh₃ (10 mol%) was used. [b] Isolated yield.

Table S3: Screening of base [a]

Entry	Base	GC-MS Conversion	GC-MS Conversion
		3a (%)	3a' (%)
1 ^b	t-BuONa	77(75)	3
2	t-BuOK	58	30
3	Na ₂ CO ₃	25	<1
4	K ₂ CO ₃	30	<1
5	Cs_2CO_3	12	<1
6	K ₃ PO ₄	7	0
7	No Base	0	0

Reaction conditions: [a] *p*-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.375 mmol), Fe(OAc)₂ (5 mol%), Phen (6 mol%), **base** (0.0625 mmol), toluene (1.0 mL), Schlenk tube under nitrogen atmosphere, 110 °C oil bath, 12 h reaction time. [b] Isolated yield.

Table S4: Screening of solvents [a]

Entry	Solvent	GC-MS Conversion	GC-MS Conversion
		3a (%)	3a' (%)
1[b]	toluene	77(75)	3
2	<i>p</i> -xylene	45	5
3	1,4-dioxane	33	2
4	DMA	8	0
5	<i>t</i> -amylalcohol	25	16

Reaction condition: [a] *p*-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.375 mmol), Fe(OAc)₂ (5 mol%), Phen (6 mol%), *t*-BuONa (0.0625 mmol), **solvent** (1.0 mL), Schlenk tube under nitrogen atmosphere, 110 °C oil bath, 12 h reaction time. [b] Isolated yield.

Table S5: Screening of ketone equivalents [a]

Entry	α-tetralone (X equiv.) GC-MS Conversion		GC-MS Conversion
		3a (%)	3a' (%)
1	1.0	54	4
2 ^b	1.5	77(75)	3

Reaction condition: [a] p-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.25 mmol, 0.375 mmol), Fe(OAc)₂ (5 mol%), Phen (6 mol%), *t*-BuONa (0.0625 mmol), toluene (1.0 mL), Schlenk tube under nitrogen atmosphere, 110 °C oil bath, 12 h reaction time. [b] Isolated yield (average of two run).

 Table S6:
 Screening of temperature [a]

Entry	Temperature (X ⁰ C)	GC-MS Conversion	GC-MS Conversion
		3a (%)	3a' (%)
1	110	77(75) ^[b]	3
2	80	58	-
3	50	9	-

Reaction conditions: [a] *p*-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.375 mmol), Fe(OAc)₂ (5 mol%), Phen (6 mol%), NaO^tBu (0.0625 mmol), toluene (1.0 mL), Schlenk tube under nitrogen atmosphere, **X** °C oil bath, 12 h reaction time. [b] Isolated yield.

Table S7: Screening of time [a]

Reaction conditions: [a] *p*-methoxy benzyl alcohol (0.25 mmol), α -tetralone (0.375 mmol), Fe(OAc)₂ (5 mol%), Phen (6 mol%), NaO^tBu (0.0625 mmol), toluene (1.0 mL), Schlenk tube under nitrogen atmosphere, 110 °C oil bath, **X** h reaction time. [b] Isolated yield.

Deuterium Incorporation Experiments:

Scheme S1:

Scheme S2: Determination of rate and order of reaction

Run 1: Reaction was carried out in 1 mL of toluene and yield was calculated by GC

No.	1a	2a	Fe(OAc) ₂	Phen	t-BuONa	Toluene
	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mL)
Run 1	0.3	0.2	0.01	0.012	0.05	1.0

Sl. No.	Time (min)	Concentration of 2a (mM)
1	4	190
2	8	179
3	12	172
4	16	165
5	20	160

Run 2: Reaction was carried out in 1 mL of toluene and yield was calculated by GC

No.	1a	2a	Fe(OAc) ₂	Phen	t-BuONa	Toluene
	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mL)
Run 2	0.375	0.25	0.0125	0.015	0.0625	1.0

Sl. No.	Time (min)	Concentration of 2a (mM)
1	4	229
2	8	216
3	12	203
4	16	196
5	20	191

Considering steady state approximation for benzyl alcohol

From Run 1: Slope = k [2a] ^x

$$-1.85 = k [0.20]^{x}$$

From Run 2: Slope = k [2a] ^x
 $-2.4 = k [0.25]^{x}$
 $-2.4/-1.85 = [0.25]^{x}/[0.2]^{x}$
 $1.297 = [1.25]^{x}$
Log (1.297) = x. Log (1.25)
 $x = 0.113 / 0.0969$
 $= 1.16 \approx 1$
Rate = k [2a] ¹

Scheme S3: Quantitative determination of hydrogen gas produced in the reaction

In a 10 mL oven dried Schlenk tube, 4-methoxy benzyl alcohol (0.5 mmol), $Fe(OAc)_2$ (5 mol%), Phen (6 mol%), α -tetralone (0.75 mmol) and *t*-BuONa (0.125 mmol), were added followed by toluene 2.0 mL and connected to the gas burette as shown in figure 3. Then the reaction mixture was heated at 110 °C until the production of hydrogen gas ceased. The procedure was repeated three times to get concordant reading.

Experimental setup for H₂ determination

Total volume of water displaced, V = 0.007 L Vapor pressure of water at 298K, $P_{H2O} = 23.7695$ Torr Atmospheric pressure at 298K, $P_{atm} = 758.3124$ Torr Pressure of H₂ gas, $P_{H2} = P_{atm} - P_{H2O} = (758.3124 - 23.7695)$ Torr = 734.5429 Torr

$$\begin{split} P_{H2} * V &= nH_2 * R * T \\ nH_2 &= P_{H2} * V / R * T \\ &= 734.5429 \text{ Torr } * 0.007 \text{ L} / 62.3635 \text{ L Torr } \text{K}^{-1} \text{ mol}^{-1} * 298 \text{K} \\ &= 0.000277 \text{ mol} \\ &= 0.277 \text{ mmol} \end{split}$$

[1.2] Copies of ¹H NMR, ¹³C NMR and HRMS Spectra for selected compounds

