Synthesis and Antimicrobial Activity of Phosphonopeptide Derivatives Incorporating Single and Dual Inhibitors

1. Full Synthesis and Compound Characterization

H₂N P HO OH

1-Aminoethylphosphonic Acid or D/L-fosfalin (2-DL)

To suspension of *N*-phenylthiourea (100.0 mmol, 15.2 g) in glacial acetic acid (50 mL), acetaldehyde (130.0 mmol, 7.40 mL) was added dropwise, followed by triphenyl phosphite (100.0 mmol, 27.0 mL). The mixture was stirred at room temperature for 5 mins, then refluxed at 80 °C for 1 hr until a clear solution was obtained. A mixture of glacial acetic acid (5 mL) and hydrochloric acid (37%, 50 mL) was added and the reaction was refluxed overnight. The solution was cooled to room temperature and concentrated in vacuo to afford a brown slurry. Absolute ethanol (150 mL) was added while stirring and the resulting off-white solid was collected by filtration and dried in a desiccator containing phosphorus(V) oxide. The crude solid was recrystallized from hot water/ethanol to afford **2-DL** as white crystals, as a mixture of enantiomers (12.2 g, 98 mmol, 98%); m.p. 271–274 °C (sublim); $\bar{\nu}_{max}$ /cm⁻¹ 2910 (br OH), 1532 (NH bend), 1143 (P = O), 1035 (P-O-C), 930 (P-OH); ¹H NMR (300 MHz, D2O) δ_{H} 1.40 (3H, dd, ³*J*_{H-P} = 14.7 Hz, ³*J*_{H-H} = 7.2 Hz, CH₃), 3.33 (1H, m, CH); ¹³C NMR (75 MHz, D2O) δ_{C} 13.5 (d, ²*J*_{C-P} = 2.6 Hz, CH₃), 44.7 (d, ¹*J*_{C-P} = 144.2 Hz, CH); ³¹P-¹H_{decoup} NMR (121 MHz, D2O) δ_{P} 14.2; *m*/z (ESI) calcd for (C₂H₉NO₃P)+, MH⁺: 126.0, found 126.1; CHN (Found: C, 19.45; H, 6.48; N, 11.18. C₂H₈NO₃P requires C, 19.21; H, 6.45; N, 11.20%).

Diethyl (1-(2,2,2-trifluoroacetamido)ethyl)phosphonate or trifluoroacetyl-D/L-Fos diethyl ester (8). 1-Aminoethylphosphonic acid (2-DL) (51.7 mmol, 6.5 g) was added to a mixture of trifluoroacetic acid (65.3 mmol, 5 mL) and trifluoroacetic anhydride (177.4 mmol, 25 mL). The solution was stirred and refluxed at 60 °C for 1 hour, then cooled to room temperature and triethyl orthoformate (901.8 mmol, 150 mL) was added dropwise. The solution was refluxed at 110 °C for 2 hours, then cooled to room temperature. The solution was concentrated in vacuo to afford a brown solid, which was re-dissolved in DCM and purified by column chromatography using a gradient elution (DCM (100) to DCM/MeOH (95:5)) to give 8 as an off-white solid, a mixture of enantiomers (11.4 g, 41.0 mmol, 80%); m.p. 101 – 103 °C (sublim) (lit. m.p. 101 – 102 °C); \bar{v}_{max} /cm⁻¹ 3202 (NH), 1715 (C = O), 1565 (NH bend), 1210 (P = O), 1011 (P-O-C), 968 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 1.24 (3H, t, ³*J*_{H-H} = 7.2 Hz, OCH₂CH₃), 1.27 (3H, t, ³*J*_{H-H} = 7.2 Hz, OCH₂CH₃), 1.38 (3H, dd, ³*J*_{H-P} = 16.5 Hz, ³*J*_{H-H} н = 7.2 Hz, CH₃-2), 4.06 (4H, m, 2 x OCH₂CH₃), 4.39 (1H, m, CH-1), 8.00 (1H, d, ³*J*_{H-H} = 6.0 Hz, NH); ¹³C NMR (75 MHz, CDCl₃) δc 14.8 (CH₃-2), 16.2 (d, ³J_{C-P} = 2.3 Hz, OCH₂CH₃), 16.3 (d, ³J_{C-P} = 2.3 Hz, OCH₂CH₃), 41.8 (d, ¹*J*_{C-P} = 159.1 Hz, CH-1), 62.8 (d, ²*J*_{C-P} = 7.0 Hz, OCH₂CH₃), 63.2 (d, ²*J*_{C-P} = 7.1 Hz, OCH₂CH₃), 115.9 (q, ¹*J*_{C-F} = 285.8 Hz, CF₃), 156.9 (q, ²*J*_{C-F} = 5.8 Hz, C = O); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 23.0; ¹⁹F-¹H_{decoup} NMR (282 MHz, CDCl₃) δ_P -75.5; m/z (ESI) calcd for (C₈H₁₆F₃NO₄P)⁺, MH⁺: 278.1, found 278.1.

lit. m.p.; Kudzin, Z.H; Luczak, J. Synthesis. 1995, 509-511 (DOI: 10.1055/s-1995-3952).

Diethyl 1-aminoethylphosphonate or D/L-Fos diethyl ester (9). Diethyl (1-(2,2,2trifluoroacetamido)ethyl)phosphonate (8) (20.0 mmol, 5.6 g) was dissolved in ethanol (200 ml) and excess sodium borohydride (200.0 mmol, 7.7 g) was added slowly with stirring. The resulting mixture was stirred at room temperature for 1 hour, then heated at reflux for 4 hours. The mixture was cooled to room temperature and the solvent was removed in vacuo to afford a white solid, which was dissolved in saturated NaHCO₃ (96 g/L) (60 mL) with the addition of 10% aqueous K₂CO₃ (20 mL). The product was extracted into DCM (6 x 30 mL) and dried over MgSO₄. The filtrate was concentrated in vacuo to afford a pale yellow liquid and purified by column chromatography using a gradient elution (DCM (100) to DCM/MeOH (90:10)) to afford 9 as a yellow liquid, a mixture of enantiomers (3.5 g, 19.3 mmol, 97%); \bar{v}_{max}/cm^{-1} 3431 (NH), 1215 (P = O), 1020 (P-O-C), 967 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 1.26 (6H, t, ³J_{H-H} = 7.2 Hz, 2 x OCH₂CH₃), 1.34 (3H, dd, ³J_{H-P} = 17.7 Hz, ³J_{H-H} = 7.2 Hz, CH₃-2), 1.68 (2H, br, NH₂), 3.02-3.12 (1H, m, CH-1), 4.06-4.17 (4H, m, 2 x OCH₂CH₃); ¹³C NMR (75 MHz, CDCl₃) δc 16.4 (OCH₂CH₃), 16.5 (OCH₂CH₃), 17.2 (CH₃-2), 44.2 (d, ¹J_{C-P} = 148.5 Hz, CH-1), 62.1 (d, ²*J*_{C-P} = 7.5 Hz, OCH₂CH₃), 62.1 (d, ²*J*_{C-P} = 7.5 Hz, OCH₂CH₃); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 29.6; HRMS (NSI) calcd for (C₆H₁₇NO₃P)⁺, MH⁺: 204.0760, found 204.0762. LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

(S)-Benzyl 2-((S)-2-((tert-butoxycarbonyl)amino)pentanamido) propanoate or Boc-L-Nva-L-Ala-OBzl (16a). General peptide coupling method was followed, using Boc-L-Nva-OH (15a) (10.0 mmol, 2.17 g) in dry THF and L-alanine benzyl ester *p*-tosylic acid (10.0 mmol, 3.52 g) in dry DCM. The yellow crude liquid was purified by column chromatography (40-60 petrol/ethyl acetate (7:3)) to give 16a as an off-white solid (2.40 g, 6.3 mmol, 63%); m.p. $60 - 63 \degree$ C; $\bar{\nu}_{max}/cm^{-1}$ 3332 (NH), 1743 (C = O), 1655 (br C = O), 1527 (NH bend), 1245 (C-O), 1162 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_{H} 0.83 (3H, t, ³J_{H-H} = 9.0 Hz, CH₃-7''), 1.25-1.31 (2H, m, CH₂-7'), 1.34 (3H, d, ³J_{H-H} = 6.0 Hz, CH₃-3), 1.36 (9H, s, C(CH₃)₃), 1.42-1.54 (1H, m, CH₄/_b-7), 1.64-1.73 (1H, m, CH₄/_b-7), 4.02 (1H, m, CH-6), 4.54 (1H, pentet, ³J_{H-H} = 6.0 Hz, CH-2), 4.96 (1H, d, ³J_{H-H} = 9.0 Hz, NH-8), 5.07 (1H, d, ²J_{H-H} = 12.0 Hz, OCH₄/_bAr), 5.12 (1H, d, ²J_{H-H} = 12.0 Hz, OCH₄/_bAr), 6.56 (1H, d, ³J_{H-H} = 6.0 Hz, NH-4), 7.27 (5H, m, 5 x CH₄); ¹³C NMR (75 MHz, CDCl₃) δ_{c} 12.7 (CH₃-7''), 17.3 (CH₃-3), 17.8 (CH₂-7'), 27.3 (C(CH₃)₃), 33.7 (CH₂-7), 47.1 (CH-2), 53.4 (CH-6), 66.1(OCH₂Ar), 79.0 (C(CH₃)₃), 127.1-127.6 (CH₄r), 134.3 (CH₄r quat.), 154.6 (C = O-9), 170.8 (C = O-5), 171.5 (C = O-1); HRMS (NSI) calcd for (C₂0H₃₁N₂O₅)+, MH+: 379.2227, found 379.2222; CHN (Found: C, 63.75; H, 8.37; N, 7.86. C₂0H₃₀N₂O₅ requires C, 63.47; H, 7.99; N, 7.40%).

(S)-Benzyl 2-(2-((*tert*-butoxycarbonyl)(methyl)amino)acetamido) propanoate or Boc-Sar-L-Ala-OBzl (16b). General peptide coupling method was followed, using Boc-Sar-OH (15b) (15.0 mmol, 2.84 g) in dry THF and L-alanine benzyl ester *p*-tosylic acid (15.0 mmol, 5.27 g) in dry DCM. The yellow crude liquid was purified by column chromatography (40-60petrol/ethyl acetate (1:1)) to give 16b as a colourless liquid (3.93 g, 11 mmol, 75%); \bar{v}_{max}/cm^{-1} 3311 (NH), 1742 (C = O), 1670 (C = O), 1666 (C = O), 1536 (NH bend), 1242 (C-O), 1145 (C-O); ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 1.35 (3H, t, ³J_{H-H} = 6.0

Hz, CH₃-3), 1.39 (9H, s, C(CH₃)₃), 2.85 (3H, s, CH₃-8), 3.72 (1H, d, ${}^{2}J_{H-H} = 15.0$ Hz, CH_{a/b}-6), 3.88 (1H, d, ${}^{2}J_{H-H} = 15.0$ Hz, CH_{a/b}-6), 4.58 (1H, pentet, ${}^{3}J_{H-H} = 6.0$ Hz, CH-2), 5.08 (1H, d, ${}^{2}J_{H-H} = 12.0$ Hz, OCH_{a/b}Ar), 5.13 (1H, d, ${}^{2}J_{H-H} = 12.0$ Hz, OCH_{a/b}Ar), 6.51 (1H, br, NH-4), 7.25-7.29 (5H, m, 5 x CH_A); 13 C NMR (75 MHz, CDCl₃) δ c 17.5 (CH₃-3), 27.3 (C(CH₃)₃), 34.7 (CH₃-8), 47.0 (CH-2), 52.1 (CH₂-6), 66.2 (OCH₂Ar), 79.8 (C(CH₃)₃), 127.1-127.6 (CH_A), 134.3 (CH_Ar quat.), 155.0 (C = O-9), 167.9 (C = O-5), 171.5 (C = O-1); HRMS (NSI) calcd for (C₁₈H₂₇N₂O₅)⁺, MH⁺: 351.1914, found 351.1916. LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

Tert-butyl ((2S)-1-((-1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-yl)carbamate or Boc-L-Ala-D/L-Fos diethyl ester (19d). General peptide coupling method was followed, using Boc-L-Ala-OH (15d) (10.0 mmol, 1.90 g) in dry THF and diethyl 1-aminoethylphosphonate (9) (10.0 mmol, 1.84 g) in dry THF. The pale yellow crude syrup was purified by column chromatography, using 100% DCM and increasing to 95:5 DCM/methanol, to afford 19d as an off-white solid composed of 2 diastereoisomers, Boc-L-Ala-L-Fos diethyl ester and Boc-L-Ala-D-Fos diethyl ester (2.49 g, 7.1 mmol, 71%); m.p. 102 – 105 °C; \bar{v}_{max} /cm⁻¹ 3280 (NH), 1710 (C = O), 1652 (C = O), 1556 (NH bend), 1229 (P = O), 1173 (C-O), 1013 (P-O-C), 973 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 1.23-1.43 (12H, m, CH₃-2, CH₃-6, 2 x OCH₂CH₃), 1.44 (9H, s, C(CH₃)₃), 4.06-4.23 (5H, m, 2 x OCH₂CH₃, CH-5), 4.40-4.52 (1H, m, CH-1), 5.12 (0.5H, d, ³Јнн = 1.5 Hz, NH-7), 5.14 (0.5H, d, ³Јнн = 1.5 Hz, NH-7), 6.72 (0.5H, d, ³Јнн = 2.3 Hz, NH-3), 6.74 (0.5H, d, ³J_{H-H} = 2.3 Hz, NH-3); ¹³C NMR (75 MHz, CDCl₃) δ c 15.6 (CH₃-2), 16.3 (d, ³J_C-P = 3.0 Hz, OCH₂CH₃), 16.4 (d, ³J_{C-P} = 2.3 Hz, OCH₂CH₃), 16.5 (d, ³J_{C-P} = 3.0 Hz, OCH₂CH₃), 16.6 (d, ³J_C P = 2.3 Hz, OCH₂CH₃), 18.4 (CH₃-6), 28.3 (C(CH₃)₃), 40.8 (d, ¹J_{C-P} = 156.8 Hz, CH-1), 41.0 (d, ¹J_{C-P} = 156.8 Hz, CH-1), 50.0 (CH-5), 62.4 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 62.5 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 62.6 (d, ²J_C-P P = 6.8 Hz, OCH₂CH₃), 62.8 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 80.0 (C(CH₃)₃), 155.2 (C = O-8), 172.1 (C = O-4); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 25.2; HRMS (NSI) calcd for (C₁₇H₃₅N₃O₇P)⁺, MH⁺: 424.2207, found 424.2200; CHN (Found: C, 48.22; H, 8.58; N, 7.87. C14H29N2O6P requires C, 47.92; H, 8.30; N, 7.95%).

(S)-2-((S)-2-((*Tert*-butoxycarbonyl)amino)pentanamido) propanoic acid or Boc-L-Nva-L-Ala-OH (17a). Deprotection of benzyl ester was followed, using (S)-benzyl 2-((S)-2-((*tert*-butoxycarbonyl)amino)pentanamido)propanoate (16a) (6.0 mmol, 2.27 g) to afford 17a as a white solid (1.66 g, 5.7 mmol, 96.0%); m.p. 55 - 58 °C (decomp.); $\bar{\nu}_{max}/cm^{-1}$ 3500-3000 (br, OH), 3300 (NH), 1688 (br C = O), 1655 (C = O), 1522 (NH bend), 1245 (C-O), 1164 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_{H} 0.85 (3H, t, ³*J*_{H-H} = 9.0 Hz, CH₃-7''), 1.27-1.31 (5H, m, CH₃-3, CH₂-7'), 1.39 (9H, s, C(CH₃)₃), 1.48-1.53 (1H, m, CH_{4/b}-7), 1.67-1.71 (1H, m, CH_{4/b}-7), 4.10 (1H, m, CH-6), 4.50 (1H, m, CH-2), 5.27 (1H, m, NH-8), 6.93 (1H, m, NH-4), 8.87 (1H, br, OH); ¹³C NMR (75 MHz, CDCl₃) δ_{C} 13.7 (CH₃-7''), 18.0 (CH₃-3), 18.8 (CH₂-7'), 28.3 (C(CH₃)₃), 34.5 (CH₂-7), 48.1 (CH-2), 54.3 (CH-6), 80.4 (C(CH₃)₃), 156.0 (C = O-9), 172.5 (C = O-5), 175.5 (C = O-1); HRMS (NSI) calcd for (C1₃H₂₅N₂O₅)⁺, MH⁺: 289.1758, found 289.1758; CHN (Found: C, 54.18; H, 8.78; N, 9.62. C1₃H₂₄N₂O₅ requires C, 54.15; H, 8.39; N, 9.72%).

(S)-Benzyl 2-(2-((*tert*-butoxycarbonyl)(methyl)amino)acetamido) propanoic acid or Boc-Sar-L-Ala-OH (17b). Deprotection of benzyl ester was followed, using (S)-benzyl 2-(2-((*tert*-butoxycarbonyl)(methyl)amino)acetamido) propanoate (16b) (10.0 mmol, 3.51 g) to afford 17b as a colorless syrup (2.50 g, 9.6 mmol, 96%); $\bar{\nu}_{max}$ /cm⁻¹ 3301 (NH), 2961 (broad OH), 1736 (C = O), 1664 (br C = O), 1542 (NH bend), 1241 (C-O), 1147 (C-O); ¹H NMR (300 MHz, CDCl₃) $\delta_{\rm H}$ 1.36 (3H, t, ³*J*_{H-H} = 6.0 Hz, CH₃-3), 1.39 (9H, s, C(CH₃)₃), 2.89 (3H, s, CH₃-8), 3.72 (1H, d, ²*J*_{H-H} = 18.0 Hz, CH_{a/b}-6), 3.98 (1H, d, ²*J*_{H-H} = 18.0 Hz, CH_{a/b}-6), 4.57 (1H, m, CH-2), 6.96 (1H, m, NH-4), 7.26 (1H, br, OH); ¹³C NMR (75 MHz, CDCl₃) $\delta_{\rm C}$ 17.2 (CH₃-3), 27.3 (C(CH₃)₃), 46.8 (CH-2), 49.6 (CH₃-8), 52.1 (CH₂-6), 80.6 (C(CH₃)₃), 155.5 (C = O-9), 168.3 (C = O-5), 174.1 (C = O-1); HRMS (NSI) calcd for (C₁₁H₁₉N₂O₅)⁻, MH⁻: 259.1299, found 259.1295. LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

(2*S*)-1-((1-(Diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-aminium chloride or L-Ala-D/L-Fos diethyl ester hydrochloride (20d). Deprotection of *tert*-butoxycarbonyl was followed, using *tert*butyl ((2*S*)-1-((-1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-yl)carbamate (19d) (6.0 mmol, 2.13 g). The off-white hygroscopic crude solid was washed with petrol to afford 20d as a pale green solid composed of 2 diastereoisomers, L-Ala-L-Fos diethyl ester hydrochloride and L-Ala-D-Fos diethyl ester hydrochloride (1.46 g, 5.1 mmol, 84%); m.p. 60 – 63 °C; $\bar{\nu}_{max}$ /cm⁻¹ 2986 (NH⁺), 1673 (C = O), 1555 (NH bend), 1212(P = O), 1017 (P-O-C), 970 (P-O-C); ¹H NMR (300 MHz, CD₃OD) δ_H 1.29-1.44 (9H, m, 2 x OCH₂CH₃, CH₃-2), 1.51 (3H, d, ³*J*_{H-H} = 6.0 Hz, CH₃-6), 3.90-3.98 (1H, m, CH-5), 4.08-4.22 (4H, m, 2 x OCH₂CH₃), 4.28-4.47 (1H, m, CH-1); ¹³C NMR (75 MHz, CD₃OD) δ_c 13.7 (CH₃-2), 14.0 (CH₃-2), 15.4 (2 x OCH₂CH₃), 16.3 (CH₃-6), 41.1 (d, ¹*J*_{C-P} = 158.3 Hz, CH-1), 41.4 (d, ¹*J*_{C-P} = 158.3 Hz, CH-1), 48.8 (CH-5), 48.9 (CH-5), 62.7-63.0 (2 x OCH₂CH₃), 169.0 (C = O-4); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 29.0, 29.1; HRMS (NSI) calcd for (C₉H₂₂N₂O₄P)⁺, M⁺: 253.1312, found 253.1316. LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

Tert-butyl ((2S)-1-(((2S)-1-((1-(diethoxyphosphoryl)ethyl) amino)-1-oxopropan-2-yl)amino)-1oxopentan-2-yl)carbamate or Boc-L-Nva-L-Ala-D/L-Fos diethyl ester (18a). General peptide coupling method was followed, using (S)-2-((S)-2-((tert-butoxycarbonyl)amino)pentanamido)propanoic acid (17a) (5.0 mmol, 1.45 g) in dry THF and diethyl 1-aminoethylphosphonate (9) (4.8 mmol, 0.87 g) in dry THF. The white crude solid was purified by column chromatography using 100% DCM, increasing to 90:10 DCM/methanol, to afford 18a as a white solid composed of 2 diastereoisomers, Boc-L-Nva-L-Ala-L-Fos diethyl ester and Boc-L-Nva-L-Ala-D-Fos diethyl ester (1.70 g, 3.8 mmol, 78%); m.p. 165 - 168 °C; \bar{v}_{max} /cm⁻¹ 3267 (NH), 1708 (C = O), 1638 (br C = O), 1537 (NH bend), 1227 (P = O), 1165 (C-O), 1019 (P-O-C), 966 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 0.85 (3H, t, ³J_{H-H} = 9.0 Hz, CH₃-10"), 1.18-1.34 (14H, m, 2 x OCH2CH3, CH3-2, CH3-6, CH2-10"), 1.37 (9H, s, C(CH3)3), 1.47-1.54 (1H, m, CHa/b-10), 1.65-1.73 (1H, m, CHa/b-10), 3.98-4.12 (5H, m, 2 x OCH2CH3, CH-9), 4.33-4.44 (1H, m, CH-1), 4.48-4.54 (1H, m, CH-5), 5.19 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-11), 5.23 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-11), 6.78 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-7), 6.87 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-7), 7.15 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-3), 7.23 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-3); ¹³C NMR (75 MHz, CDCl₃) δc 12.7 (CH₃-10"), 14.4 (CH₃-2), 14.5 (CH₃-2), 15.3 (OCH₂CH₃), 15.4 (OCH₂CH₃), 15.5 (OCH₂CH₃), 15.6 (OCH₂CH₃), 17.6 (CH₃-6), 17.7 (CH₃-6), 17.8 (CH₂-10'), 17.9 (CH₂-10'), 27.3 (C(CH₃)₃), 33.8 (CH₂-10), 33.9 (CH₂-10), 39.9 (d, ¹J_{P-C} = 157.5 Hz, CH-1), 40.0 (d, ¹J_{P-C} = 156.8 Hz, CH-1), 47.7 (CH-5), 47.9 (CH-5), 53.5 (CH-9), 53.5 (CH-9), 61.5 (d, ${}^{2}J_{C-P} = 7.5 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}$), 61.6 (d, ${}^{2}J_{C-P} = 7.5 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}$), 61.7 (d, ${}^{2}J_{C-P} = 7.5 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}$), 61.9 (d, ${}^{2}J_{C-P} = 7.5 \text{ Hz}, \text{ OCH}_{2}\text{CH}_{3}$), 78.9 (C(CH₃)₃), 154.7 (C = O-12), 170.6 (C = O-4 or C = O-8), 170.7 (C = O-4 or C = O-8), 171.0 (C = O-4 or C = O-8), 171.1 (C = O-4 or C = O-8); {}^{31}P_{-1}H_{decoup} NMR (121 MHz, CDCl₃) δ_{P} 25.0, 25.1; HRMS (NSI) calcd for (C₁₉H₃₉N₃O₇P)⁺, MH⁺: 452.2520, found 452.2518; CHN (Found: C, 50.74; H, 8.55; N, 9.51. C₁₉H₃₈N₃O₇P requires C, 50.54; H, 8.48; N, 9.31%).

(2-(((2S)-1-((1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-yl)amino)-2-Tert-butyl oxoethyl)(methyl)carbamate or Boc-Sar-L-Ala-D/L-Fos (18b). General peptide coupling method was followed, using (S)-benzyl 2-(2-((tert-butoxycarbonyl)(methyl)amino)acetamido)propanoic acid (17b) (6.0 mmol, 1.57 g) in dry THF and diethyl 1-aminoethylphosphonate (9) (6.0 mmol, 1.10 g) in dry THF. The yellow crude liquid was purified by column chromatography, using 100% DCM and increasing to 90:10 DCM/methanol, to afford 18b as a colorless liquid composed of 2 diastereoisomers, Boc-Sar-L-Ala-L-Fos diethyl ester and Boc-Sar-L-Ala-D-Fos diethyl ester (1.60 g, 3.8 mmol, 63%); \bar{v}_{max} /cm⁻¹ 3270 (NH), 1700 (br C = O), 1655 (C = O), 1545 (NH bend), 1225 (P = O), 1149 (C-O), 1018 (P-O-C), 966 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 1.19-1.34 (12H, m, CH₃-2, CH₃-6, 2 x OCH₂CH₃), 1.40 (9H, s, С(СНз)з), 2.87 (3H, s, CHз-11), 3.72 (0.5H, d, ²Јн-н = 15.0 Hz, CHа/ь-9), 3.78 (0.5H, d, ²Јн-н = 15.0 Hz, CHa/b-9), 3.81 (0.5H, d, ²J_{H-H} = 15.0 Hz, CHa/b-9), 3.87 (0.5H, d, ²J_{H-H} = 15.0 Hz, CHa/b-9), 4.00-4.11 (4H, m, 2 x OCH₂CH₃), 4.35-4.43 (1H, m, CH-1), 4.47-4.52 (1H, m, CH-5), 6.67 (1H, d, ³J_{H-H} = 9.0 Hz, NH-7), 6.98 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-3), 7.15 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-3); ¹³C NMR (75 MHz, CDCl₃) δc 15.5 (CH₃-2), 15.5 (CH₃-2), 16.3 (d, ³J_{P-C} = 3.0 Hz, OCH₂CH₃), 16.4 (d, ³J_{P-C} = 3.0 Hz, OCH₂CH₃), 18.7 (CH₃-6), 28.3 (C(CH₃)₃), 35.8 (CH₃-11), 41.0 (d, ¹*J*_{P-C} = 157.5 Hz, CH-1), 48.5 (CH-5), 53.0 (CH₂-9), 62.5 (d, ²*J*_{P-C} = 6.8 Hz, OCH₂CH₃), 62.6 (d, ²*J*_{P-C} = 6.8 Hz, OCH₂CH₃), 62.7 (d, ²*J*_{P-C} = 6.8 Hz, OCH₂CH₃), 62.9 (d, ²*J*_{P-C} = 6.8 Hz, OCH₂CH₃), 80.7 (C(CH₃)₃), 156.0 (C = O-12), 171.5 (C = O-4 or C = O-8), 171.6 (C = O-4 or C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 25.0, 25.1; HRMS (NSI) calcd for (C₁₇H₃₅N₃O₇P)⁺, MH⁺: 424.2207, found 424.2203. LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

Tert-butyl ((2S)-1-(((2S)-1-((1-(diethoxyphosphoryl)ethyl) amino)-1-oxopropan-2-yl)amino-4-(methylthio)-1-oxobutan-2-yl)carbamate or Boc-L-Met-L-Ala-D/L-Fos diethyl ester (18c). General peptide coupling method was followed, using Boc-L-Met-OH (15c) (3.4 mmol, 0.88 g) in dry THF and (2S)-1-((1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-aminium chloride (20d) (3.4 mmol, 0.97 g) in dry DCM. The yellow crude solid was purified by column chromatography (DCM/MeOH (95:5)) to give 18c as an off-white solid composed of 2 diastereoisomers, Boc-L-Met-L-Ala-L-Fos diethyl ester and Boc-L-Met-L-Ala-D-Fos diethyl ester (0.53 g, 1.1 mmol, 32%); m.p. 172 – 176 °C; \bar{v}_{max} /cm⁻¹ 3272 (NH), 1708 (C = O), 1673 (C = O), 1637 (C = O), 1530 (NH bend), 1226 (P = O), 1165 (C-O), 1020 (P-O-C), 976 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 1.16-1.36 (12H, m, CH₃-2, CH₃-6, 2 x OCH₂CH₃), 1.36 (9H, s, C(CH₃)₃), 1.82-2.01 (2H, m, CH₂-10), 2.04 (3H, s, CH₃-10''), 2.49 (2H, dd, ³*J*_{H-H} = 9.0 Hz, 3.0 Hz, CH2-10'), 4.00-4.12 (4H, m, 2 x OCH2CH3), 4.16-4.26 (1H, m, CH-9), 4.33-4.43 (1H, m, CH-1), 4.45-4.53 (1H, m, CH-5), 5.40 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-11), 5.44 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-11), 6.85 (0.5H, d, ³*J*_{H-H} = 6.0 Hz, NH-7), 6.92 (0.5H, d, ³*J*_{H-H} = 6.0 Hz, NH-7), 7.07 (0.5H, d, ³*J*_{H-H} = 9.0 Hz, NH-3), 7.16 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-3); ¹³C NMR (75 MHz, CDCl₃) δc 14.2 (CH₃-2), 14.3 (CH₃-2), 14.5 (CH₃-10"), 14.6 (CH₃-10''), 15.4 (d, ³J_{C-P} = 3.0 Hz, OCH₂CH₃), 15.4 (d, ³J_{C-P} = 2.3 Hz, OCH₂CH₃), 15.5 (d, ³J_{C-P} = 3.0 Hz, OCH₂CH₃), 15.5 (d, ³J_{C-P} = 2.3 Hz, OCH₂CH₃), 17.7 (CH₃-6), 27.3 (C(CH₃)₃), 29.2 (CH₂-10'), 29.3 (CH₂-

10'), 30.8 (CH₂-10), 30.9 (CH₂-10), 39.9 (d, ${}^{1}J_{C-P} = 156.8$ Hz, CH-1), 40.0 (d, ${}^{1}J_{C-P} = 156.8$ Hz, CH-1), 47.9 (CH-5), 48.0 (CH-5), 52.6 (CH-9), 61.5 (d, ${}^{2}J_{C-P} = 6.8$ Hz, OCH₂CH₃), 61.6 (d, ${}^{2}J_{C-P} = 6.8$ Hz, OCH₂CH₃), 61.7 (d, ${}^{2}J_{C-P} = 6.8$ Hz, OCH₂CH₃), 61.9 (d, ${}^{2}J_{C-P} = 6.8$ Hz, OCH₂CH₃), 79.1 (C(CH₃)₃), 154.6 (C = O-12), 170.3 (C = O-4 or C = O-8), 170.4 (C = O-4 or C = O-8), 170.5 (C = O-4 or C = O-8), 170.6 (C = O-4 or C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_{P} 25.0, 25.1; HRMS (NSI) calcd for (C₁₉H₃₉N₃O₇PS)⁺, MH⁺: 484.2241, found 484.2228. LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

(1-((*S*)-2-(2-(Methylamino)acetamido)propanamido)ethyl) phosphonic acid or Sar-L-Ala-D/L-Fos (21b). The *tert*-butoxycarbonyl and diethyl ester protecting groups of (1-((*S*)-2-((*S*)-2aminopropanamido)propanamido)ethyl)phosphonic acid (18b) (3.3 mmol, 1.40 g) were removed. The pale green crude solid was recrystallised from hot water/ethanol to give 21b as a pale green solid composed of 2 diastereoisomers, Sar-L-Ala-L-Fos and Sar-L-Ala-D-Fos (0.45 g, 1.7 mmol, 51%); m.p. 241 – 245 °C (decomp.); $\bar{\nu}_{max}$ /cm⁻¹ 3289 (NH⁺), 3500-2900 (br OH), 1632 (br C = O), 1556 (NH bend), 1174 (P = O), 1059 (P-O-C), 919 (P-OH); ¹H NMR (300 MHz, D₂O) δ_{H} 1.14-1.57 (6H, m, CH₃-2, CH₃-6), 2.74 (3H, s, CH₃-11), 3.84-4.07 (3H, m, CH₂-9, CH-1), 4.32-4.58 (1H, m, CH-5); ¹³C NMR (75 MHz, D₂O) δ_{c} 15.4 (CH₃-2), 16.8 (CH₃-6), 32.9 (CH₃-11), 43.9 (d, ¹*J*_{P-C} = 148.5 Hz, CH-1), 49.4 (CH₂-9), 50.0 (CH-5), 166.0 (C = O-8), 173.7 (C = O-4); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_{P} 19.2; HRMS (NSI) calcd for (C₈H₁₉N₃O₅P)⁺, MH⁺: 268.1057, found 268.1016; LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

(1-((S)-2-((S)-2-Amino-4-(methylthio)butanamido) propanamido)ethyl)phosphonic acid or L-Met-L-Ala-D/L-Fos (21c). The *tert*-butoxycarbonyl and diethyl ester protecting groups of *tert*-butyl ((2S)-1-(((-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-yl)amino-4-(methylthio)-1oxobutan-2-yl)carbamate (**18c**) (0.9 mmol, 0.43 g) were removed. The green crude solid was recrystallised from hot water/ethanol to give **21c** as a pale green solid composed of 2 diastereoisomers, L-Met-L-Ala-L-Fos and L-Met-L-Ala-D-Fos (0.13 g, 0.41 mmol, 46%); m.p. 214 – 217 °C (decomp.); $\bar{\nu}_{max}$ /cm⁻¹ 3263 (NH⁺), 2834 (broad OH), 1641 (br C = O), 1552 (NH bend), 1150 (P = O), 1041 (P-O-C), 919 (P-OH); ¹H NMR (300 MHz, D₂O) δ_{H} 1.29-1.33 (3H, m, CH₃-2), 1.42 (3H, d, ³*J*_{H-H} = 6.0 Hz, CH₃-6), 2.15 (3H, s, CH₃-10''), 2.20 (2H, m, CH₂-10), 2.62 (2H, m, CH₂-10'), 4.05 (1H, m, CH-1), 4.14 (1H, m, CH-9), 4.39-4.41 (1H, m, CH-5); ¹³C NMR (75 MHz, D₂O) δ_{C} 16.9 (CH₃-10''), 18.4 (CH₃-2), 19.5 (CH₃-6), 19.6 (CH₃-6), 32.8 (CH₂-10'), 33.0 (CH₂-10'), 30.7 (CH₂-10), 31.0 (CH₂-10), 44.4 (CH-1), 52.9 (CH-5), 53.0 (CH-5), 55.0 (CH-9), 176.1 (C = O-4, C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_{P} 20.7; HRMS (NSI) calcd for (C₁₀H₂₃N₃O₅PS)⁺, MH⁺: 328.1091, found 328.1094; LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

(S)-Benzyl 2-((tert-butoxycarbonyl)amino)-3-hydroxy propanoate or Boc-L-Ser-OBzl (11). Boc-L-Serine (10) (20 mmol, 4.10 g) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (30 mmol, 4.5 mL) were dissolved in a round-bottom flask containing dry benzene (80 mL), followed by the addition of benzyl bromide (30 mmol, 3.60 mL). The solution was stirred overnight at room temperature under nitrogen and later the solvent was removed under reduced pressure to afford an off-white residue. Ethyl acetate (100 mL) was added, the flask contents were sonicated and then washed with 1M HCl (50 mL) and brine (2 x 50 mL). The organic layer was dried over MgSO4, filtered, concentrated in vacuo and purified by column chromatography (petrol/ethyl acetate (1:1)) to give 11 as a white solid (5.24 g, 17.7 mmol, 89%); m.p. 61 – 63 °C (lit. m.p. 59 – 60 °C); \bar{v}_{max}/cm^{-1} 3416 (NH, OH), 1756 (C = O), 1666 (C = O), 1522 (NH bend), 1200 (C-O), 1154 (C-O); ¹H NMR (300 MHz, CDCl₃) δH 1.36 (9H, s, C(CH₃)₃), 2.17 (1H, br, OH), 3.82 (1H, dd, ²J_{H-H} = 11.1 Hz, ³J_{H-H} = 3.6 Hz, CH_{a/b}-3), 3.90 (1H, dd, ²J_{H-H} = 11.1 Hz, ³J_{H-H} = 3.9 Нz, CH_{а/b}-3), 4.33 (1H, m, CH-2), 5.11 (1H, d, ²*J*_{H-H} = 12.3 Hz, OCH_{а/b}Ar), 5.16 (1H, d, ²*J*_{H-H} = 12.3 Hz, OCH₄/ьAr), 5.40 (1H, br, NH-4), 7.27 (5H, m, 5 x CH₄r); ¹³C NMR (75 MHz, CDCl₃) δ⊂ 27.1 (C(CH₃)₃), 54.7 (CH-2), 62.3 (CH2-3), 66.2 (OCH2Ar), 79.1 (C(CH3)3), 127.0 (2 x CHAr), 127.3 (CHAr), 127.4 (2 x CHAr), 134.1 (CHAr quat.), 153.0 (C = O-5), 170.7 (C = O-1); *m*/*z* (ESI) calcd for (C15H21NNaO5)⁺, MNa⁺: 318.3, found 318.2.

lit. m.p.; Lavielle, S.; Ling, N.C.; Saltman, R.; Guillemn, R.C. *Carbohydr. Res.* **1981**, 89, 229-236. (DOI: 10.1016/s0008-6215(00)85248-9)

Benzene is a known carcinogen and extra safety measure where PPEs were used at all time throughout the synthesis and experiments were only performed in the certified fume cupboard.

(*R*)-Benzyl 2-((*tert*-butoxycarbonyl)amino)-3-hydroxypropanoate or Boc-β-Cl-L-Ala-OBzl (12). (*S*)-Benzyl 2-((*tert*-butoxycarbonyl)amino)-3-hydroxypropanoate (11) (15 mmol, 4.43 g) was dissolved in dry DCM (40 mL), followed by the addition of trichloroacetonitrile (30 mmol, 3 ml). The solution was stirred at room temperature for 2 hours. To this solution, triphenylphosphine (30 mmol, 7.87 g) in dry DCM (50 mL) was added slowly. The resulting solution was stirred overnight at room temperature under nitrogen; brine (100 mL) was added to quench the reaction. The organic layer was washed with brine (3 x 100 mL), dried over MgSO₄, filtered and concentrated in vacuo to afford an orange residue. The residue was purified by column chromatography (petrol/ethyl acetate (7:3)) to give **12** as a white solid (3.53 g, 11.2 mmol, 75%); m.p. 55 – 58 °C; $\bar{\nu}_{max}$ /cm⁻¹ 3364 (NH), 1725 (C = O), 1680 (C = O), 1519 (NH bend), 1208 (C-O), 1158 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_H 1.38 (9H, s, C(CH₃)₃), 3.78 (1H, dd, ²J_{H-H} = 11.2 Hz, ³J_{H-H} = 3.2 Hz, CH_{4/b}-3), 3.92 (1H, dd, ²J_{H-H} = 11.3 Hz, ³J_{H-H} = 3.0 Hz, CH_{a/b}-3), 4.67 (1H, m, CH-2), 5.13 (1H, d, ${}^{2}J_{H-H} = 12.2$ Hz, OCH_{a/b}Ar), 5.18 (1H, d, ${}^{2}J_{H-H} = 12.2$ Hz, OCH_{a/b}Ar), 5.37 (1H, d, ${}^{3}J_{H-H} = 7.5$ Hz, NH-4), 7.29 (5H, m, 5 x CH_ar); 13 C NMR (75 MHz, CDCl₃) δc 28.3 (C(CH₃)₃), 45.5 (CH₂-3), 54.5 (CH-2), 67.8 (OCH₂Ar), 80.5 (C(CH₃)₃), 128.4 (CH_ar), 128.6 (CH_ar), 128.7 (CH_ar), 134.9 (CH_ar quat.), 155.0 (C = O-5), 169.0 (C = O-1); m/z (ESI) calcd for (C₁₅H₂₀ClNNaO₄)⁺, MNa⁺: 336.1 (35 Cl), 338.1 (37 Cl), found 336.2 (35 Cl), 338.2 (37 Cl); CHN (Found: C, 57.71; H, 6.46; N, 4.38. C₁₅H₂₀ClNO₄ requires C, 57.42; H, 6.42; N, 4.46%).

(*R*)-2-((*Tert*-butoxycarbonyl)amino)-3-chloropropanoic acid or Boc-β-Cl-L-Ala-OH (13). Deprotection of benzyl ester was followed, using (*R*)-benzyl 2-((*tert*-butoxycarbonyl)amino)-3-chloropropanoate (12) (7.0 mmol, 2.20 g) to afford 13 as an off-white solid (1.52 g, 6.78 mmol, 97%); m.p. 125 – 128 °C (lit. m.p. 127 – 129 °C); $\bar{\nu}_{max}/cm^{-1}$ 3434 (NH), 2973 (br OH), 1752 (C = O), 1735 (C = O), 1519 (NH bend), 1159 (C-O), 1148 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_{H} 1.40 (9H, s, C(CH₃)₃), 3.80 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 3.0 Hz, CH_{a/b}-3), 3.95 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 3.0 Hz, CH_{a/b}-3), 4.70 (1H, m, CH-2), 5.42 (1H, d, ³*J*_{H-H} = 7.2 Hz, NH-4), 9.03 (1H, br, OH); ¹³C NMR (75 MHz, CDCl₃) δ_{C} 27.1 (C(CH₃)₃), 44.0 (CH₂-3), 53.1 (CH-2), 79.8 (C(CH₃)₃), 154.2 (C = O-5), 172.1 (C = O-1); *m*/z (ESI) calcd for (C₈H₁₄ClNNaO₄)⁺, MNa⁺: 246.1 (³⁵Cl), 248.1 (³⁷Cl), found 246.1 (³⁵Cl), 248.1 (³⁷Cl). lit. m.p.; Cheung, K.S.; Wasserman, S.A.; Dudek, E.; Lerner, S.A.; Johnston, M. *J. Med. Chem.* 1983, 26, 1733-1741 (DOI: 10.1021/jm00366a015).

(*R*)-1-(Benzyloxy)-3-chloro-1oxopropan-2-aminium chloride or β-Cl-L-Ala-OB2l hydrochloride (14). Deprotection of *tert*-butoxycarbonyl was followed, using (*R*)-benzyl 2-((*tert*-butoxycarbonyl)amino)-3-chloropropanoate (12) (15 mmol, 4.71 g). The white crude solid was filtered and washed by diethyl ether to give 14 as a white solid (3.47 g, 13.4 mmol, 93%); m.p. 145 °C (sub); $\bar{\nu}_{max}$ /cm⁻¹ 2841 (NH⁺), 1750 (C = O), 1231 (C-O); ¹H NMR (300 MHz, D₂O) δ_H 4.06 (1H, dd, ²J_{H-H} = 15.0 Hz, ³J_{H-H} = 6.0 Hz, CH_{a/b}-3), 4.20 (1H, dd, ²J_{H-H} = 15.0 Hz, ³J_{H-H} = 6.0 Hz, CH_{a/b}-3), 4.70 (1H, t, ³J_{H-H} = 6.0 Hz, CH_{a/b}-3), 4.70 (2H_{a/b}-3), 4.70 (2

(*R*)-Benzyl 2-((*S*)-2-((tert-butoxycarbonyl)amino)pentanamido)-3-chloropropanoate or Boc-L-Nva-β-chloro-L-Ala-OBzl (22a). General peptide coupling method was followed, using Boc-L-Nva-OH (15a) (6.0 mmol, 1.31 g) in dry THF and (*R*)-1-(benzyloxy)-3-chloro-10x0propan-2-aminium chloride (14) (5.4 mmol, 1.36 g) in dry DCM. The yellow crude liquid was purified by column chromatography (40-60 petrol/ethyl acetate (7:3)) to give 22a as a white solid (1.74 g, 4.2 mmol, 78%); m.p. 95 – 98 °C; $\bar{\nu}_{max}$ /cm⁻¹ 3327 (NH), 1743 (C = O), 1688 (C = O), 1653 (C = O), 1518 (NH bend), 1206 (C-O), 1169 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_H 0.92 (3H, t, ³*J*_{H-H} = 9.0 Hz, CH₃-7''), 1.32-1.43 (2H, m, CH₂-7'), 1.45 (9H, s, C(CH₃)₃), 1.52-1.65 (1H, m, CH_{4/b}-7), 1.75-1.82 (1H, m, CH_{4/b}-7), 3.89 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ${}^{3}J_{H+H}$ = 3.0 Hz, CH_{a/b}-3), 3.99 (1H, dd, ${}^{2}J_{H+H}$ = 12.0 Hz, ${}^{3}J_{H+H}$ = 3.0 Hz, CH_{a/b}-3), 4.11-4.15 (1H, m, CH-6), 4.96-5.00 (2H, m, CH-2, NH-8), 5.20 (1H, d, ${}^{2}J_{H+H}$ = 12.0 Hz, OCH_{a/b}Ar), 5.25 (1H, d, ${}^{2}J_{H+H}$ = 12.0 Hz, OCH_{a/b}Ar), 5.25 (1H, d, ${}^{2}J_{H+H}$ = 12.0 Hz, OCH_{a/b}Ar), 6.97 (1H, d, ${}^{3}J_{H+H}$ = 6.0 Hz, NH-4), 7.33-7.37 (5H, m, 5 x CH_{Ar}); ¹³C NMR (75 MHz, CDCl₃) δ_{C} 12.7 (CH₃-7''), 17.8 (CH₂-7'), 27.3 (C(CH₃)₃), 33.4 (CH₂-7), 43.8 (CH₂-3), 52.2 (CH-2), 53.4 (CH-6), 67.0 (OCH₂Ar), 79.3 (C(CH₃)₃), 127.4 (CH_{Ar}), 127.6 (CH_{Ar}), 127.7 (CH_{Ar}), 133.8 (CH_{Ar} quat.), 154.5 (C = O-9), 167.5 (C = O-1), 171.2 (C = O-5); HRMS (NSI) calcd for (C₂₀H₃₀CIN₂O₅)⁺, MH⁺: 413.1838 (³⁵Cl), 415.1809 (³⁷Cl), found 413.1837 (³⁵Cl), 415.1807 (³⁷Cl); CHN (Found: C, 58.49; H, 7.22; N, 6.81. C₂₀H₂₉ClN₂O₅ requires C, 58.18; H, 7.08; N, 6.78%).

(*R*)-Benzyl 2-(2-((*tert*-butoxycarbonyl)(methyl)amino) acetamido)-3-chloropropanoate or Boc-Sar-β-chloro-L-Ala-OBzl (22b). General peptide coupling method was followed, using Boc-Sar-OH (15b) (13.0 mmol, 2.46 g) in dry THF and (*R*)-1-(benzyloxy)-3-chloro-1oxopropan-2-aminium chloride (14) (13.3 mmol, 3.34 g) in dry DCM. The yellow crude liquid was purified by column chromatography (40-60 petrol/ethyl acetate (7:3)) to give 22b as a light yellow syrup (3.63 g, 9.4 mmol, 73%); $\bar{\nu}_{max}$ /cm⁻¹ 3302 (NH), 1747 (C = O), 1686 (br C = O), 1522 (NH bend), 1175 (C-O), 1148 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_H 1.40 (9H, s, C(CH₃)₃), 2.87 (3H, s, NCH₃-8), 3.80 (1H, d, ²*J*_{H-H} = 15.0 Hz, CH_{a/b}-6), 3.82 (1H, d, ²*J*_{H-H} = 15.0 Hz, CH_{a/b}-6), 3.83 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 3.0 Hz, CH_{a/b}-3), 3.94 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 3.0 Hz, CH_{a/b}-3), 4.91-4.96 (1H, m, CH-2), 5.13 (1H, d, ²*J*_{H-H} = 12.0 Hz, OCH_{a/b}Ar), 5.18 (1H, d, ²*J*_{H-H} = 12.0 Hz, OCH_{a/b}Ar), 6.97 (1H, d, ³*J*_{H-H} = 6.0 Hz, NH-4), 7.26-7.30 (5H, m, 5 x CH_{Ar}); ¹³C NMR (75 MHz, CDCl₃) δ_C 28.2 (C(CH₃)₃), 35.6 (NCH₃-8), 44.9 (CH₂-3), 53.0 (CH₂-6), 53.0 (CH-2), 68.0 (OCH₂Ar), 81.0 (C(CH₃)₃), 128.4 (CH_{Ar}), 128.6 (CH_{Ar}), 128.7 (CH_{Ar}), 134.8 (CH_{Ar} quat.), 154.5 (C = O-9), 168.4 (C = O-1), 169.4 (C = O-5); HRMS (NSI) calcd for (C₁₈H₂₆ClN₂O₅)⁺, MH⁺: 385.1525 (³⁵Cl), 387.1496 (³⁷Cl), found 385.1527 (³⁵Cl), 387.1498 (³⁷Cl). LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

((2R)-3-chloro-1-((1-(diethoxyphosphoryl)ethyl) Tert-butyl amino)-1-oxopropan-2yl)carbamate or Boc-β-chloro-L-Ala-D/L-Fos diethyl ester (19e). General peptide coupling method was followed, using (R)-2-((tert-butoxycarbonyl)amino)-3-chloropropanoic acid (13) (6.0 mmol, 1.34 g) in dry THF and diethyl 1-aminoethylphosphonate (9) (6.0 mmol, 1.09 g) in dry THF. The light yellow crude liquid was purified by column chromatography, using 100% petrol and increasing to 100% ethyl acetate, to afford **19e** as colorless syrup composed of 2 diastereoisomers, Boc- β -Cl-L-Ala-L-Fos diethyl ester and Boc-β-Cl-L-Ala-D-Fos diethyl ester (2.03 g, 5.2 mmol, 88%); υmax/cm⁻¹ 3261 (NH), 1713 (C = O), 1670 (C = O), 1517 (NH bend), 1225 (P = O), 1164 (C-O), 1020 (P-O-C), 970 (P-O-C); ¹H NMR (300 MHz, CDCl₃) &H 1.15-1.46 (9H, m, CH₃-2, 2 x OCH₂CH₃), 1.47 (9H, s, C(CH₃)₃), 3.74 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH_{a/b}-6), 4.00 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH_{a/b}-6), 4.06-4.22 (4H, m, 2 x OCH₂CH₃), 4.40-4.56 (2H, m, CH-1, CH-5), 5.46 (0.5H, d, ³*J*_{H-H} = 6.0 Hz, NH-3 or NH-7), 5.48 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-3 or NH-7), 7.01 (0.5H, m, NH-3 or NH-7), 7.09 (0.5H, m, NH-3 or NH-7); ¹³C NMR (75 MHz, CDCl₃) δc 15.6 (CH₃-2), 15.7 (CH₃-2), 16.3 (d, ³J_C_P = 1.5 Hz, OCH₂CH₃), 16.4 (d, ³*J*_{C-P} = 2.3 Hz, OCH₂CH₃), 16.4 (d, ³*J*_{C-P} = 1.5 Hz, OCH₂CH₃), 16.4 (d, ³*J*_{C-P} = 2.3 Hz, OCH₂CH₃), 28.2 (C(CH₃)₃), 41.2 (d, ¹*J*_{C-P} = 157.5 Hz, CH-1), 41.3 (d, ¹*J*_{C-P} = 157.5 Hz, CH-1), 55.2 (CH₂-6), 55.3 (CH-5), 62.6 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 62.6 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 63.0 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 63.0 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 80.8 (C(CH₃)₃), 155.0 (C = O-8), 168.3 (C = O-4); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P24.7, 24.8; HRMS (NSI) calcd for (C₁₄H₂₈ClN₂O₆P), MH⁺: 409.1266 (³⁵Cl), 411.1237 (³⁷Cl), found 409.1258 (35Cl), 411.1231 (37Cl). LCMS purity >95% (C-18 reversed phase, MeOH-H2O).

(*R*)-2-((*S*)-2-((*tert*-Butoxycarbonyl)amino)pentanamido)-3-chloropropanoic acid or Boc-L-Nva-β-chloro-L-Ala-OH (23a). Deprotection of benzyl ester was followed, using (*R*)-benzyl 2-((*S*)-2-((*tert*-butoxycarbonyl)amino)pentanamido)-3-chloropropanoate (22a) (5.8 mmol, 2.41 g) to afford 23a as a light yellow solid (1.81 g, 5.61 mmol, 96%); m.p. 60 - 63 °C; $\bar{\nu}_{max}$ /cm⁻¹ 3312 (br OH), 2963 (NH), 1655 (br C = O), 1509 (NH bend), 1161 (C-O); ¹H NMR (300 MHz, DMSO) δ_H 0.85 (3H, t, ³*J*_{H-H} = 9.0 Hz, CH₃-7''), 1.24-1.34 (2H, m, CH₂-7'), 1.38 (9H. s, C(CH₃)₃), 1.42-1.52 (1H, m, CH₄/b-7), 1.54-1.59 (1H, m, CH₄/b-7), 3.34 (1H, br, OH), 3.84 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH₄/b-3), 3.91 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH₄/b-3), 3.91 (1H, dd, ²*J*_{H-H} = 9.0 Hz, NH-8), 8.07 (1H, d, ³*J*_{H-H} = 9.0 Hz, NH-4); ¹³C NMR (75 MHz, CDCl₃) δc 14.1 (CH₃-7''), 19.1 (CH₂-7'), 28.6 (C(CH₃)₃), 34.4 (CH₂-7), 45.1 (CH₂-3), 53.6 (CH-2), 54.5 (CH-6), 78.5 (C(CH₃)₃), 155.8 (C = O-9), 170.6 (C = O-5), 173.0 (C = O-1); *m*/z (ESI) calcd for (C₁₃H₂₃CIN₂NaO₅)⁺, MNa⁺: 345.1 (³⁵Cl), 347.1 (³⁷Cl), found 345.2 (³⁵Cl), 347.2 (³⁷Cl); CHN (Found: C, 48.67; H, 7.51; N, 8.42. C₁₃H₂₃CIN₂O₅ requires C, 48.37; H, 7.18; N, 8.68%).

(*R*)-2-(2-((*tert*-butoxycarbonyl)(methyl)amino)acetamido)-3-chloropropanoic acid or Boc-Sarβ-chloro-L-Ala-OH (23b). Deprotection of benzyl ester was followed, using (*R*)-benzyl 2-(2-((*tert*-butoxycarbonyl)(methyl)amino)acetamido)-3-chloropropanoate (22b) (6.2 mmol, 2.40 g) to afford 23b as an off-white solid (1.81 g, 6.1 mmol, 99%); m.p. 89 - 91 °C; $\bar{\nu}_{max}$ /cm⁻¹ 3342 (NH), 2982 (br OH), 1734 (C = O), 1672 (C = O), 1644 (C = O), 1524 (NH bend), 1152 (C-O); ¹H NMR (300 MHz, CDCl₃) δ_{H} 1.47 (9H. s, C(CH₃)₃), 2.99 (3H, s, NCH₃-8), 3.81-4.17 (4H, m, CH₂-6, CH₂-3), 5.01 (1H, m, CH-2), 7.07 (1H, br, NH-4), 7.45 (1H, br, OH); ¹³C NMR (75 MHz, CDCl₃) δ_{C} 28.3 (C(CH₃)₃), 36.1 (NCH₃-8), 44.5 (CH₂-3), 53.0 (CH₂-6 and CH-2), 81.8 (C(CH₃)₃), 156.8 (C = O-9), 169.5 (C = O-1 and C = O-5); *m/z* (ESI) calcd for (C11H19CIN₂NaO₅)⁺, MNa⁺: 317.1 (³⁵Cl), 319.1 (³⁷Cl), found 317.1 (³⁵Cl), 319.1 (³⁷Cl); CHN (Found: C, 43.98; H, 6.69; N, 9.53. C11H19CIN₂O₅·0.3H₂O requires C, 44.02; H, 6.58; N, 9.33%).

(2*R*)-3-Chloro-1-((1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-aminium chloride or β-Cl-L-Ala-D/L-Fos diethyl ester hydrochloride (20e). Deprotection of *tert*-butoxycarbonyl was followed, using ((2*R*)-3-chloro-1-((1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-yl)carbamate (19e) (6.7 mmol, 2.59 g). The off-white hygroscopic crude solid was washed with petrol to afford 20e as a pale green solid composed of 2 diastereoisomers, β-Cl-L-Ala-L-Fos diethyl ester hydrochloride and β-Cl-L-Ala-D-Fos diethyl ester hydrochloride (1.51 g, 4.7 mmol, 70%); m.p. 129 – 133 °C (decomp.); $\bar{\nu}_{max}$ /cm⁻¹ 3204 (NH⁺), 1687 (C = O), 1562 (NH bend), 1204 (P = O), 1010 (P-O-C), 961 (P-O-C); ¹H NMR (300 MHz, D₂O) δ_H 1.28 (3H, t, ³J_{H-H} = 6.0 Hz, OCH₂CH₃), 1.29 (3H, t, ³J_{H-H} = 6.0 Hz, OCH₂CH₃), 1.37 (3H, dd, ³J_{P-H} = 18.0 Hz, ³J_{H-H} = 6.0 Hz, CH₃-2), 3.92-4.04 (2H, m, CH₂-6), 4.07-4.21 (4H, m, 2 x OCH₂CH₃), 4.38-4.48 (2H, m, CH-1, CH-5); ¹³C NMR (75 MHz, D₂O) δc 13.7 (CH₃-2), 14.0 (CH₃-2), 15.7 (OCH₂CH₃), 15.7 (OCH₂CH₃), 41.7 (d, ¹J_{P-C} = 158.3 Hz, CH-1), 42.0 (d, ¹J_{P-C} = 157.5 Hz, CH-1), 42.4 (CH₂-6), 53.7 (CH-5), 53.8 (CH-5), 64.3 (d, ²J_{P-C} = 6.8 Hz, OCH₂CH₃), 64.5 (d, ²J_{P-C} = 6.8 Hz, OCH₂CH₃), 165.7 (C = O-4), 165.8 (C = O-4); ³¹P-¹Hdecoup</sup> NMR (121 MHz, CDCl₃) δ_P 26.1, 26.2; HRMS (NSI) calcd for (C₉H₂₁ClN₂O₄P)⁺, M⁺: 287.0922 (³⁵Cl), 289.0892 (³⁷Cl), found 287.0922 (³⁵Cl), 289.0890 (³⁷Cl). LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

Tert-butyl ((2S)-1-(((2R)-3-chloro-1-((1-(diethoxyphosphoryl)-ethyl)amino)-1-oxopropan-2yl)amino)-1-oxopentan-2-yl)carbamate or Boc-L-Nva-β-chloro-L-Ala-D/L-Fos diethyl ester (24a). General peptide coupling method was followed, using (R)-2-((S)-2-((tertbutoxycarbonyl)amino)pentanamido)-3-chloropropanoic acid (23a) (1.8 mmol, 0.58 g) in dry THF and diethyl 1-aminoethylphosphonate (9) (1.8 mmol, 0.33 g) in dry THF. The light yellow crude liquid was purified by column chromatography, using ethyl acetate/methanol (96:4), to afford 24a as a white solid composed of 2 diastereoisomers, Boc-L-Nva-β-Cl-L-Ala-L-Fos diethyl ester and Boc-L-Nva-β-Cl-L-Ala-D-Fos diethyl ester (0.45 g, 0.93 mmol, 52%); m.p. 196 °C (decomp); \bar{v}_{max} /cm⁻¹ 3272 (NH), 1709 (C = O), 1680 (C = O), 1644 (C = O), 1530 (NH bend), 1229 (P = O), 1165 (C-O), 1019 (P-O-C), 972 (P-O-C) C); ¹H NMR (300 MHz, CDCl₃) δ_H 0.86 (1.5H, t, ³*J*_{H-H} = 9.0 Hz, CH₃-10''), 0.88 (1.5H, t, ³*J*_{H-H} = 9.0 Hz, CH₃-10"), 1.22-1.34 (11H, m, 2 x OCH₂CH₃, CH₃-2, CH₂-10'), 1.38 (9H, s, C(CH₃)₃), 1.53-1.59 (1H, m, CHa/b-10), 1.70-1.77 (1H, m, CHa/b-10), 3.69 (1H, dd, ²J_{H-H} = 12.0 Hz, ³J_{H-H} = 6.0 Hz, CHa/b-6), 3.78-3.81 (1H, m, CH-9), 3.91 (1H, dd, ²J_{H-H} = 12.0 Hz, ³J_{H-H} = 6.0 Hz, CH_a/_b-6), 3.97-4.13 (4H, m, 2 x OCH₂CH₃), 4.35-4.46 (1H, m, CH-1), 4.73-4.79 (1H, m, CH-5), 4.97-5.03 (1H, m, NH-11), 7.01 (0.5H, d, ³J_{H-H} = 9.0 Hz, NH-7), 7.09 (0.5H, d, ³/н-н = 9.0 Hz, NH-7), 7.25 (0.5H, d, ³/н-н = 9.0 Hz, NH-3), 7.33 (0.5H, d, ³/н-н = 9.0 Hz, NH-3); ¹³C NMR (75 MHz, CDCl₃) & 12.7 (CH₃-10"), 14.5 (CH₃-2), 15.3 (OCH₂CH₃), 15.4 (OCH₂CH₃), 15.5 (OCH₂CH₃), 15.6 (OCH₂CH₃), 17.9 (CH₂-10'), 18.0 (CH₂-10'), 27.0 (C(CH₃)₃), 27.3 (C(CH₃)₃), 33.2 (CH₂-10), 40.4 (d, ¹J_{C-P} = 157.5 Hz, CH-1), 43.4 (CH₂-6), 52.6 (CH-5), 52.8 (CH-5), 61.4 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 61.6 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 61.7 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 61.9 (d, ²J_{C-P} = 6.8 Hz, OCH₂CH₃), 70.5 (CH-9), 79.4 (C(CH₃)₃), 154.7 (C = O-12), 166.8 (C = O-4), 171.4 (C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 24.9, 25.0; HRMS (NSI) calcd for (C₁₉H₃₈ClN₃O₇P)⁺, MH⁺: 486.2130 (35Cl), 488.2102 (37Cl), found 486.2124 (35Cl), 488.2098 (37Cl); CHN (Found: C, 46.61; H, 7.76; N, 8.31. C19H37ClN3O7P requires C, 46.96; H, 7.67; N, 8.65%).

Tert-butyl (2-(((2R)-3-chloro-1-((1-(diethoxyphosphoryl)ethyl) amino)-1-oxopropan-2yl)amino)-2-oxoethyl)(methyl)carbamate or Boc-Sar-\beta-chloro-L-Ala-D/L-Fos diethyl ester (24b). General peptide coupling method was followed, using (R)-2-(2-((tertbutoxycarbonyl)(methyl)amino)acetamido)-3-chloropropanoic acid (23b) (5.5 mmol, 1.61 g) in dry THF and diethyl 1-aminoethylphosphonate (9) (6.0 mmol, 1.09 g) in dry THF. The light yellow crude liquid was purified by column chromatography, using DCM/methanol (95:5), to afford 24b as a light yellow syrup composed of 2 diastereoisomers, Boc-Sar-β-Cl-L-Ala-L-Fos diethyl ester and Boc-Sar-β-Cl-L-Ala-D-Fos diethyl ester (1.93 g, 4.21 mmol, 76%); \bar{v}_{max} /cm⁻¹ 3218 (NH), 1690 (C = O), 1665 (br C = O), 1518 (NH bend), 1224 (P = O), 1148 (C-O), 1018 (P-O-C), 967 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δH 1.11-1.35 (9H, m, 2 x OCH2CH3, CH3-2), 1.41 (9H, s, C(CH3)3), 2.90 (3H, s, CH3-11), 3.70-3.88 (4H, m, CH2-6, CH2-9), 4.02-4.13 (4H, m, 2 x OCH2CH3), 4.36-4.47 (1H, m, CH-1), 4.78-4.82 (1H, m, CH-5), 6.94 (1H, m, NH-7), 7.36 (1H, m, NH-3); ¹³C NMR (75 MHz, CDCl₃) δc 15.2 (CH₃-2), 15.6 (CH₃-2), 16.3 (OCH2CH3), 16.4 (OCH2CH3), 28.3 (C(CH3)3), 35.9 (CH3-11), 41.2 (d, ¹/_{C-P} = 156.8 Hz, CH-1), 44.7 (CH2-6), 53.1 (CH2-9), 53.4 (CH-5), 62.7 (d, ²*J*_{C-P} = 6.0 Hz, OCH2CH3), 63.0 (d, ²*J*_{C-P} = 7.5 Hz, OCH2CH3), 81.0 (C(CH₃)₃), 152.3 (C = O-12), 167.7 (C = O-4 or C = O-8), 169.4 (C = O-4 or C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 24.7, 24.8; HRMS (NSI) calcd for (C₁₆H₃₄ClN₃O₇P)⁺, MH⁺: 480.1637 (³⁵Cl), 482.1608 (³⁷Cl), found 480.1642 (³⁵Cl), 482.1612 (³⁷Cl). LCMS purity >92% (C-18 reversed phase, MeOH-H₂O)

Tert-butyl ((2S)-1-(((2R)-3-chloro-1-((1-(diethoxyphosphoryl) ethyl)amino)-1-oxopropan-2yl)amino)-4-(methylthio)-1-oxobutan-2-yl) carbamate or Boc-L-Met-β-Cl-L-Ala-D/L-Fos diethyl ester (24c). General peptide coupling method was followed, using Boc-L-Met-OH (15c) (3.4 mmol, 0.85 g) in dry THF and (2R)-3-chloro-1-((1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2aminium chloride (20e) (3.4 mmol, 1.10 g) in dry DCM. The yellow crude liquid was purified by column chromatography (DCM/MeOH (95:5)) and recrystallized from diethyl ether/ petrol to give **24c** as a white solid composed of 2 diastereoisomers, Boc-L-Met- β -Cl-L-Ala-L-Fos diethyl ester and Boc-L-Met-β-Cl-L-Ala-D-Fos diethyl ester (0.88 g, 1.7 mmol, 50%); m.p. 96 – 99 °C; υmax/cm⁻¹ 3278 (NH), 1709 (C = O), 1687 (C = O), 1639 (C = O), 1523 (NH bend), 1228 (P = O), 1165 (C-O), 1018 (P-O-C), 970 (P-O-C); ¹H NMR (300 MHz, CDCl₃) δ_H 1.17-1.36 (9H, m, CH₃-2, 2 x OCH₂CH₃), 1.38 (9H, s, C(CH₃)₃), 1.87-2.03 (2H, m, CH2-10), 2.04 (3H, s, CH3-10''), 2.48-2.54 (2H, m, CH2-10'), 3.71 (1H, dd, ²/_{H·H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH_{a/b}-6), 3.88 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH_{a/b}-6), 3.99-4.13 (4H, m, 2 x OCH2CH3), 4.20 (1H, m, CH-9), 4.37-4.47 (1H, m, CH-1), 4.78-4.84 (1H, m, CH-5), 5.39 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-11), 5.41 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-11), 7.15 (0.5H, d, ³J_{H-H} = 6.0 Hz, NH-7), 7.24 (0.5H, d, ³*J*_{H-H} = 6.0 Hz, NH-7), 7.52 (1H, m, NH-3); ¹³C NMR (75 MHz, CDCl₃) δc 14.3 (CH₃-2), 14.4 (CH₃-2), 14.5 (CH₂-10''), 15.3 (OCH₂CH₃), 15.4 (OCH₂CH₃), 15.5 (OCH₂CH₃), 15.6 (OCH₂CH₃), 27.3 (C(CH₃)₃), 29.2 (CH₂-10'), 29.3 (CH₂-10'), 30.2 (CH₂-10), 30.4 (CH₂-10), 40.3 (d, ¹J_{P-C} = 159.0 Hz, CH-1), 43.5 (CH₂-6), 43.7 (CH2-6), 52.7 (CH-5), 53.1 (CH-9), 61.6 (d, ²J_{P-C} = 6.8 Hz, OCH2CH3), 61.7 (d, ²J_{P-C} = 6.0 Hz, OCH₂CH₃), 62.0 (d, ²*J*_{P-C} = 6.8 Hz, OCH₂CH₃), 62.1 (d, ²*J*_{P-C} = 7.5 Hz, OCH₂CH₃), 79.6 (C(CH₃)₃), 154.8 (C = O-12), 166.7 (C = O-4), 166.8 (C = O-4), 170.7 (C = O-8), 170.8 (C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 24.5, 24.8; HRMS (NSI) calcd for (C1₃H₃HClN₃O₇PS)⁺, MH⁺: 518.1851 (³⁵Cl), 520.1821 (³⁷Cl), found 518.1842 (35Cl), 520.1814 (37Cl); CHN (Found: C, 44.08; H, 7.47; N, 8.18. C19H37ClN3O7PS requires C, 44.06; H, 7.20; N, 8.11%).

(1-((*R*)-2-((*S*)-2-Ammoniopentanamido)-3-chloropropanamido) ethyl)phosphonic acid or L-Nva-β-chloro-L-Ala-D/L-Fos (25a). The *tert*-butoxycarbonyl and diethyl ester protecting groups of *tert*-butyl ((2*S*)-1-(((2*R*)-3-chloro-1-((1-(diethoxyphosphoryl)-ethyl)amino)-1-oxopropan-2-yl)amino)-1-oxopentan-2-yl)carbamate (24a) (2.0 mmol, 0.99 g) were removed. The pale green crude solid was washed with diethyl ether to give 25a as a pale green solid composed of 2 diastereoisomers, L-Nvaβ-Cl-L-Ala-L-Fos and L-Nva-β-Cl-L-Ala-D-Fos (0.64 g, 1.94 mmol, 97%); m.p. 175 °C (sub); $\bar{\nu}_{max}/cm^{-1}$ 3294 (NH⁺), 3000 (br OH), 1668 (C = O), 1645 (C = O), 1538 (NH bend), 1132 (P = O), 1039 (P-O-C), 921 (P-OH); ¹H NMR (300 MHz, D₂O) δ_H 1.01 (3H, t, ³J_{H-H} = 9.0 Hz, CH₃-10''), 1.30-1.37 (3H, br m, CH₃-2), 1.44-1.54 (2H, br m CH₂-10'), 1.90-1.98 (2H, br m, CH₂-10), 3.91-4.15 (4H, br m, CH₂-6, CH-9, CH-1), 4.79 (1H, br m, CH-5); ¹³C NMR (75 MHz, D₂O) δ_C 12.9 (CH₃-10''), 15.7 (CH₃-2), 17.6 (CH₂-10'), 33.0 (CH₂-10), 43.3 (CH₂-6), 53.1 (CH-1 and CH-9), 55.0 (CH-5), 170.4 (C = O-4 and C = O-8); ³¹P-¹Hdecoup NMR (121 MHz, CDCl₃) δ_P 18.5; HRMS (NSI) calcd for (C₁₀H₂₀ClN₃O₅P)⁻ MH⁻: 328.0835 (³⁵Cl), 330.0805 (³⁷Cl), found 328.0833 (³⁵Cl), 330.0800 (³⁷Cl). LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

1-((*R*)-3-Chloro-2-(2-(methylammonio)acetamido) propanamido)ethyl)phosphonic acid or Sar-β-chloro-L-Ala-D/L-Fos (25b). The *tert*-butoxycarbonyl and diethyl ester protecting groups of *tert*butyl (2-(((2*R*)-3-chloro-1-((1-(diethoxyphosphoryl)ethyl)amino)-1-oxopropan-2-yl)amino)-2oxoethyl)(methyl)carbamate (24b) (3.8 mmol, 1.74 g) were removed. The pale green crude solid was recrystallised from hot water/ethanol to give 25b as an off-white solid composed of 2 diastereoisomers, Sar-β-Cl-L-Ala-L-Fos and Sar-β-Cl-L-Ala-D-Fos (0.49 g, 1.61 mmol, 42%); m.p. 185-188 °C (decomp.); $\bar{\nu}_{max}$ /cm⁻¹ 3287 (NH⁺), 3000 (br OH), 1657 (C = O), 1634 (C = O), 1552 (NH bend), 1172 (P = O), 1054 (P-O-C), 919 (P-OH); ¹H NMR (300 MHz, CD₃OD) δ_H 1.24 (3H, dd, ³J_{H-P} = 15.0 Hz, ³J_{H-H} = 6.0 Hz, CH₃-2), 2.74 (3H, s, NCH₃-11), 3.81-3.87 (2H, m, CH₂-6), 3.93-3.94 (2H, m, CH₂-9), 3.97-4.10 (1H, m, CH-1), 4.79 (1H, m, CH-5); ¹³C NMR (75 MHz, CD₃OD) δ_C 15.4 (CH₃-2), 32.9 (NCH₃-11), 43.6 (CH₂-6), 44.1 (d, ¹J_{C-P} = 148.5 Hz, CH-1), 49.5 (CH₂-9), 54.6 (CH-5), 166.4 (C = O-4 or C = O-9), 166.9 (C = O-4 or C = O-9); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 18.8; HRMS (NSI) calcd for (CsH₁₈ClN₃O₅P)⁺, MH⁺: 302.0667 (³⁵Cl), 304.0638 (³⁷Cl), found 302.0670 (³⁵Cl), 304.0640 (³⁷Cl). LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

(1-((R)-2-((S)-2-Ammonio-4-(methylthio)butanamido)-3-chloro **propanamido)ethyl)phosphonic acid or L-Met-β-Cl-L-Ala-D/L-Fos (25c)**. The *tert*-butoxycarbonyl and diethyl ester protecting groups of tert-butyl ((2S)-1-(((2R)-3-chloro-1-((1-(diethoxyphosphoryl) ethyl)amino)-1-oxopropan-2-yl)amino)-4-(methylthio)-1-oxobutan-2-yl)carbamate (24c) (1.4 mmol, 0.71 g) were removed. The green crude solid was recrystallised from hot water/ethanol to give 25c as a pale green solid composed of 2 diastereoisomers, L-Met-β-Cl-L-Ala-L-Fos and L-Met-β-Cl-L-Ala-D-Fos (0.17 g, 0.48 mmol, 35%); m.p. 175 – 179 °C (decomp.); vmax/cm⁻¹ 3264 (NH⁺), 2829 (broad OH), 1666(C = O), 1641 (C = O), 1546 (NH bend), 1149 (P = O), 1041 (P-O-C), 921 (P-OH); ¹H NMR (300 MHz, D2O) &H 1.31 (3H, dd, ³J_{H-P} = 15.0 Hz, ³J_{H-H} = 6.0 Hz, CH₃-2), 2.13 (3H, s, CH₃-10"), 2.18-2.29 (2H, m, CH₂-10), 2.63-2.69 (2H, m, CH₂-10'), 3.89 (1H, dd, ²J_{H-H} = 12.0 Hz, ³J_{H-H} = 6.0 Hz, CH_{a/b}-6), 3.97 (1H, dd, ²*J*_{H-H} = 12.0 Hz, ³*J*_{H-H} = 6.0 Hz, CH_{a/b}-6), 4.01-4.13 (1H, m, CH-1), 4.22 (1H, br m, CH-9), 4.75-4.79 (1H, m, CH-5); ¹³C NMR (75 MHz, D2O) δc 16.9 (CH₃-10"), 17.0 (CH₃-10"), 18.4 (CH₃-2), 31.1 (CH₂-10'), 32.9 (CH₂-10), 46.2 (CH₂-6), 47.0 (d, ¹J_{C-P} = 147.0 Hz, CH-1), 52.2 (CH-9), 52.3 (CH-9), 57.8 (CH-5), 58.0 (CH-5), 171.7 (C = O-4), 171.8 (C = O-4), 172.3 (C = O-8); ³¹P-¹H_{decoup} NMR (121 MHz, CDCl₃) δ_P 18.7; HRMS (NSI) calcd for (C10H21ClN3O5PS), MNa+: 384.0520 (35Cl), 386.0489 (37Cl), found 384.0523 (35Cl), 386.0491 (³⁷Cl). LCMS purity >95% (C-18 reversed phase, MeOH-H₂O).

Table S1: Summary of yield and ratio of diastereoisomers and enantiomers

Compounds		Yield (%)	Ratio of
			Diastereoisomers/Enantiomers
D/L-fosfalin	2-DL	98	1: 1 based on optical rotation
Trifluoroacetyl-D/L-Fos diethyl	8	80	1: 1 based on optical rotation
ester			
D/L-Fos diethyl ester	9	97	1: 1 based on optical rotation
Boc-L-Ser-OBzl	11	89	NM
Boc-β-Cl-L-Ala-OBzl	12	75	NM
Boc-β-Cl-L-Ala-OH	13	97	NM

β-Cl-L-Ala-OBzl hydrochloride	14	93	NM
Boc-L-Nva-L-Ala-OBzl	16a	63	NM
Boc-Sar-L-Ala-OBzl	16b	75	NM
Boc-L-Nva-L-Ala-OH	17a	96	NM
Boc-Sar-L-Ala-OH	17b	96	NM
Boc-L-Nva-L-Ala-D/L-Fos diethyl	18a	78	ND
ester			
Boc-Sar-L-Ala-D/L-Fos	18b	63	ND
Boc-L-Met-L-Ala-D/L-Fos diethyl	18c	32	ND
ester			
Boc-L-Ala-D/L-Fos diethyl ester	19d	71	ND
Boc-β-chloro-L-Ala-D/L-Fos	19e	88	ND
diethyl ester			
L-Ala-D/L-Fos diethyl ester	20d	84	1: 1.2 based on LC-MS peak area
hydrochloride			
β-Cl-L-Ala-D/L-Fos diethyl ester	20e	70	1: 1.4 based LC-MS peak area
hydrochloride			
L-Nva-L-Ala-D/L-Fos	21a	47	1: 1.3 based on LC-MS peak area
Sar-L-Ala-D/L-Fos	21b	51	1: 1.4 based on LC-MS peak area
L-Met-L-Ala-D/L-Fos	21c	46	1: 1.8 based on LC-MS peak area
Boc-L-Nva-β-chloro-L-Ala-OBzl	22a	78	NM
Boc-Sar-β-chloro-L-Ala-OBzl	22b	73	NM
Boc-L-Nva-β-chloro-L-Ala-OH	23a	96	NM
Boc-Sar-β-chloro-L-Ala-OH	23b	99	NM
Boc-L-Nva-β-chloro-L-Ala-D/L-	24a	52	ND
Fos diethyl ester			
Boc-Sar-β-chloro-L-Ala-D/L-Fos	24b	76	ND
diethyl ester			
Boc-L-Met-β-Cl-L-Ala-D/L-Fos	24c	50	ND
diethyl ester			
L-Nva-β-chloro-L-Ala-D/L-Fos	25a	97	1: 1.8 based on LC-MS peak area
Sar-β-chloro-L-Ala-D/L-Fos	25b	42	1: 1.6 based on LC-MS peak area
L-Met-β-Cl-L-Ala-D/L-Fos	25c	35	1: 1 based on LC-MS peak area

_

Note: Ratio of diastereoisomers/enantiomers was obtained from optical rotation or LC-MS experiment. Assignment of ratio to the corresponding diastereoisomers, L,L and L,D, L,L,L and L,L,D was impossible without standards. Optical rotation at 0° showed compounds are racemic with 1:1 ratio. NM: Not measured because NMR spectra did not show diastereoisomeric coupling. ND: Not determined because diastereoisomeric peaks were only detected by LC-MS upon removal of protecting group from either the *N*and/or *O*-terminus of phosphonotripeptide derivatives.

Figure S2. ¹³C-NMR spectrum of fosfalin 2-DL in D₂O at 300 MHz.

Figure S3. ¹H-NMR spectrum of Boc-L-Ser-OBzl 11 in CDCl₃ at 300 MHz, range δ_H 2.10 - 5.40 ppm.

3. Low Resolution MS spectrum

Figure S4. Low resolution MS spectrum of Boc-β-chloro-L-Ala-OBzl 12, showing the 3:1 ratio of ³⁵Cl:³⁷Cl.

4. LC-MS Conditions

LC-MS analysis was performed using an Agilent 1290 Infinity Series HPLC system and an Agilent 6120 Quadrupole LC-MS detector. ACE Excel 5 Super C18 (150 x 4.6 mm i.d.) LC column was used. LC-MS data was analysed by Agilent ChemStation. Mobile phase: water and methanol (95:5) + 0.1% formic acid Flow time: 0.75 mL/min Injection volume: 10 μ L Column temperature: 35 °C Vial temperature: 25 °C Sample concentration: 0.1 mg/mL in mobile phase

Figure S5. Reversed phase LC-MS chromatograms of L-Nva-L-Ala-D/L-Fos **21a** and Sar-L-Ala-D/L-Fos **21b** with specific ions extracted at MH+ m/z 296 and m/z 268, respectively. For clarity, the chromatograms are displayed between the range 1.0 - 6.0 mins.

Figure S6. Reversed phase LC-MS chromatograms of L-Met-L-Ala-D/L-Fos **21c** with specific ions extracted at MH+ m/z 328. For clarity, the chromatograms are displayed between the range 1.0 - 8.0 mins.

Figure S7. Reversed phase LC-MS chromatograms of L-Nva- β -chloro-L-Ala-D/L-Fos **25a** and Sar- β -chloro-L-Ala-D/L-Fos **25b** with specific ions extracted at MH+ *m/z* 330 and *m/z* 302, respectively. For clarity, the chromatograms are displayed between the range 1.0 - 10.0 mins.

Figure S8. Reversed phase LC-MS chromatograms of L-Met- β -chloro-L-Ala-D/L-Fos **25c** with specific ions extracted at MH+ m/z 362. For clarity, the chromatograms are displayed between the range 1.0–15.0 mins.