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Abstract: In the recent decade, deep eutectic solvents (DESs) have occupied a strategic place in green 

chemistry research. This paper discusses the application of DESs as functionalization agents for 

multi-walled carbon nanotubes (CNTs) to produce novel adsorbents for the removal of 2,4-

dichlorophenol (2,4-DCP) from aqueous solution. Also, it focuses on the application of the 

feedforward backpropagation neural network (FBPNN) technique to predict the adsorption 

capacity of DES-functionalized CNTs. The optimum adsorption conditions that are required for the 

maximum removal of 2,4-DCP were determined by studying the impact of the operational 

parameters (i.e., the solution pH, adsorbent dosage, and contact time) on the adsorption capacity of 

the produced adsorbents. Two kinetic models were applied to describe the adsorption rate and 

mechanism. Based on the correlation coefficient (R2) value, the adsorption kinetic data were well 

defined by the pseudo second-order model. The precision and efficiency of the FBPNN model was 

approved by calculating four statistical indicators, with the smallest value of the mean square error 

being 5.01 × 10−5. Moreover, further accuracy checking was implemented through the sensitivity 

study of the experimental parameters. The competence of the model for prediction of 2,4-DCP 

removal was confirmed with an R2 of 0.99. 

Keywords: water quality; deep eutectic solvents; carbon nanotubes; feedforward back propagation 

neural network; adsorption 
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1. Introduction 

1.1. Background 

Phenolic compounds are easily found in industrial wastewater and they are discharged in large 

amounts into rivers and other natural water sources [1,2]. One common phenolic compound example 

is 2,4-dichlorophenol (2,4-DCP), which is recognized as one of the recalcitrant regular by-products 

generated from aerobic degradation of the antifungal and antibacterial agent “Triclosan (TCS, 5-

chloro-2-(2,4-dichlorophenoxy)phenol)” that is usually added to healthcare products [3–5]. It is 

familiar for its strong odor, carcinogenic adverse effects, and its inability to decompose [6–8]. 

Different industries dispose of 2,4-DCP into water bodies, such as the industries of fungicides, 

disinfectants, insecticides, pesticides, and pharmaceuticals [9,10]. The presence of phenolic 

compounds in the environment, even at low concentrations, causes high toxicity and undesirable 

tastes and odors, thus their removal from water is considered a great preference. The world health 

organization (WHO) established a maximum allowable concentration of 1 µg/L of total phenolic 

compounds in drinking water [11]. However, phenolic compounds are well known for their high 

solubility and stability, which further complicates their removal from water [12–15]. Based on this, 

many researchers are still attempting to remove phenolic contaminants from polluted water by 

developing new competent cost-effective techniques. The adsorption process is the most favored, 

simple, and effectual method for phenolic compounds’ removal [16,17]. A variety of adsorbents have 

been reported in the literature, such as chitosan [18], carbon fibers [19], carbon nanotubes (CNTs) 

[20], activated carbons [21–25], and biosorbents [26]. 

CNTs have been used as efficient adsorbents for different types of inorganic pollutants [27–31] 

and organic pollutants [32–36], and they possess significant efficiency against radioactive compounds 

[37]. Carbon nanotubes (CNTs) have a distinctive chemical structure, large surface area, and exhibit 

a significant adsorption capacity and high binding affinity for a wide range of toxic pollutants [38–

42]. However, the applications of CNTs in aqueous solutions are restricted due to their poor 

dispersion and agglomeration, which lead to a reduction of CNTs’ surface area, affecting their 

capability to remove particular compounds [43,44]. These limitations can be solved by the CNT 

functionalization process, which is an auspicious step to eliminate CNTs impurities, generate new 

functional groups, and eventually enhance CNTs performance in different fields [45–47]. 

Deep eutectic solvents (DESs) have been highlighted as a novel, prominent, and inexpensive 

alternative solvent for ionic liquid and other conventional chemical solvents [48,49]. DESs are 

composed of two or more of low-cost and green constituents, specifically salt and hydrogen bond 

donor (HBD). Their physiochemical properties have been widely examined and their applications in 

many fields have been documented, such as in chemistry, electrochemistry, biology, and more 

recently, in nanotechnology-related fields [50–52]. Furthermore, the application of DESs as low-cost 

functionalization agents has been lately reported for graphene and CNTs [53,54]. The potential of 

using DESs as functionalization agents was confirmed by the improvement of the dispersion and the 

adsorption capacity of CNTs without production of any unpleasant effects on the properties or 

structure of CNTs [48].  

One of the most potent soft-computing techniques that has been proposed for modeling the 

adsorption process is the artificial neural network (ANN) technique [55]. ANN is a robust modeling 

tool due to its ability to recognize and reproduce non-linear relationships between variables during 

the training phase in different input–output patterns, thus mapping the relationship between 

variables and output in a qualified way [56]. Recently, different applications have implemented the 

ANN technique to control, filter, predict, and address many problems, such as in engineering, 

marketing, medicine, defense, energy, etc. [57]. Moreover, the application of ANN for the heavy metal 

adsorption process was recently reported [56,58,59]. Accordingly, use of the ANN tool has promising 

potential to model and predict the adsorption processes of different organic pollutants from water. 
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1.2. Problem Statement and Motivation 

Many variables, including the pH of an aqueous solution, contact time, dosage of the adsorbent, 

and initial concentrations of pollutants, have an inevitable effect on the adsorption capacity, which 

makes the adsorption of any pollutant an intricate process that is difficult to model or predict using 

conventional linear methods [60]. Artificial neural network techniques are considered a competent 

tool that can learn and generalize the pattern of any complex and nonlinear process. Due to that, the 

use of ANN techniques can identify the relationship between the different variables involved in the 

adsorption process. Therefore, the use of ANN can successfully decrease the required time and cost 

for the experimental work, as well as helping in the extraction of intricate data that cannot be 

observed by a human or computer system. Other advantages of ANN modeling techniques are the 

ability to formulate the knowledge, describe the process, and extend the experimental results. 

Consequently, it is possible to predict the conditions and outputs required for the adsorption of 

phenolic pollutants onto adsorbents similar to the one examined in this study, by only using the 

model generated by the suggested ANNs technique while conserving cost, time, and effort. 

2. Materials and Methods 

2.1. Objectives 

This work was a continuation of a wider research project, including preparation, 

functionalization, characterization, and application of DES-functionalized CNTs for the removal of 

2,4-DCP. The previous work focused mainly on the production of different novel adsorbents from 

functionalizing CNTs with DESs. A comprehensive study was conducted to investigate the 

characterizations of these adsorbents and to examine their adsorption capacity for the removal of 2,4-

DCP. Whereas, in the present work, the foremost aim was to examine the accuracy of the feedforward 

ANN-based model (FBPNN) in predicting the adsorption capacity of the most efficient adsorbent 

(the adsorbent with the highest adsorption capacity) by using the actual data set prepared from the 

experimental work in our previous study [48]. Briefly, the former work covered only the experimental 

part while the current paper merely concentrated on the modelling approach. The prediction 

competence of the FBPNN model was investigated in this work through a sensitivity study and the 

value of some statistical indicators. 

2.2. Chemicals and Materials 

The chemicals used in the experimental work were multiwalled carbon nanotubes (CNTs), with 

qualifications of D × L 6–9 nm × 5 µm, >95% (carbon), and were provided by Sigma Aldrich (Kuala 

lumpur, Malaysia). 2,4-dichlorophenol (2,4-DCP) from Merck (Kuala lumpur, Malaysia) was utilized 

as the pollutant, with a molecular weight of 163.0 g mol−1. Moreover, sodium hydroxide pellets, 

sulfuric acid H2SO4 (95%–97%), hydrochloric acid HCL (36.5%–38%), and choline chloride ChCl 

(≥98%) were all supplied by Sigma Aldrich, while ethylene glycol (EG) (≥98%), acetonitrile, and 

methanol were supplied by Merck. 

2.3. Preparation of DES 

Choline chloride salt (ChCl) was mixed with ethylene glycol (EG) as HBD at a molar ratio of 

[1:2] to produce [ChCl: EG] DES [48]. Both salt and HBD were mixed for 80 min at 70 °C, until the 

development of a consistent, clear deep eutectic solvent (DES) [61]. The synthesized DES was kept in 

a moisture-controlled environment in order to be used later for CNT functionalization. 

2.4. Functionalization of CNTs 

Initially, the pristine CNTs were dried at 100 °C for a whole night. The dried CNTs were refluxed 

with 50% H2SO4 for 1 h at 140 °C to produce H2SO4–CNTs, which were washed with distilled water 

using a vacuum filtration system until the washed water became neutral, with a pH value of 7. The 

H2SO4–CNTs were then dried under vacuum at 100 °C for 24 h. Afterward, 200 mg of H2SO4–CNTs 



Molecules 2020, 25, 1511 4 of 16 

was mixed with 7 mL of [ChCl: EG] DES at 60 °C for 3 h to produce DES–CNTs. A vacuum filtration 

system was used to wash the DES–CNTs and then they were dried at 100 °C for 24 h under vacuum.  

The characterization of the developed DES–CNTs adsorbent using Fourier transform infrared 

(FTIR), Raman spectroscopy, zeta potential, Thermogravimetric analysis (TGA), and Brunauer–

Emmett–Teller (BET) was thoroughly covered in our previous work [48].  

2.5. Batch Adsorption Studies 

The prepared DES–CNTs were applied as a new adsorbent to remove 2,4-DCP from the water 

solution. The experiments were performed using different dosages of DES–CNTs (i.e., 5, 10, and 15 

mg), different values of the solution pH (2, 5.14, 6, and 10), and a range of 2,4-DCP concentrations 

(10–80 mg/L) [48]. Next, 50 mL of stock solution was poured into a 250-mL flask, and a mechanical 

system was used to shake the flask at 180 rpm at room temperature. The 2,4-DCP concentration was 

checked at different time intervals during the adsorption process using ultra high-performance 

chromatography (Waters ACQUITY UPLC System, Milford, MA, USA) at a wavenumber of 285 nm. 

Moreover, the contact times used to determine the equilibrium time and the appropriate kinetic 

model were 5, 10, 20, 30, 60, 120, and 180 min and 24 h). In total, 147 samples were prepared in this 

study.  

2.6. Artificial Neural Network Model 

Different types of artificial neural networks (ANNs) have been effectively applied in a wide 

range of fields and they have shown great performance in the fitting of non-linear functions and 

recognition of complicated patterns [62]. In the current study, the feed-forward back-propagation 

neural network (FBPNN) was applied to predict the adsorption capacity of DES-functionalized CNTs 

adsorbent. Generally, the structure for FBPNN consists of three main layers in a multilayer neural 

network: An input layer, hidden layer, and output layer. The input variables from the source are 

introduced in the input layer, then the hidden layer processes the signals sent by the input layer, and 

finally, the output layer deliver the results that have been predicted by ANN to the external receptor. 

It is well known that each layer has a number of neurons and the role of each neuron is to 

transmit the input values and process them to the next layer. Furthermore, all layers have biases and 

a weight factor from the previous layer. The weight factor (Wii) is defined as the interaction between 

ANN layers and it can amend the transferred signals’ values. By adjusting the weight values of the 

ANN model, the optimal parameters can be selected since the FBPNN is governed by a supervisory 

learning algorithm technique [63]. Moreover, along with the weight factor, there are numerous 

FBPNN transfer functions that can modify the total information, which is, in the end, combined in 

the output layer [64]. The most common binary logistic sigmoid transfer function was used in this 

work and it can be expressed as follows:  

1
( )

1 x
f x

e


  

(1) 

In the FNPNN algorithm, the input variables are forwarded into the neural network until the 

end of the network. Then, the output values are created and compared to the target values, and based 

on that the error is estimated [65,66]. Therefore, FBPNN proposes random initial weight values to 

find the relationship between the input data and target data, then the FBNN updates the values of 

weights by comparing the results between the target values and actual values. It was found that in 

the FBPNN model structure, there is no connection between the units of the same layer, while the 

weighted coefficient can express the connection between the developed layers [67].  

2.7. ANN Model Development 

In this work, the input variables in the FBPNN model were the concentration of 2,4-DCP, 

adsorbent dose, solution pH, and contact time, while the required output from the network was the 
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adsorption capacity of DES–CNTs. The number of experimental data used for the modeling was 147, 

which were divided into two data sets: 122 data were utilized for the training and validation step and 

25 data were utilized for the testing step. The normalization of input data was the range of (0–1) and 

was necessary to accelerate the back-propagation learning process [68]. The MATLAB R2014a 

computational platform (The MathWorks, Inc., Natick, Massachusetts, USA) was used in the current 

study to code and optimize the structure of the used ANN model. 

The FBPNN model was applied for the simulation of the adsorption capacity of DES–CNTs for 

the removal of 2,4-DCP from water solution. Three parameters were defined as input variables, 

including 2,4-DCP concentration (10, 20, 30, 40, 50, 60, 70, and 80 mg/L), aqueous solution pH (2, 5.14, 

6, and 10), dose of adsorbent (5, 10, and 15 mg), and finally, the contact time, which ranged from 5 

min until the adsorption process reached equilibrium at 360 min. In addition, the adsorption capacity 

(Q) (mg/g) was defined as an output parameter. The created FBPNN model was comprised of one 

input layer, one output layer, and two hidden layers, with 10 neurons in each layer. The proposed 

architecture of the FBPNN used in this study is demonstrated in Figure 1.  

 

Figure 1. The proposed feed-forward back-propagation neural network structure. 

The back-propagation training function (trainbr) was applied to update the values of the weight 

and bias in regard to the momentum [69]. Furthermore, the training algorithm adopted for this model 

was the Levenberg–Marquardt (LM) training algorithm. The LM algorithm was essentially designed 

to overcome the limitations of the Gauss–Newton (GN) algorithm and the steepest-descent method 

by blending their premium attributes, and serves as a hybrid optimization algorithm [70]. The LM 

algorithm is more robust and has more stable convergence than thee GN algorithm; on the other 

hand, it is faster than the steepest-descent method, and therefore it can be considered as a bridge 

between the GN algorithm and the steepest-descent method. Based on that, the LM algorithm is 

conveniently used for a wide range of real-world applications and it is employed for training of 

medium- and small-sized problems in the artificial neural network field [71]. 

The selected function used to transfer the functions for the ANN networks was the tangent 

sigmoid transfer function (tansig). The stopping criterion is one of the main elements in the FBPNN 

model, which is developed by specific given patterns that allow the network to learn to its maximum 

potential by enabling it to identify its minimum acceptable error rate [72]. In this study, the stopping 

criterion for the FBPNN model was established based on setting up two important parameters: MSE, 

which was set to 0.00001 as a performance goal, and the epoch number, which was determined to be 

1000. The stopping criteria are the main elements. The selection of the node number at each hidden 
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layer was based on the training and testing of the network by using various neuron numbers upon 

examination of the value of the mean square error (MSE) for the testing data set. 

2.8. Performance Indicators 

The value of the mean square error (MSE) was used to calculate the error that occurs between 

the desired data and predicted data by the ANN model. It was administered at the stage of data 

training; it usually decreases at the beginning of the training stage, whereas the error, f, training 

begins to rise when over-fitting starts to occur. The increase of the training error, as well as the return 

of the minimum value of weight, results in the training stopping. The MSE value was described by 

the following equation: 

 
2

( ) ( )
1

1 n

a t s t
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MSE Q Q
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where aQ  is the actual value of the adsorption capacity and sQ  is the simulated value of the 

adsorption capacity. 

The accuracy of the ANN model is usually evaluated by the predicted and actual results through 

the implementation and calculation of various indicators. The ANN model behavior can be described 

by different indicators, for instance, the root mean square error (RMSE), mean square error (MSE), 

relative error (RE), mean absolute percentage error (MAPE), and the relative root mean square error 

(RRMSE). The maintained indicators were defined by the following formulas: 
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Generally, the performance of the ANN model is assessed by RRMSE, MSE, RMSE, MAPE, and 

RE indicators. The calculation of all indicators depends on a comparison of the estimated error of the 

simulated results and the actual results. The smallest the evaluated error, the better the model 

performance achieved. 

3. Results and Discussion 

3.1. Characterization of DES–CNTs and Adsorption Studies 

During the experimental work [48], a complete characterization was carried out for DES–CNTs 

adsorbent to investigate the changes to the pristine CNTs after functionalization with [ChCl: EG] 

DES. It was found that the surface area of the pristine CNTs increased from 123.54 to 193.10 m2/g and 
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that can be explained by the ability of DES to remove the impurities on the surface of pristine CNTs. 

This was confirmed by the TGA results, which revealed that the CNTs functionalized with H2SO4 

and [ChCl: EG] DES had significantly high purity. Moreover, the DES–CNTs had low activation 

energy for oxidation because of the existence of oxygen-containing functional groups on the surface 

of the DES–CNTs adsorbent, which was confirmed by the FTIR results. These functional groups 

include hydroxyl groups (O−H) that appeared in the peaks around ~3460 cm−1, carboxyl groups (–

COOH) at ~ 1650 cm−1, and carbonyl groups (C=O) at ~ 1400 cm−1. Raman spectroscopy showed that 

there is an obvious increase in the ration of the D band intensity (ID) to the G band intensity (IG), 

which is another indicator of the presence of new functional groups on DES–CNTs adsorbents. In 

addition, the hydrophilicity of the hydrophobicity properties of these functional groups remarkably 

increased the absolute value of the zeta potential for pristine CNTs from −5.5 to −24.8 mV for DES–

CNTs. All of these results proved the efficiency of DES as a functionalization agent for CNTs while 

conserving their unique structure [48].  

The fitting of pseudo first-order and pseudo second-order kinetic models was examined [48]. It 

was found that the adsorption mechanism is explained well by the pseudo second-order kinetic 

model, which suggests that the rate of 2,4-DCP adsorption onto DES–CNTs adsorbents is governed 

by chemisorption. Furthermore, the isotherm studies were also performed by applying four kinetic 

isotherm models. Based on the R2 value of each model, it was confirmed that the Langmuir isotherm 

model yielded the best fit, with an outstanding value of maximum adsorption capacity (Qmax) of 

390.35 mg/g [48].  

3.2. ANN Model Performance 

Figure 2 illustrates the process of trial and error for selecting the neural network architecture. In 

this figure, the Z axis and X axis represent the number of neurons in the hidden layer one and two, 

respectively, while the Y-axis represents the MSE values. Once the number of neurons in the hidden 

layer two equals zero, then it refers to a single layer architecture. This figure clearly shows the 

variation in the MSE results when creating various neural network architectures. The lowest MSE 

presents the best architecture. It is noticeable that the architecture with 10 neurons in hidden layer 

one and two has the best performance compared to the other architectures, with a recorded MSE 

value of 5.01 ×10−5. Also, it can be concluded that the network with two hidden layers displayed better 

prediction performance than that with one hidden layer. It is worth noting from Figure 3 that the 

data predicted by the eFBPNN model obviously complies with the actual data acquired from the 

experimental work, with a correlation coefficient value (R2) of 0.99.  
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Figure 2. Neural networks’ performance-based MSE (the mean square error) utilizing different 

architectures: One and two hidden layers. 

 

Figure 3. The correlation coefficient of the actual and predicted normalized adsorption capacity of 

DES–CNTs for 2,4-DCP removal (testing dataset). 

The validity of the trained FBNN model was further investigated by checking the values of some 

other indicators, including the root mean square error (RMSE), mean absolute percentage error 

(MAPE), and relative root mean square error (RRMSE). Table 1 shows the results for all the 

aforementioned indicators. Moreover, one of the important error indicators for the effectiveness of 

the model is the relative error percentage (RE) and it is depicted in Figure 4. It can be noticed that the 

highest RE value of the FBPNN model is 5.47%. The training of the neural network model is a 
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substantial step in achieving good prediction performance. The key objective of this study was to 

obtain a benefit from the mathematical approach in real-time experiments.  

Table 1. Evaluation indicators. 

Indicator FBPNN 

MSE 5.01 ×10−5 

RMSE 7.08 ×10−3 

RRMSE 1.94 ×10−2 

MAPE 1.52 

Note: MAPE = mean absolute percentage error; MSE = mean square error; RMSE = root mean square 

error; RRMSE = relative root mean square error. 

 

Figure 4. Illustration of the accuracy of the FBPNN model based on the testing dataset. 

3.3. Sensitivity Study 

3.3.1. Effects of Initial Pollutant Concentration 

The initial concentration effect of 2,4-DCP was explored using five different initial concentration 

values of 10, 20, 30, 40, and 50 mg/L, whereas all other experimental parameters were kept constant, 

including the adsorbent dosage (5 mg), solution pH (5.14), and contact time (120 min). It is clear from 

Figure 5 that by increasing the initial concentration of 2,4-DCP, the adsorption capacity of DES–CNTs 

increases. The adsorption capacity was increased from 60 to 92 mg/g when increasing the initial 

concentration of 2,4-DCP from 10 to 20 mg/L while increasing the initial 2,4-DCP concentration from 

40 to 50 mg/L increased the adsorption capacity from 135 to 168 mg/g. These remarks can be explained 

by the fact that the driving force of the mass transfer is highly dependent on the concentration of the 

adsorbate; they become great at high concentrations, thus increasing the uptake capacity of 2,4-DCP 

from aqueous solution. However, the removal efficiency of the adsorbent was decreased when 

increasing the initial concentration of 2,4-DCP due to the saturation of the adsorbent active sites [73]. 

The actual data was used in the training of the FBPNN model technique. It is evident from Figure 5 

that the observations for the FBPNN model outputs are compatible with that of the experimental 

outputs. 
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Figure 5. Experimental and FBPNN outputs as a function of the initial concentration. 

3.3.2. Effect of Aqueous Solution pH 

The adsorption process is highly dependent on the value of the aqueous solution pH. The pH 

value has a significant effect on the protonation of the functional groups onto the adsorbent surface, 

such as carboxyl, phosphate, and amino functional groups, and it has been shown to display a 

noticeable impact on the solubility of the adsorbate [74,75]. Examination of the pH effect was 

performed by using three different values of aqueous solution pH (5.14, 6, and 10), and all other 

experimental parameters were set at constant values (i.e., adsorbent dose (5 mg), 2,4-DCP initial 

concentration (10 mg/L), and contact time (20 min)). The actual results and FBPNN outputs were 

plotted as a function of the pH and are presented in Figure 6. It can be perceived from the figure that 

the adsorption capacity from the experimental work decreased with the increase of the pH value. 

This decrease in the 2,4-DCP uptake capacity can be substantiated by the broad existence of OH− in 

the solution deprotonating some functional groups on the adsorbent surface, which leads to more 

negative-charged sites [76]. Additionally, at high pH values, 2,4-DCP molecules are more likely to 

dissociate into the form of C6H3Cl2O−. Consequently, electrostatic repulsion will occur between the 

dissociated 2,4-DCP form and the negatively charged adsorption sites, resulting in a low adsorption 

capacity [77]. The trend of the FBPNN-predicted adsorption capacity as a function of the pH value 

accurately concurs with the trend of the experimental results. 

 

Figure 6. Experimental and FBPNN outputs as a function of pH. 
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3.3.3. Effects of Adsorbent Dosage 

Three different dosages of DES–CNTs adsorbent (5, 10, and 15 mg) were used in this study to 

examine their effect on the process of 2,4-DCP adsorption. This experiment was carried out at a 

constant contact time of 20 min, a constant pH value of 2, and an initial concentration of 2,4-DCP of 

10 mg/L. Figure 7 shows the trend of adsorbent dosage versus the experimental outputs and ANN 

outputs. It is apparent that the adsorption capacity of DES–CNTs adsorbent decreased with the 

increase of its dosage in the polluted water. The recorded adsorption capacity for the 15-mg dosage 

of DES–CNTs adsorbent was 22.3 mg/g and it was increased to 33.26 and 39.9 mg/g as the adsorbent 

dosage decreased to 10 and 5 mg, respectively. The possible justification for this observation is that 

as the dosage of the adsorbent increases, the surface of the adsorbent will increase and more active 

sites will be presented. Consequently, the 2,4-DCP uptake capacity will decrease [60,78]. The FBPNN 

model technique was used to predict the effect of the adsorbent dosage by using the data obtained 

from the experiments in training and prediction. Figure 7 presents the predicted data from FBPNN 

and the experimental outputs as a function of the adsorbent dosage. It can be concluded that the 

observation of the FBPNN outputs agrees with that of the experimental outputs. 

 

Figure 7. Experimental and FBPNN outputs as a function of the adsorbent dosage. 

3.3.4. Adsorption Kinetics Study 

The kinetic study was mainly carried out to examine the DCP removal and adsorption rate and 

its adsorption mechanism onto DES–CNTs. Two well-known kinetic models were applied to both the 

experimental outputs and FFBP neural network outputs, i.e., pseudo first-order and pseudo second-

order. The kinetic study was investigated by using a constant adsorbent dosage of 5 mg and by 

varying the pH values (5.14, 6, and 10) with an initial 2,4-DCP concentration of 10 mg/L. The validity 

of each kinetic model was confirmed by the value of the correlation coefficient (R2) for both the 

predicted and experimental data. The best kinetic model that explained the adsorption of 2,4-DCP 

was the pseudo second-order model and it is illustrated in Figure 8 at different pH values for the 

ANN outputs and actual outputs. The correlation coefficients of all studied kinetic models are listed 

in Table 2. The results from the kinetic studies indicate that the adsorption mechanism involves both 

the DES–CNTs adsorbent and the adsorbate and suggests that chemisorption controls the rate of the 

adsorption process [48]. A similar manner was reported for various types of adsorbents in previous 

studies [79,80].  
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Figure 8. Kinetics study (Pseudo second-order model) at different pH values. 

Table 2. Adsorption kinetics constants and correlation coefficient for each model. 

  Pseudo First Order Pseudo Second Order Intraparticle 

pH 
C0 

mg/L 

Experimental 

R2 

ANN 

Output R2 

Experimental 

R2 

ANN 

Output R2 

Experimental 

R2 

ANN 

Output R2 

5.14 10 0.772 0.764 0.996 0.993 0.879 0.881 

6 10 0.883 0.879 0.96 0.98 0.887 0.876 

10 10 0.88 0.87 0.97 0.96 0.892 0.887 

The data that were acquired from the experimental work were modeled and predicted using the 

FBPNN technique. The kinetic study was also performed on FBPNN outputs by applying the same 

three kinetic models. By checking the correlation coefficient (R2), it was found that the pseudo second-

order model was more adequate in describing the kinetics of this adsorption study compared to the 

pseudo first-order and intraparticle diffusion models. The R2 values for the kinetic study on FBPNN 

outputs are listed in Table 2. It is clear that the FBPNN model shows high accuracy since its results 

are sufficiently close to the results obtained from the experimental work 

4. Conclusions 

The ChCl-based DES was effectively used to functionalize CNTs while conserving their 

important features and with no damage caused to their structure. The new adsorbent (DES–CNTs) 

successfully adsorbed 2,4-DCP from the water, with a maximum adsorption capacity of 390.35 mg/g. 

The adsorption capacity of DES–CNTs was governed by several operational parameters. The FBPNN 

model was sufficiently capable of predicting the adsorption of 2,4-DCP from water and that was 

assured by comparing the experimental outputs with the FBPNN model outputs. The minimum MSE 

value was 5.01 × 10−5 with an R2 value of (0.9993), which depicts good agreement between the actual 

data and predicted data. The accuracy of the FBPNN model was also approved by other indicators, 
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for instance, the RMSE (7.08 × 10−3), RRMSE (1.94 × 10−2), and MAPE (1.52). It is worth mentioning 

that the FBPNN is theoretically considered the most common modeling technique in comparison to 

the other methods. Despite some of the common reported limitations and shortcomings, including a 

slow learning speed, local minima, and difficulty capturing the high complexity, non-stationarity, 

dynamism, and nonlinearity of time series, the performance of this method for the prediction of 2,4-

DCP adsorption on DES–CNTs was reliably satisfactory and it can be easily applied for the prediction 

of the desorption process of these adsorbents, as long as no hysteresis occurred.  
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