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Abstract: Ten pairs of pyrrolidine analogues of pochonicine and its stereoisomers have been
synthesized from four enantiomeric pairs of polyhydroxylated cyclic nitrones. Among the ten
N-acetylamino pyrrolidine analogues, only compounds with 2,5-dideoxy-2,5-imino-d-mannitol
(DMDP) and pochonicine (1) configurations showed potent inhibition of β-N-acetylhexosaminidases
(β-HexNAcases); while 1-amino analogues lost almost all their inhibitions towards the tested
enzymes. The assay results reveal the importance of the N-acetylamino group and the possible right
configurations of pyrrolidine ring required for this type of inhibitors.

Keywords: Pochonicine; pharmacophore; synthesis; β-N-acetylhexosaminidase; iminosugars;
structure-activity relationship

1. Introduction

Since its isolation from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 in 2009 [1],
pochonicine (1) (Figure 1) has been an attractive synthetic target due to its potent and specific
inhibition of β-N-acetylhexosaminidases (β-HexNAcases), including β-N-acetylglucosaminidases
(β-GlcNAcases) andβ-N-acetylgalactosaminidases (β-GalNAcases) [1,2]. β-HexNAcases are associated
with many crucial biological processes [3]. In fungi and insects, the enzymes play important roles in the
metabolism of the polysaccharide chitin [4,5]; in mammals, β-HexNAcases participate in the regulation
of cell signalling and influence protein expression, degradation and trafficking [6]. In humans, many
diseases including lysosomal storage disorders [7], type-II diabetes [6], insulin resistance [8] and
Alzheimer’s disease [9–11] can be attributed to abnormality of β-HexNAcases. Therefore, study of
β-HexNAcase inhibitors may provide alternate strategies for discovery of therapeutic drugs.
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Figure 1. Naturally occurring potent N-acetylhexosaminidases (HexNAcase) inhibitors.

As one of the most potent β-HexNAcase inhibitors, pochonicine (1) possesses a polyhydroxylated
pyrrolizidine skeleton, in contrast to the polyhydroxylated piperidine ring present in the other
two naturally occurring iminosugars, nagstatin (2) [12] and siastatin B (3) (Figure 1) [13]. The
N-acetylamino group is the common structural feature that distinguishes these natural products from
the other iminosugars [14]. A diverse range of potent synthetic β-HexNAcase iminosugar inhibitors
have been reported including pyrrolidines (4 [15–17], 5 [18,19], 6 [20,21] and 7 [22]), piperidines
(8 [23,24], 9 [25] and 10 [26]), azepanes (11 [27–29]) and azetidines (12 [30] and 13 [31]); almost all of
them contain an N-acetylamino group (Figure 2) [32].

Molecules 2020, 24, x FOR PEER REVIEW 2 of 24 

 

Therefore, study of β-HexNAcase inhibitors may provide alternate strategies for discovery of ther-
apeutic drugs. 

N
H
HO OH

HO

OH

NHAc

(+)
-Pochonicine 

(1)

A

B N N

COOH

OH
HO NHAc

HO

Nagstatin
 
(2)

H
N

OH
HOOC OH

Siastatin
 
B

 
(3)

NHAc

 
Figure 1. Naturally occurring potent N-acetylhexosaminidases (HexNAcase) inhibitors. 

As one of the most potent β-HexNAcase inhibitors, pochonicine (1) possesses a polyhydrox-
ylated pyrrolizidine skeleton, in contrast to the polyhydroxylated piperidine ring present in the 
other two naturally occurring iminosugars, nagstatin (2) [12] and siastatin B (3) (Figure 1) [13]. The 
N-acetylamino group is the common structural feature that distinguishes these natural products 
from the other iminosugars [14]. A diverse range of potent synthetic β-HexNAcase iminosugar in-
hibitors have been reported including pyrrolidines (4 [15–17], 5 [18,19], 6 [20,21] and 7 [22]), piperi-
dines (8 [23,24], 9 [25] and 10 [26]), azepanes (11 [27–29]) and azetidines (12 [30] and 13 [31]); almost 
all of them contain an N-acetylamino group (Figure 2) [32]. 

H
N

HO OH

NHAc

4

HO

H
N

HO OH

O

5

HO

NHMe H
N

HO NHAc
6

HO

H
N

OH
HO NHAc

HO

8

H
N

OH
HO NHAc

HO

10

OH
H
N

OH

HO

HO

NHAc

11

H
N

OH
OH

MeHN

O

12

H
N

HO OH
7

HO

NHAc

OH

·HCl

H
N

NHAc
OHHO

13

H
N

OH
HO NHAc

HO

9

25

β
-HexNAcase 

inhibition 
IC50

 
(with

 compound
 11 as an exception):

 
from 

jack
 
bean; from 

human 
placenta; from 

bovine 
kidney.

0.16
 
μM[15]; 0.30

 
μM[16] 0.03

 
μM[18]; 0.20

 
μM[18] 3.4

 
μM[20];  0.64

 
μM[20] 3.4

 
μM[22]; 15

 
μM[22] 2.9

 
μM[24]; 7.0

 
μM[24]

Not
 
determined 41

 
μM[26];  65

 
μM[26] Hex 

A
 
K i

 = 
3.6

 
μM[29] 2.8

 
μM[30]; 3.3

 
μM[30]; 

1.4
 
μM[30]

No 
inhibition[31]

 
Figure 2. Examples of synthetic HexNAcase inhibitors. 

The novel structure and inhibition properties of pochonicine (1) led to the rapid report of total 
syntheses [2], together with its enantiomer [33] and analogues [34]. However, syntheses of such 
highly substituted bicyclic pyrrolizidines with up to seven contiguous stereogenic centres are long 
and complex [35,36]. In contrast, construction of monocyclic pyrrolidine iminosugars with only four 
chiral centres are easier to accomplish. The pyrrolidine core of the corresponding iminosugar fre-
quently appears to be the HexNAcase pharmacophore [37–39], as the pyrrolidine sections are re-
sponsible for mimicking the transition-state of enzyme reaction [40]. Among these monocyclic 
iminosugars, a series of pyrrolidines containing acetamide groups which are essential for their 
β-HexNAcase inhibitions were reported (Figure 2), among which considerable examples were ac-
complished before the isolation of pochonicine (1) [41,42]. Expectedly, quite a number of these 
five-membered acetamide derivatives were found to be potent β-HexNAcase inhibitors 
[16,21,25,26]. In continuation of our interests in structure-activity relationship study of iminosugars 
[39,43–46], in this work, 20 stereoisomeric pyrrolidine analogues of pochonicine (1) were synthe-
sized and systematically assayed as glycosidase inhibitors, in order to look for novel molecules with 
simplified structure and remained potent inhibitory activities. 

2. Results and Discussion 

2.1. Synthesis of 1-N-Acetylamino-2,5-Imino-1,2,5-Trideoxy-L-Mannitol hydrochloride (A-10) 
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The novel structure and inhibition properties of pochonicine (1) led to the rapid report of total
syntheses [2], together with its enantiomer [33] and analogues [34]. However, syntheses of such
highly substituted bicyclic pyrrolizidines with up to seven contiguous stereogenic centres are long and
complex [35,36]. In contrast, construction of monocyclic pyrrolidine iminosugars with only four chiral
centres are easier to accomplish. The pyrrolidine core of the corresponding iminosugar frequently
appears to be the HexNAcase pharmacophore [37–39], as the pyrrolidine sections are responsible for
mimicking the transition-state of enzyme reaction [40]. Among these monocyclic iminosugars, a series
of pyrrolidines containing acetamide groups which are essential for their β-HexNAcase inhibitions
were reported (Figure 2), among which considerable examples were accomplished before the isolation
of pochonicine (1) [41,42]. Expectedly, quite a number of these five-membered acetamide derivatives
were found to be potent β-HexNAcase inhibitors [16,21,25,26]. In continuation of our interests
in structure-activity relationship study of iminosugars [39,43–46], in this work, 20 stereoisomeric
pyrrolidine analogues of pochonicine (1) were synthesized and systematically assayed as glycosidase
inhibitors, in order to look for novel molecules with simplified structure and remained potent
inhibitory activities.
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2. Results and Discussion

2.1. Synthesis of 1-N-Acetylamino-2,5-Imino-1,2,5-Trideoxy-l-Mannitol hydrochloride (A-10)

Synthesis of acetamide modified pyrrolidines generally rely on asymmetric synthesis from
achiral starting materials or begin with carbohydrate precursors [32]. In the second strategy,
carbohydrate-derived nitrones have significant advantages due to their ready chirality, availability
and versatile chemistry [47,48]. In this work, polyhydroxylated nitrones A–H (Figure 3) were readily
prepared from the enantiomers of xylose, arabinose, lyxose and ribose by literature methods [16,49–51].
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Zn-Cu(OAc)2-AcOH system [16,54] led to complex mixtures, the modified condition with zinc re-
placed by iron [55] provided the target amine A-6 in excellent yield with no effect on the nitrile. 
Subsequent N-protection gave the carbamate A-7, which was then hydrogenated to convert the cy-
anide group to the primary amine. However, the reduction to amine A-8 proceeded in low yield 
(20–30%). Though the remaining two steps, N-acetylation and deprotection both can go smoothly to 
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The d-xylose-derived nitrone A is a convenient starting material for the synthesis of
1-amino-2,5-imino-1,2,5-trideoxy-l-mannitol hydrochloride (A-11) and its 1-N-acetylamino derivative
(A-10) [16]. Nucleophilic additions with trimethylsilyl cyanide (TMSCN) [16] and nitromethane [52]
were studied as agents for the introduction of aminomethyl substituents. Reaction of nitrone A
with TMSCN at room temperature provide hydroxylamine A-2 in 96% yield as the sole product,
and its C-2 configuration was determined as S-configuration through NOESY experiments since a
strong interaction of H-2 and H-4 was observed; in contrast, the aza-Henry reaction gave a pair of
inseparable epimers (A-2′a and A-2′b) in a 1:1 ratio. Since the corresponding reduction products
were also difficult to purify, the attempt to introduce aminomethyl groups by aza-Henry reaction was
not further investigated. The addition product A-2 was treated with Raney Ni/H2 in the presence of
Boc2O, and then deprotected to afford diamine A-3 in good yield. Final hydrogenation of A-3 gave
1-amino-2,5-imino-1,2,5-trideoxy-l-mannitol dihydrochloride (A-11) in quantitative yield (Scheme 1).
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Treatment of diamine A-3 with acetic anhydride provided compound A-4 in high yield, but the
attempt to release the secondary amine selectively by hydrochloric acid was unsatisfactory, giving
the target product A-5 in only 19% yield together with part of diamine A-3 recovered (Scheme 2).
Selective reduction of the N-O bond of hydroxylamine A-2, can be achieved in the presence of SmI2

according to the reported method in moderate yield [53]. Since excessive amount of SmI2 was needed
in above step, other reduction conditions were also tried. Though the typical Zn-Cu(OAc)2-AcOH
system [16,54] led to complex mixtures, the modified condition with zinc replaced by iron [55] provided
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the target amine A-6 in excellent yield with no effect on the nitrile. Subsequent N-protection gave the
carbamate A-7, which was then hydrogenated to convert the cyanide group to the primary amine.
However, the reduction to amine A-8 proceeded in low yield (20–30%). Though the remaining two
steps, N-acetylation and deprotection both can go smoothly to afford their corresponding products, the
unsatisfactory reduction yield of compound A-7 seriously reduced the total yield of the whole route.
Selective acetylation of the primary amine A-3 was also tried by strictly control of the usage of acetic
anhydride and reaction time [15,16], but no target product was obtained. Unexpectedly, acetylation with
acetic acid in dichloromethane provided the monoacetylated compound A-5 in 18% yield (improved
to 24% yield when anhydrous MgSO4 was added). However, further attempts to improve the reaction
were unsuccessful. In contrast, the mild acylation reagent N,N′,N”,N′”-tetraacetylglycoluril [56]
showed excellent selectivity for primary amine acetylation, giving the monoacetylated A-5 in 92% yield
when refluxing together in dichloromethane. Final hydrogenation of the intermediate then furnished
the target product A-10 quantitatively.
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2.2. Synthesis of 1-Amino and 1-N-Acetylamino Modified Pyrrolidine Stereoisomers

According to the strategy in Schemes 1 and 2, other 18 stereoisomeric pyrrolidine analogues of
pochonicine (1) were synthesized from the corresponding nitrones B−H. Reaction of TMSCN with
nitrones gave exclusively trans-addition products in high yields, with nitrone E and F as exceptions.
Cyanation of nitrone E and F both afforded a pair of diastereomers with trans/cis ratios as 63:37 and
61:39, respectively. The configurations of the newly constructed chiral centres in compound D-2,
F-2b and H-2 were unambiguously confirmed by X-ray crystallographic analysis (See Supplementary
Materials). The structures of their corresponding enantiomers C-2, E-2b and G-2 can also be confirmed
since their NMR data were indeed identical. Reduction of the resulting hydroxylamines by Raney
Ni/H2 in the presence of Boc2O and subsequent deprotection afforded diamines B-3−H-3, which were
then acetylated on the primary amine groups to give compounds B-5−H-5. Final hydrogenation
of intermediates B-3−H-3 and B-5−H-5 provided the target products, i.e., 4·HCl, C-10−H-10 and
B-11−H-11 (Table 1).

2.3. Glycosidase Inhibition

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a
range of enzymes, as shown in Tables 2 and 3.

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent
inhibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50

2.8 µM, 10 µM and 0.12 µM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino
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derivative of 2,5-dideoxy-2,5-imino-d-mannitol (DMDP) [57], also behaved as similar potent inhibitor
of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 µM and 0.21 µM, respectively). Both the
two compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 µM and 8.8 µM,
respectively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhibition
of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of α-GalNAcases,
but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 65.3 µM). For
other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only moderate
or weak inhibition of the tested β-HexNAcases, and the other completely lost their β-HexNAcase
inhibitory activities.

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. Most
of them showed weak or no inhibition of all the glycosidases tested. As an exception, compound D-11
with the pyrrolidine ring of pochonicine (1) were found to be moderate inhibitor of α-mannosidase
(IC50 54 µM) and β-GlcNAcase (IC50 99 µM) from Jack bean, and α-GalNAcase (IC50 44 µM) from
chicken liver. The assay results further indicated the importance of acetamide groups for β-HexNAcase
inhibitors. However, the more potent inhibition of compound D-11 of α-GalNAcase than compound
D-10 may indicate the significant role of the scaffold in interaction with active sites of the enzyme
instead of the 1-N-acetylamino group.

Though all the compounds in Tables 2 and 3 can also be regarded as 1-N-acetylamino and 1-amino
derivatives of their corresponding pyrrolidines (for example, compound 4·HCl is the 1-deoxy-1-N-
acetylamino derivative of DMDP), they lost almost all their inhibition towards other tested glycosidases
including glucosidase, galactosidase, mannosidase, α-l-fucosidase, trehalase, amyloglucosidase,
α-l-rhamnosidase and β-glucuronidase, revealing the importance of C-1 hydroxyl groups in interaction
with the corresponding enzymes.

Therefore, both configurations of the pyrrolidine ring and the 1-N-acetylamino group have
significant influences on the inhibition of β-HexNAcases and α-GalNAcase. In detail, 1-N-acetylamino
pyrrolidine analogues with the same configuration as DMDP and pochonicine (1) showed powerful
inhibition of these enzymes, revealing the importance of the right configurations of A ring. Furthermore,
the results indicate that pochonicine analogue with the A ring in DMDP configuration may also turn out
to be potent inhibitors of the above enzymes. The structure-activity relationship reported in this work
may be helpful in pursuing simplified pochonicine (1) analogues and more potent glycosidase inhibitors.
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Table 1. 1-Amino and 1-N-acetylamino pyrrolidine analogues synthesized from cyclic nitrones.

Entry Cyclic Nitrone Hydroxylamine Diamine Monoacetylated Pyrrolidine 1-Amino Product 1-N-Acetylamino Product

1
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confirmed since their NMR data were indeed identical. Reduction of the resulting hydroxylamines 
by Raney Ni/H2 in the presence of Boc2O and subsequent deprotection afforded diamines B-3−H-3, 
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
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sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-

6

Molecules 2020, 24, x FOR PEER REVIEW 5 of 24 

 

3 
N
O

OBn

BnO

BnO
L
-
lyxo-nitrone

(C)  

N

OBnBnO

BnO

NOH

C-2
(96%)  

H
N

BnO OBn

BnO

NH2

C-3
(86%)  

H
N

BnO OBn

BnO

NHAc

C-5
(85%)  

H
N

HO OH

HO

NH2

C-11
(99%)

2 HCl

 

H
N

HO OH

HO

NHAc.
HCl

C-10
(99%)  

4 
N

BnO OBn

BnO

O

D
-
lyxo-nitrone

(D)  

N

BnO OBn

BnO

OH

D-2
(92%)

N

 

H
N

BnO OBn

BnO

NH2

D-3
(89%)  

H
N

BnO OBn

BnO

NHAc

D-5
(82%)  

H
N

HO OH

HO

NH2

D-11
(99%)

2 HCl

 

H
N

HO OH

HO

NHAc

D-10
(99%)

HCl

 

5 
N
O

OBn

BnO

BnO
L
-
xylo-nitrone

(E)  
E-2a 

R1
 = CN, R2

 = H (58%)
E-2b 

R1
 = H, R2

 = CN (35%)

N

BnO OBn

BnO

OH

R1

R2

 

H
N

BnO OBn

BnO

NH2

E-3a
(88%)  

H
N

BnO OBn

BnO

NHAc

E-5a
(90%)  

H
N

HO OH

HO

NH2

E-11a
(99%)

2 HCl
R

 

H
N

HO OH

HO

NHAc

E-10a
(99%)

HCl

R

 
H
N

BnO OBn

BnO

NH2

E-3b
(90%)  

H
N

BnO OBn

BnO

NHAc

E-5b
(82%)  

H
N

HO OH

HO

NH2

E-11b
(99%)

2 HCl

S

 

H
N

HO OH

HO

NHAc

E-10b
(99%)

HCl

S

 

6 
N

BnO OBn

BnO

O

D
-
xylo-nitrone

(F)  
F-2a 

R1
 = CN, R2

 = H (59%)
F-2b 

R1
 = H, R2

 = CN (37%)

N

BnO OBn

BnO

OH

R2

R1

 

H
N

BnO OBn

BnO

NH2

F-3a
(83%)  

H
N

BnO OBn

BnO

NHAc

F-5a
(87%)  

H
N

HO OH

HO

NH2

F-11a
(99%)

2 HCl
S

 

H
N

HO OH

HO

NHAc

F-10a
(99%)

HCl

S

 
H
N

BnO OBn

BnO

NH2

F-3b
(85%)  

H
N

BnO OBn

BnO

NHAc

F-5b
(83%)  

H
N

HO OH

HO

NH2

F-11b
(99%)

2 HCl
R

 

H
N

HO OH

HO

NHAc

F-10b
(99%)

HCl

R

 

7 
N

BnO OBn

BnO

O

L
-ribo-nitrone

(G)  

N

BnO OBn

BnO

OH

CN

G-2
(87%)  

H
N

BnO OBn

BnO

NH2

G-3
(87%)  

H
N

BnO OBn

BnO

NHAc

G-5
(86%)  

H
N

HO OH

HO

NH2

G-11
(99%)

2 HCl

 

H
N

HO OH

HO

NHAc

G-10
(99%)

HCl

 

8 
N

BnO OBn

BnO

O

D
-ribo-nitrone

(H)  

N

BnO OBn

BnO

OH

CN

H-2
(91%)  

H
N

BnO OBn

BnO

NH2

H-3
(88%)  

H
N

BnO OBn

BnO

NHAc

H-5
(81%)  

H
N

HO OH

HO

NH2

H-11
(99%)

2 HCl

 

H
N

HO OH

HO

NHAc

H-10
(99%)

HCl
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sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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Table 1. Cont.

Entry Cyclic Nitrone Hydroxylamine Diamine Monoacetylated Pyrrolidine 1-Amino Product 1-N-Acetylamino Product

7
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-
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a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps 
starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the corre-
sponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation 
yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines. 

2.3. Glycosidase Inhibition 

The synthesized 1-N-acetylamino and 1-amino pyrrolidine analogues were assayed against a 
range of enzymes, as shown in Tables 2 and 3. 

Compound D-10 which resembles the pyrrolidine ring of pochonicine (1) exhibited potent in-
hibition of β-GlcNAcases from various resources including bovine liver, HL60 and Jack bean (IC50 
2.8 μM, 10 μM and 0.12 μM, respectively). While compound 4·HCl, the 1-deoxy-1-N-acetylamino 
derivative of 2,5-dideoxy-2,5-imino-D-mannitol (DMDP) [57], also behaved as similar potent inhib-
itor of bovine liver and Jack bean β-GlcNAcase (IC50 4.7 μM and 0.21 μM, respectively). Both the two 
compounds were found to potent inhibitors of HL60 β-GalNAcase (IC50 9.5 μM and 8.8 μM, respec-
tively). However, comparing to the natural product pochonicine (1), the very powerful inhibitor of 
β-GlcNAcases and β-GalNAcases, both the two analogues showed significant decrease in the inhi-
bition of two enzymes. Unexpectedly, pochonicine (1) did not exhibit any inhibition of 
α-GalNAcases, but compound D-10 showed moderate inhibition of chicken liver α-GalNAcase (IC50 
65.3 μM). For other 1-N-acetylamino compounds tested in Table 2, part of the compounds are only 
moderate or weak inhibition of the tested β-HexNAcases, and the other completely lost their 
β-HexNAcase inhibitory activities. 

As shown in Table 3, 1-amino pyrrolidine analogues failed to provide positive assay results. 
Most of them showed weak or no inhibition of all the glycosidases tested. As an exception, com-

a Yield of the corresponding hydroxylamines starting from cyclic nitrones; b Total yield in 2 steps starting from hydroxylamines to diamines; c Yield of monoacetylated pyrrolidines from the
corresponding diamines; d Hydrogenation yield of 1-amino products from diamines; e Hydrogenation yield of 1-N-acetylamino products from the corresponding monoacetylated pyrrolidines.

Table 2. Concentrations of 1-N-acetylamino pyrrolidine analogues giving 50% inhibition of various enzymes.

Enzyme

IC50 (µM)
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A-10 4·HCl C-10 D-10 E-10a F-10a E-10b F-10b G-10 H-10 Pochonicine (1) 

α-Glucosidase            
Yeast NIa (0.5%)b 450 NI (0%) NI (0%) NI (0%) NI (6.91%) NI (0%) NI (0%) NI (0%) NI (0%) —c 
Rice 568 1000 NI (18.2%) NI (26.1%) NI (15.9%) NI (12.5%) NI (0%) NI (0%) NI (0%) NI (5.6%) — 
Rat intestinal maltase 92 211 NI (35.4%) NI (9.24%) NI (12.7%) NI (14.6%) NI (0%) NI (12.7%) NI (16.0%) NI (13.6%) — 

β-Glucosidase            
Almond NI (16.1%) 170 NI (0%) NI (41.0%) NI (37.9%) NI (11.6%) NI (1.2%) NI (19.8%) NI (15.3%) NI (17.1%) — 
Bovine liver NI (2.0%) NI (33.8%) NI (1.0%) NI (2.4%) NI (4.1%) NI (0.3%) NI (0%) NI (0%) NI (0%) NI (1.7%) — 

α-Galactosidase            
Coffee beans NI (0%) NI (1.1%) NI (0.36%) 380 NI (0.36%) NI (0.36%) NI (0%) NI (0%) NI (0%) NI (0%) — 

β-Galactosidase            
Bovine liver NI (1.6%) 511 NI (1.3%) NI (3.3%) NI (4.9%) NI (4.2%) NI (3.9%) NI (4.2%) NI (2.9%) NI (3.6%) — 

α-Mannosidase            
Jack bean NI (0%) NI (0%) NI (0.4%) 205 NI (0.7%) NI (0%) NI (3.8%) NI (1.6%) NI (4.0%) NI (9.5%) — 

β-Mannosidase            
Snail NI (0%) 296 NI (0%) NI (0%) NI (25.8%) NI (3.23%) NI (0%) NI (0%) NI (0%) NI (0%) — 

α-L-Fucosidase            
Bovine kidney NI (0%) NI (1.5%) NI (4.9%) NI (1.7%) NI (41.7%) NI (8.4%) NI (20.5%) NI (3.9%) NI (11.5%) NI (22.3%) — 

α,α-Trehalase            
Porcine kidney NI (4.3%) NI (20.3%) NI (0%) NI (0%) NI (5.6%) NI (3.0%) NI (0%) NI (0%) NI (5.6%) NI (40.9%) — 

Amyloglucosidase            
A. niger NI (5.5%) NI (40.6%) NI (1.9%) NI (3.8%) NI (4.0%) NI (2.8%) NI (6.4%) NI (5.7%) NI (7.6%) NI (8.3%) — 

α-L-Rhamnosidase            
P. decumbens NI (10.1%) NI (6.5%) NI (3.6%) NI (8.3%) NI (11.8%) NI (5.3%) NI (30.8%) NI (3.0%) NI (9.5%) NI (7.7%) — 

β-Glucuronidase            
E.coli NI (0%) NI (0.6%) NI (0.3%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) — 
Bovine liver NI (4.6%) NI (1.7%) NI (0%) NI (1.3%) NI (0%) NI (0%) NI (4.3%) NI (0%) NI (0%) NI (0%) — 

β-N-Acetylhexosaminidase            
Bovine liver 943 4.7 NI (36.3%) 2.8 95 NI (23.2%) NI (38.4%) 652 299 NI (33.7%) 0.021 [2] 
HL60 NI (12.7%) 34 NI (3.9%) 10 591 NI (0%) NI (4.5%) NI (16.6%) NI (18.8%) NI (0.3%) 0.018 [2] 
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α-L-Rhamnosidase            
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β-Glucuronidase            
E.coli NI (0%) NI (0.6%) NI (0.3%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) — 
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β-N-Acetylhexosaminidase            
Bovine liver 943 4.7 NI (36.3%) 2.8 95 NI (23.2%) NI (38.4%) 652 299 NI (33.7%) 0.021 [2] 
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A-10 4·HCl C-10 D-10 E-10a F-10a E-10b F-10b G-10 H-10 Pochonicine (1)

α,α-Trehalase
Porcine kidney NI (4.3%) NI (20.3%) NI (0%) NI (0%) NI (5.6%) NI (3.0%) NI (0%) NI (0%) NI (5.6%) NI (40.9%) —

Amyloglucosidase
A. niger NI (5.5%) NI (40.6%) NI (1.9%) NI (3.8%) NI (4.0%) NI (2.8%) NI (6.4%) NI (5.7%) NI (7.6%) NI (8.3%) —

α-l-Rhamnosidase
P. decumbens NI (10.1%) NI (6.5%) NI (3.6%) NI (8.3%) NI (11.8%) NI (5.3%) NI (30.8%) NI (3.0%) NI (9.5%) NI (7.7%) —

β-Glucuronidase
E. coli NI (0%) NI (0.6%) NI (0.3%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) —
Bovine liver NI (4.6%) NI (1.7%) NI (0%) NI (1.3%) NI (0%) NI (0%) NI (4.3%) NI (0%) NI (0%) NI (0%) —

β-N Acetylhexosaminidase
Bovine liver 943 4.7 NI (36.3%) 2.8 95 NI (23.2%) NI (38.4%) 652 299 NI (33.7%) 0.021 [2]
HL60 NI (12.7%) 34 NI (3.9%) 10 591 NI (0%) NI (4.5%) NI (16.6%) NI (18.8%) NI (0.3%) 0.018 [2]
Jack bean 202 0.21 129 0.12 10 NI (42%) 115 98 26 241 0.0016 [2]
A. oryzae — — — — — — — — — — 0.33 [2]
Human placenta — — — — — — — — — — 0.012 [2]

β-N-Acetylgalactosaminidase
HL60 NI (13.0%) 9.5 NI (1.4%) 8.8 490 NI (0.9%) NI (10.1%) NI (36.1%) NI (15.9%) NI (5.3%) 0.049 [2]

α-N-Acetylgalactosaminidase
Chicken liver NI (0%) NI (3.3%) NI (6.1%) 65.3 NI (1.4%) NI (0%) NI (0.5%) NI (2.3%) NI (2.3%) NI (6.1%) NI (9.0%) [2]

a NI: No Inhibition (less than 50% at 1000 µM); b ( ): Inhibition % at 1000 µM; c —: Not determined.

Table 3. Concentrations of 1-amino pyrrolidine analogues giving 50% inhibition of various enzymes.

Enzyme

IC50 (µM)

Molecules 2020, 24, x FOR PEER REVIEW 8 of 24 

 

Jack bean 202 0.21 129 0.12 10 NI (42%) 115 98 26 241 0.0016 [2] 
A. oryzae — — — — — — — — — — 0.33 [2] 
Human placenta — — — — — — — — — — 0.012 [2] 

β-N-Acetylgalactosaminidase            
HL60 NI (13.0%) 9.5 NI (1.4%) 8.8 490 NI (0.9%) NI (10.1%) NI (36.1%) NI (15.9%) NI (5.3%) 0.049 [2] 

α-N-Acetylgalactosaminidase            
Chicken liver NI (0%) NI (3.3%) NI (6.1%) 65.3 NI (1.4%) NI (0%) NI (0.5%) NI (2.3%) NI (2.3%) NI (6.1%) NI (9.0%) [2] 

a NI: No Inhibition (less than 50% at 1000 μM); b ( ): Inhibition % at 1000 μM; c —: Not determined. 

Table 3. Concentrations of 1-amino pyrrolidine analogues giving 50% inhibition of various enzymes. 

Enzyme 

IC50 (μM) 
H
N

HO OH

HO

NH2

2 HCl

 

H
N

HO OH

HO

NH2

2 HCl

 

H
N

HO OH

HO

NH2

2 HCl

 

H
N

HO OH

HO

NH2

2 HCl

 

H
N

HO OH

HO

NH2

2 HCl
R

 

H
N

HO OH

HO

NH2

2 HCl
S

 

H
N

HO OH

HO

NH2

2 HCl

S

 

H
N

HO OH

HO

NH2

2 HCl
R

 

H
N

HO OH

HO

NH2

2 HCl

 

H
N

HO OH

HO

NH2

2 HCl
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α-Glucosidase           
Yeast NIa (0%)b NI (42.7%) NI (9.55%) NI (4.52%) NI (9.55%) NI (10.1%) NI (0%) NI (0%) NI (0%) NI (0%) 
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α-Mannosidase           
Jack bean NI (0%) NI (0%) NI (0%) 54 NI (0.32%) NI (0.97%) NI (12.1%) NI (0%) NI (5.19%) NI (3.81%) 

β-Mannosidase           
Snail NI (0%) NI (0%) NI (3.35%) NI (2.23%) NI (2.6%) NI (1.9%) NI (0%) NI (0%) NI (0%) NI (1.2%) 

α-L-Fucosidase           
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Amyloglucosidase           
A. niger NI (0.9%) 589 NI (0%) NI (0.7%) NI (9.1%) NI (0%) NI (0%) NI (0%) NI (1.1%) NI (2.1%) 
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Table 3. Cont.
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Rat intestinal maltase 68 251 NI (37.1%) NI (4.02%) NI (9.95%) NI (48.0%) NI (10.9%) NI (20.8%) NI (%2.64) NI (10.1%) 

β-Glucosidase           
Almond NI (0%) NI (44.4%) NI (13.0%) 419 NI (12.4%) NI (6.0%) NI (4.8%) NI (13.5%) NI (2.3%) NI (18.8%) 
Bovine liver NI (0%) NI (16.2%) NI (0.7%) NI (3.1%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (3.8%) 

α-Galactosidase           
Coffee beans NI (0%) NI (0%) NI (1.9%) NI (42.2%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) 

β-Galactosidase           
Bovine liver NI (1.0%) NI (36.3%) NI (2.6%) NI (6.5%) NI (2.0%) NI (0%) NI (0%) NI (2.6%) NI (0%) NI (4.2%) 

α-Mannosidase           
Jack bean NI (0%) NI (0%) NI (0%) 54 NI (0.32%) NI (0.97%) NI (12.1%) NI (0%) NI (5.19%) NI (3.81%) 

β-Mannosidase           
Snail NI (0%) NI (0%) NI (3.35%) NI (2.23%) NI (2.6%) NI (1.9%) NI (0%) NI (0%) NI (0%) NI (1.2%) 

α-L-Fucosidase           
Bovine kidney NI (13.1%) NI (0%) NI (39.9%) NI (8.0%) NI (21.2%) NI (46.4%) NI (19.9%) NI (16.2%) NI (16.2%) NI (16.2%) 

α,α-Trehalase           
Porcine kidney NI (0%) NI (4.7%) NI (0.9%) NI (0%) NI (4.7%) NI (0%) NI (2.2%) NI (0.6%) NI (3.8%) NI (0%) 

Amyloglucosidase           
A. niger NI (0.9%) 589 NI (0%) NI (0.7%) NI (9.1%) NI (0%) NI (0%) NI (0%) NI (1.1%) NI (2.1%) 

α-L-Rhamnosidase           

A-11 B-11 C-11 D-11 E-11 F-11a E-11b F-11b G-11 H-11

Almond NI (0%) NI (44.4%) NI (13.0%) 419 NI (12.4%) NI (6.0%) NI (4.8%) NI (13.5%) NI (2.3%) NI (18.8%)
Bovine liver NI (0%) NI (16.2%) NI (0.7%) NI (3.1%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (3.8%)

α-Galactosidase
Coffee beans NI (0%) NI (0%) NI (1.9%) NI (42.2%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%)

β-Galactosidase
Bovine liver NI (1.0%) NI (36.3%) NI (2.6%) NI (6.5%) NI (2.0%) NI (0%) NI (0%) NI (2.6%) NI (0%) NI (4.2%)

α-Mannosidase
Jack bean NI (0%) NI (0%) NI (0%) 54 NI (0.32%) NI (0.97%) NI (12.1%) NI (0%) NI (5.19%) NI (3.81%)

β-Mannosidase
Snail NI (0%) NI (0%) NI (3.35%) NI (2.23%) NI (2.6%) NI (1.9%) NI (0%) NI (0%) NI (0%) NI (1.2%)

α-l-Fucosidase
Bovine kidney NI (13.1%) NI (0%) NI (39.9%) NI (8.0%) NI (21.2%) NI (46.4%) NI (19.9%) NI (16.2%) NI (16.2%) NI (16.2%)

α,α-Trehalase
Porcine kidney NI (0%) NI (4.7%) NI (0.9%) NI (0%) NI (4.7%) NI (0%) NI (2.2%) NI (0.6%) NI (3.8%) NI (0%)

Amyloglucosidase
A. niger NI (0.9%) 589 NI (0%) NI (0.7%) NI (9.1%) NI (0%) NI (0%) NI (0%) NI (1.1%) NI (2.1%)

α-l-Rhamnosidase
P. decumbens NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (1.6%) NI (1.6%) NI (1.3%)

β-Glucuronidase
E. coli NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%)
Bovine liver NI (0.8%) NI (0%) NI (0%) NI (0%) NI (0%) NI (5.7%) NI (4.1%) NI (0%) NI (0%) NI (4.9%)

β-N-Acetylhexosaminidase
Bovine liver NI (2.1%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (0%) NI (1.6%) NI (1.6%) NI (1.3%)
HL60 NI (0%) NI (0%) NI (0%) NI (3.1%) NI (1.3%) NI (2.7%) NI (0%) NI (0%) NI (0%) NI (0%)
Jack bean NI (21.1%) NI (14.5%) NI (14.5%) 99 NI (19.3%) NI (30.7%) NI (23.5%) 264 NI (29.5%) NI (7.2%)

β-N-Acetylgalactosaminidase
HL60 NI (5.2%) NI (3.8%) NI (2.9%) NI (14.8%) NI (4.8%) NI (6.0%) NI (11.9%) NI (8.1%) NI (1.9%) NI (0%)

α-N-Acetylgalactosaminidase
Chicken liver NI (4.7%) NI (7.5%) NI (0.5%) 44 NI (0%) NI (5.1%) NI (0%) NI (0%) NI (13.6%) NI (2.8%)

a NI: No Inhibition (less than 50% at 1000 µM); b ( ): Inhibition % at 1000 µM.
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3. Materials and Methods

3.1. General Methods

All reagents were used as received without any further purification or prepared as described in
the literature. TLC plates were visualized by ultraviolet light or by treatment with a spray of Pancaldi
reagent ((NH4)6MoO4, Ce(SO4)2, H2SO4, H2O) or a 0.5% solution of KMnO4 in acetone. Column
chromatography was performed on a flash column chromatography with silica gel (200–300 mesh,
Inno-chem, Beijing, China). NMR spectra were measured in CDCl3 (with TMS as internal standard)
or D2O (with H2O as internal standard) on a Bruker AV300, AV400 or AV500 magnetic resonance
spectrometer (Bruker, Ettlingen, Germany) (1H NMR at 300 MHz, 400 MHz or 500 MHz, 13C NMR
at 125 MHz). High-resolution mass spectra (HRMS) were performed on a Thermo Fisher Exactive
Spectrometer (Thermo Fisher Scientific, Waltham, MA, USA). Polarimetry was determined using an
Optical Activity AA-10R polarimeter with concentrations (c) given in gram per 100 mL. Infrared spectra
were recorded as films on KBr plates on a Nicolet-6700 FT-IR spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA).

3.2. Material and Methods for the Enzyme Inhibition Assay

With rat intestinal maltase as an exception, other enzymes were purchased from Sigma-Aldrich
Chemical Co. (St. Louis, MO, USA). Brush border membranes prepared from rat small intestine
according to the method of Kessler et al. [58] were assayed at pH 6.8 for rat intestinal maltase using
maltose. The released d-glucose was determined colorimetrically using the Glucose CII-test Wako
(Wako Pure Chemical Ind.; Osaka, Japan). Other glycosidase activities were determined using an
appropriate p-nitrophenyl glycoside as substrate in a buffer solution at the optimal pH value of each
enzyme. The reaction was stopped by adding 400 mM Na2CO3. The released p-nitrophenol was
measured spectrometrically at 400 nm [59].

3.3. Chemistry

3.3.1. General Procedure for Synthesis of Hydroxylamines A-2, B-2, C-2, D-2, E-2a, E-2b, F-2a, F-2b,
G-2 and H-2 with A-2 as an Example

To a solution of nitrone A (1.25 g, 3.00 mmol) in THF (5 mL) and methanol (25 mL) was
added dropwise TMSCN (0.45 mL, 3.60 mmol) under Ar atmosphere at 0 ◦C. After stirring at
room temperature for 6–8 h, TLC showed completion of the reaction. The resulting solution was
concentrated in vacuo, and the residue was purified by flash column chromatography (silica gel,
petroleum ether/EtOAc = 6/1) to give hydroxylamine A-2 (colourless syrup, 1.28 g, 96% yield).
Data for (2S,3S,4S,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine (A-2)
(Ref. [16]): [α]D

23
−9.5 (c 1.1 in CH2Cl2); νmax/cm−1: 3366 (s), 3088 (m), 3063 (m), 3030 (s), 2920 (s), 2867

(vs), 2237 (w), 1497 (s), 1454 (vs), 1362 (s), 1207 (m), 1100 (vs), 1028 (s), 738 (vs), 697 (vs); 1H NMR
(500 MHz, CDCl3) δ (ppm): 7.36–7.20 (m, 15H), 6.52 (s, 1H, OH), 4.54–4.37 (m, 6H), 4.20 (d, J = 1.5 Hz,
1H, H-2), 4.13 (t, J = 2.1 Hz, 1H, H-3), 3.93 (dd, J = 6.5 and 2.2 Hz, 1H, H-4), 3.72 (dd, J = 10.5 and 3.3 Hz,
1H, H-6), 3.54 (dd, J = 10.5 and 4.0 Hz, 1H, H-6′), 3.28–3.25 (m, 1H, H-5); 13C NMR (125 MHz, CDCl3) δ
(ppm): 137.4, 137.3, 136.4, 128.7, 128.4, 128.3, 128.0, 127.97, 127.93, 127.88, 127.82, 115.7, 83.6 (C-3), 81.2
(C-4), 73.3 (PhCH2), 72.3 (PhCH2), 72.0 (PhCH2), 69.4 (C-5), 66.4 (C-6), 61.2 (C-2); HRMS (ESI): calcd for
C27H28O4N2Na+ [M + Na+] 467.1941, found 467.1941.

Data for (2R,3R,4R,5R)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine
(B-2): Colourless syrup, 1.26 g, 94% yield from nitrone B (1.26 g, 3.02 mmol); [α]D

22 +8.7 (c 1.0
in CH2Cl2); νmax/cm−1: 3359 (m), 3031 (m), 2868 (m), 2239 (w), 1496 (m), 1454 (s), 1362 (m), 1207 (m),
1097 (vs), 1027 (m), 737 (s), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.36–7.20 (m, 15H), 6.46
(s, 1H, OH), 4.55–4.37 (m, 6H), 4.20 (d, d, J = 1.5 Hz, 1H, H-2), 4.14 (t, J = 2.1 Hz, 1H, H-3), 3.94 (dd,
J = 6.5 and 2.2 Hz, 1H, H-4), 3.72 (dd, J = 10.5 and 3.3 Hz, 1H, H-6), 3.54 (dd, J = 10.5 and 4.0 Hz, 1H,
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H-6′), 3.28–3.26 (m, 1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm): 137.4, 137.3, 136.4, 128.7, 128.4,
128.3, 128.0, 127.96, 127.93, 127.87, 127.82, 115.7, 83.6 (C-3), 81.2 (C-4), 73.3 (PhCH2), 72.3 (PhCH2), 72.0
(PhCH2), 69.4 (C-5), 66.4 (C-6), 61.1 (C-2); HRMS (ESI): calcd for C27H28O4N2Na+ [M + Na+] 467.1941,
found 467.1937.

Data for (2S,3S,4R,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine (C-2)
(Ref. [60]): Colourless syrup, 1.32 g, 96% yield from nitrone C (1.30 g, 3.12 mmol); [α]D

23 +8.1 (c 1.5 in
CH2Cl2); νmax/cm−1: 3306 (m), 3030 (m), 2925 (s), 2855 (s), 2251 (w), 1497 (m), 1454 (s), 1362 (m), 1209
(m), 1144 (s), 1102 (s), 1027 (s), 736 (s), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm.): 7.34–7.23 (m,
15H), 6.72 (s, 1H, OH), 4.69–4.44 (m, 6H), 4.33 (t, J = 5.5 Hz, 1H, H-3), 4.28 (d, J = 5.6 Hz, 1H. H-2), 4.22
(t, J = 5.7 Hz, 1H, H-4), 3.72 (dd, J = 9.6 Hz and 6.9 Hz, 1H, H-6), 3.66 (dd, J = 9.3 Hz and 6.7 Hz, 1H,
H-6′), 3.55–3.51 (m, 1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm): 137.79, 137.70, 136.7, 128.6, 128.45,
128.43, 128.2, 128.0, 127.9, 127.89, 127.81, 116.4, 80.2 (C-3), 75.8 (C-4), 73.8 (PhCH2), 73.4 (PhCH2), 73.1
(PhCH2), 68.9 (C-5), 67.4 (C-6), 60.4 (C-2); HRMS (ESI): calcd for C27H28O4N2Na+ [M + Na+] 467.1941,
found 467.1939.

Data for (2R,3R,4S,5R)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine
(D-2) (Ref. [61]): Colourless syrup, 1.19 g, 92% yield from nitrone D (1.22 g, 2.93 mmol); [α]D

23
−10.2 (c

1.0 in CH2Cl2); νmax/cm−1: 3328 (m), 3030 (m), 2925 (s), 2870 (s), 2251 (w), 1497 (m), 1454 (s), 1362 (m),
1209 (m), 1145 (s), 1102 (s), 1027 (s), 736 (s), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.36–7.22 (m,
15H), 6.78 (s, 1H, OH), 4.69–4.43 (m, 6H), 4.33 (t, J = 5.5 Hz, 1H, H-3), 4.28 (d, J = 5.6 Hz, 1H. H-2),
4.22 (t, J = 5.7 Hz, 1H, H-4), 3.72 (dd, J = 9.6 Hz and 6.9 Hz, 1H, H-6), 3.65 (dd, J = 9.3 Hz and 6.7 Hz,
1H, H-6′), 3.55–3.51 (m, 1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm): 137.79, 137.71, 136.7, 128.6,
128.46, 128.43, 128.2, 128.0, 127.89, 127.81, 116.5, 80.2 (C-3), 75.8 (C-4), 73.8 (PhCH2), 73.4 (PhCH2), 73.1
(PhCH2), 69.0 (C-5), 67.4 (C-6), 60.4 (C-2); HRMS (ESI): calcd for C27H28O4N2Na+ [M + Na+] 467.1941,
found 467.1938.

(2R,3R,4R,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine (E-2a) and
(2S,3R,4R,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine (E-2b): 92%
total yield from nitrone E (1.34 g, 3.21 mmol).

Data for E-2a: White solid, 821 mg, 58% yield; m.p. 117–119 ◦C; [α]D
23 +7.8 (c 0.7 in CH2Cl2); νmax/cm−1:

3308 (m), 3028 (m), 2870 (m), 2245 (w), 1497 (m), 1453 (m), 1361 (m), 1144 (m), 1109 (s), 1043 (m),
1028 (m), 736 (vs), 693 (vs); 1HNMR (500 MHz, CDCl3) δ (ppm):7.37–7.23 (m,15H), 5.75 (s, 1H, OH),
4.56–4.45 (m, 6H), 4.15 (dd, J = 5.6 and 1.4 Hz, 1H, H-2), 4.00 (dd, J = 6.1 and 1.4 Hz, 1H, H-4), 3.83
(t, J = 9.1 Hz,1H), 3.73 (m, 2H, H-6), 3.39–3.35 (m,1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm):
137.8, 137.2, 136.4, 128.6, 128.5, 128.4, 128.3, 128.0, 127.91, 127.90, 127.83, 127.81, 118.35, 83.9 (C-3), 80.0
(C-4), 73.5 (PhCH2), 72.4 (PhCH2), 72.3 (PhCH2), 69.1 (C-6), 67.1 (C-5), 63.2 (C-2); HRMS (ESI): calcd for
C27H28O4N2Na+ [M + Na+] 467.1941, found 467.1938.

Data for E-2b: White solid, 491 mg, 35% yield; m.p. 111–114 ◦C; [α]D
23
−38.1 (c 1.0 in CH2Cl2);

νmax/cm−1: 3359 (m), 3031 (m), 2868 (m), 2237 (w), 1496 (m), 1454 (m), 1362 (m), 1207 (m), 1097 (s),
1027 (m), 737 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm):7.35–7.21 (m, 15H), 5.98 (s, 1H, OH),
4.59–4.48 (m, 6H), 4.37 (d, J = 6.4 Hz, 1H, H-2), 4.18 (dd, J = 7.7 and 4.3 Hz, 1H, H-4), 4.07 (dd, J = 6.3
and 4.4 Hz, 1H, H-3), 3.80 (dd, J = 9.7 and 5.7 Hz, 1H, H-6), 3.68 (dd, J = 9.6 and 5.7 Hz, 1H, H-6′),
3.63−3.59 (m, 1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm): 137.7, 137.5, 136.6, 128.6, 128.4, 128.3,
128.2, 127.9, 127.8, 127.78, 127.73, 114.6, 81.1 (C-3), 80.8 (C-4), 73.5 (PhCH2), 73.0 (PhCH2), 72.9 (PhCH2),
67.4 (C-6), 66.7 (C-5), 60.6 (C-2); HRMS (ESI): calcd for C27H28O4N2Na+ [M + Na+] 467.1941, found
467.1939.

(2S,3S,4S,5R)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine (F-2a) and
(2R,3S,4S,5R)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine (F-2b): 96%
total yield from nitrone F (1.50 g, 3.60 mmol).
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Data for F-2a: White solid, 985 mg, 59% yield; m.p. 118–119 ◦C; [α]D
23
−5.5 (c 1.0 in CH2Cl2); νmax/cm−1:

3326 (m), 3028 (m), 2911 (m), 2870 (m), 2245 (w), 1497 (m), 1454 (s), 1241 (m), 1216 (m), 1144 (s), 1110 (vs),
736 (vs), 693 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm):7.37–7.23 (m,15H), 5.70 (s, 1H, OH), 4.56–4.45
(m, 6H), 4.15 (dd, J = 5.7 and 1.4 Hz, 1H, H-2), 4.00 (dd, J = 6.1 and 1.4 Hz, 1H, H-4), 3.83 (dd, J = 9.2
and 7.7Hz,1H, H-3), 3.75–3.71 (m, 2H, H-6), 3.39–3.35 (m,1H); 13C NMR (125 MHz, CDCl3) δ (ppm):
137.8, 137.2, 136.4, 128.6, 128.5, 128.4, 128.3, 128.0, 127.91, 127.90, 127.83, 127.81, 118.3, 83.9 (C-3), 80.0
(C-4), 73.5 (PhCH2), 72.4 (PhCH2), 72.3 (PhCH2), 69.1 (C-6), 67.1 (C-5), 63.2 (C-2); HRMS (ESI): calcd for
C27H28O4N2Na+ [M + Na+] 467.1941, found 467.1938.

Data for F-2b: White solid, 612 mg, 37% yield; m.p. 113–115 ◦C; [α]D
23 +35.3 (c 1.0 in CH2Cl2);

νmax/cm−1: 3359 (m), 3031 (m), 2868 (m), 2239 (w), 1496 (m), 1454 (m), 1362 (m), 1207 (s), 1097 (s), 1027
(m), 737 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm):7.35–7.21 (m, 15H), 6.04 (s, 1H, OH), 4.59
–4.47 (m, 6H), 4.37 (d, J = 6.3 Hz, 1H, H-2), 4.18 (dd, J = 7.7 and 4.3 Hz, 1H, H-4), 4.07 (dd, J = 6.3 and
4.4 Hz, 1H, H-3), 3.80 (dd, J = 9.7 and 5.7 Hz, 1H, H-6), 3.68 (dd, J = 9.6 and 5.7 Hz, 1H, H-6′), 3.63 −3.59
(m, 1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm): 137.7, 137.5, 136.6, 128.6, 128.4, 128.3, 128.2, 127.9,
127.8, 127.78, 127.74, 114.6, 81.1 (C-3), 80.8 (C-4), 73.5 (PhCH2), 73.0 (PhCH2), 72.9 (PhCH2), 67.4 (C-6),
66.7 (C-5), 60.6 (C-2); HRMS (ESI): calcd for C27H28O4N2Na+ [M + Na+] 467.1941, found 467.1939.

Data for (2R,3R,4S,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine
(G-2) (Ref. [61]): White solid, 1.39 g, 87% yield from nitrone G (1.51 g, 3.62 mmol); m.p. 106–109 ◦C;
[α]D

23 +0.6 (c 1.0 in CH2Cl2); νmax/cm−1: 3403 (m), 3029 (m), 2922 (m), 2871 (m), 2242 (w), 1497 (m),
1453 (m), 1352 (m), 1224 (m), 1145 (s), 1101 (s), 1027 (s), 742 (s), 694 (vs); 1HNMR (500 MHz, CDCl3)
δ (ppm):7.35–7.24 (m,15H), 6.05 (s, 1H, OH), 4.70–4.43 (m, 6H), 4.10–4.05 (m, 2H, H-3, H-2), 3.83 (t,
J = 6.1 Hz, 1H, H-4), 3.53–3.51 (m, 2H, H-6, H-6′), 3.31−3.30 (m,1H, H-5); 13C NMR (125 MHz, CDCl3)
δ (ppm): 137.6, 137.4, 136.7, 128.6, 128.48, 128.44, 128.2, 128.13, 128.11, 127.98, 127.90, 127.88, 127.86,
118.5, 77.3 (C-3), 75.2 (C-4), 73.3 ((PhCH2)), 72.8 (PhCH2), 72.2 (PhCH2), 72.0 (C-5), 68.0 (C-6), 61.8 (C-2);
HRMS (ESI): calcd for C27H28O4N2Na+ [M + Na+] 467.1941, found 467.1936.

Data for (2S,3S,4R,5R)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-1-hydroxypyrrolidine
(H-2): White solid, 1.45 g, 91% yield from nitrone H (1.50 g, 3.60 mmol); m.p. 109–111 ◦C; [α]D

23
−1.4

(c 1.1 in CH2Cl2); νmax/cm−1: 3407 (m), 3029 (m), 2873 (m), 2242 (w), 1497 (m), 1453 (m), 1352 (m),
1225 (m), 1149 (s), 1102 (s), 1035 (s), 1028 (s), 743 (vs), 694 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm):
7.34–7.23 (m,15H), 6.11 (s, 1H, OH), 4.68–4.43 (m, 6H), 4.10–4.05 (m, 2H, H-3, H-2), 3.81 (t, J= 5.1 Hz,
1H, H-4), 3.53–3.48 (m, 2H, H-6, H-6′), 3.31–3.28 (m,1H, H-5); 13C NMR (125 MHz, CDCl3) δ (ppm):
137.6, 137.4, 136.7, 128.6, 128.49, 128.45, 128.2, 128.13, 128.11, 127.98, 127.91, 127.8, 118.6, 77.3 (C-3), 75.2
(C-4), 73.3 (PhCH2), 72.8 (PhCH2), 72.2 (PhCH2), 72.0 (C-5), 68.0 (C-6), 61.8 (C-2); HRMS (ESI): calcd for
C27H28O4N2Na+ [M + Na+] 467.1941, found 467.1933.

3.3.2. General Procedure for Synthesis of Hydroxylamines A-3, B-3, C-3, D-3, E-3a, E-3b, F-3a, F-3b,
G-3 and H-3 with A-3 as an Example

Hydroxylamine A-2 (1.28 g, 2.88 mmol) was dissolved in methanol (10 mL), followed by Boc2O
(1.46 mL, 6.30 mmol) and Raney Ni (1.0 g, 60%). The suspension was stirred under hydrogen
atmosphere for 4 h when TLC showed completion of the reaction. Hydrogen was replaced by
nitrogen, and catalyst was removed from the reaction mixture by filtration. The filtrate was
concentrated in vacuo to afford the crude product as a colourless oil. The intermediate was dissolved
in dichloromethane (10 mL) and cooled to 0 ◦C, trifluoroacetic acid (0.54 mL, 7.20 mmol) was
added dropwise. After stirring at room temperature for 3 h, TLC showed completion of the
reaction. The mixture was neutralized by aqueous NaHCO3 and extracted with dichloromethane
(3 × 10 mL). The organic phases were combined, washed with brine and dried over MgSO4. After
concentrated in vacuo, the crude product was purified by flash column chromatography (silica gel,
dichloromethane/methanol = 25:1) to give diamine A-3 (colourless syrup, 1.05 g, 85% yield for two
steps). Data for (2S,3S,4S,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine
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(A-3): [α]D
23
−16.3 (c 1.0 in CH2Cl2); νmax/cm−1: 3031 (m), 2923 (s), 2865 (s), 1682 (vs), 1453 (m), 1203

(vs), 1130 (vs), 1027 (m), 737 (s), 721 (s), 697 (s); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.24 (m, 15H),
4.55–4.49 (m, 6H), 3.91 (t, J = 3.8 Hz, 1H), 3.76 (t, J = 3.8 Hz, 1H), 3.56−3.50 (m, 2H), 3.32 (q, J = 5.0 Hz,
1H), 3.15–3.12 (m, 1H), 2.79–2.71 (m, 2H), 1.77 (s, 3H, NH, NH2); 13C NMR (125 MHz, CDCl3) δ (ppm):
138.2, 138.16, 138.15, 128.44, 128.41, 127.8, 127.78, 127.75, 127.71, 127.6, 87.3, 86.1, 73.2, 71.9, 71.7, 70.3,
64.1, 61.6, 44.3; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486, found 433.2478.

Data for (2R,3R,4R,5R)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (B-3):
Colourless syrup, 380 mg, 88% yield from hydroxylamine B-2 (450 mg, 1.01 mmol); [α]D

23 +11.8 (c 0.8
in CH2Cl2); νmax/cm−1: 3030 (m), 2866 (m), 1682 (vs), 1496 (m), 1453 (m), 1204 (vs), 1130 (vs), 1027 (m),
736 (s), 720 (s), 697 (s); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.24 (m, 15H), 4.55–4.49 (m, 6H), 3.91
(t, J = 3.8 Hz, 1H), 3.76 (t, J = 3.8 Hz, 1H), 3.56–3.50 (m, 2H), 3.32 (q, J = 5.0 Hz, 1H), 3.16–3.12 (m, 1H),
2.79–2.71 (m, 2H), 1.76 (s, 3H, NH, NH2); 13C NMR (125 MHz, CDCl3) δ (ppm): 138.2, 138.16, 138.15,
128.44, 128.41, 127.8, 127.78, 127.75, 127.71, 127.6, 87.3, 86.1, 73.2, 71.9, 71.7, 70.3, 64.1, 61.6, 44.3; HRMS
(ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486, found 433.2478.

Data for (2S,3S,4R,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (C-3):
Colourless syrup, 372 mg, 86% yield from hydroxylamine C-2 (450 mg, 1.01 mmol); [α]D

22 +13.3 (c 1.0
in CH2Cl2); νmax/cm−1: 3328 (m), 3030 (m), 2864 (m), 1495 (m), 1453 (s), 1143 (s), 1094 (s), 1027 (m),
736 (s), 696 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.32–7.25 (m, 15H), 4.73–4.43 (m, 6H), 4.04 (t,
J = 4.1 Hz, 1H), 3.70–3.61 (m, 3H), 3.42 (q, J = 6.6 Hz, 1H), 3.30 (q, J = 6.3 Hz, 1H), 2.77 (dd, J = 12.6 and
4.2 Hz, 1H), 2.59 (dd, J = 12.6 and 6.5 Hz, 1H), 1.50 (s, 3H, NH, NH2); 13C NMR (125 MHz, CDCl3) δ
(ppm): 138.6, 138.2, 138.1, 128.44, 128.41, 128.3, 127.8, 127.78, 127.76, 127.6, 127.5, 81.9, 78.0, 73.3, 73.2,
72.3, 69.7, 61.9, 59.0, 45.2; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486, found 433.2479.

Data for (2R,3R,4S,5R)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (D-3):
Colourless syrup, 372 mg, 86% yield from hydroxylamine D-2 (450 mg, 1.01 mmol); [α]D

23
−19.6 (c 1.2

in CH2Cl2); νmax/cm−1: 3292 (w), 3029 (m), 2859 (m), 1585 (m), 1495 (m), 1453 (s), 1143 (s), 1094 (s), 1027
(m), 734 (s), 696 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.32–7.25 (m, 15H), 4.73–4.43 (m, 6H), 4.04
(t, J = 4.1 Hz, 1H), 3.70–3.61 (m, 3H), 3.42 (q, J = 6.6 Hz, 1H), 3.30 (q, J = 6.3 Hz, 1H), 2.77 (dd, J = 12.6
and 4.2 Hz, 1H), 2.59 (dd, J = 12.6 and 4.3 Hz, 1H), 1.50 (s, 3H, NH, NH2); 13C NMR (125 MHz, CDCl3)
δ (ppm): 138.6, 138.2, 138.1, 128.44, 128.41, 128.3, 127.8, 127.78, 127.76, 127.6, 127.5, 81.9, 78.0, 73.3, 73.2,
72.3, 69.7, 61.9, 59.0, 45.2; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486, found 433.2478.

Data for (2R,3R,4R,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (E-3a):
Colourless syrup, 379 mg, 88% yield from hydroxylamine E-2a (450 mg, 1.01 mmol); [α]D

23 +12.1 (c 1.0
in CH2Cl2); νmax/cm−1: 3062 (w), 3029 (m), 2923 (s), 2860 (s), 1688 (m), 1496 (m), 1453 (s), 1201 (m), 1093
(vs), 735 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.35–7.24 (m, 15H), 4.57–4.44 (m, 6H), 3.92
(dd, J = 4.6 and 1.1 Hz, 1H), 3.73 (dd, J = 9.2 and 6.0 Hz, 1H), 3.65 (dd, J = 4.5 and 1.1 Hz,1H), 3.62 (dd,
J = 9.2 and 6.8 Hz, 1H), 3.52 (q, J = 5.95 Hz, 1H), 3.12–3.08 (m,1H), 2.85 (dd,12.6 and 4.9 Hz,1H), 2.76
(dd, J = 12.6 and 7.1Hz, 1H), 1.61 (s, 3H, NH, NH2); 13C NMR (125 MHz, CDCl3) δ (ppm): 138.3, 138.2,
138.0, 128.48, 128.41, 128.3, 127.8, 127.79, 127.75, 127.72, 127.69, 127.63, 127.60, 85.8, 82.9, 73.4, 71.67,
71.64, 69.7, 66.0, 60.6, 45.5; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486, found 433.2477.

Data for (2S,3R,4R,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (E-3b):
Colourless syrup, 387 mg, 90% yield from hydroxylamine E-2b (450 mg, 1.01 mmol); [α]D

23
−27.1 (c

0.9 in CH2Cl2); νmax/cm−1: 3062 (w), 3029 (m), 2920 (s), 2861 (s), 1495 (m), 1453 (s), 1362 (m), 1094 (vs),
1027 (m), 735 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.25 (m, 15H), 4.57–4.38 (m, 6H),
4.04 (dd, J = 4.6 and 2.3 Hz, 1H), 3.96 (dd, J = 5.3 and 2.3 Hz,1H), 3.67–3.60 (m, 2H), 3.55 (dd, J = 8.6
and 6.3 Hz,1H), 3.36 (q, J = 6.1 Hz,1H), 2.86–2.78 (m, 2H), 1.63 (s, 3H, NH, NH2); 13C NMR (125 MHz,
CDCl3) δ (ppm): 138.3, 138.2, 138.1, 128.4, 128.39, 128.35, 127.78, 127.74, 127.71, 127.6, 127.57, 127.56,
82.9, 82.5, 73.3, 72.2, 71.9, 69.5, 61.1, 58.5, 42.1; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486,
found 433.2479.
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Data for (2S,3S,4S,5R)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (F-3a):
Colourless syrup, 359 mg, 83% yield from hydroxylamine F-2a (450 mg, 1.01 mmol); [α]D

23
−9.3 (c 1.0

in CH2Cl2); νmax/cm−1: 3087 (w), 3029 (m), 2922 (s), 2859 (s), 1688 (m), 1496 (m), 1453 (s), 1363 (m),
1201 (s), 1094 (vs), 736 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm):7.35–7.24 (m, 15H), 4.58–4.44
(m, 6H), 3.92 (dd, J = 4.6 and 1.2 Hz, 1H), 3.73 (dd, J = 9.2 and 6.0 Hz, 1H), 3.65 (dd, J = 4.1 and 1.2 Hz,),
3.62 (dd, J = 9.2 and 6.8 Hz, 1H), 3.54–3.50 (m, 1H), 3.12–3.08 (m, 1H), 2.84 (dd, J = 12.6 and 4.9 Hz,1H),
2.76 (dd, J = 12.6 and 7.1Hz, 1H), 1.60 (s, 3H, NH, NH2); 13C NMR (125 MHz, CDCl3) δ (ppm): 138.3,
138.2, 138.0, 128.48, 128.41, 128.3, 127.8, 127.79, 127.72, 127.69, 127.63, 127.60, 85.8, 82.9, 73.4, 71.69,
71.64, 69.7, 66.0, 60.6, 45.5; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486, found 433.2478.

Data for (2R,3S,4S,5R)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (F-3b):
Colourless syrup, 367 mg, 85% yield from hydroxylamine F-2b (450 mg, 1.01 mmol); [α]D

22 +23.8 (c 1.0
in CH2Cl2); νmax/cm−1: 3062 (w), 3029 (m), 2922 (s), 2858 (s), 1495 (m), 1453 (s), 1362 (m), 1093 (vs),
1027 (m), 734 (s), 696 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.25 (m, 15H), 4.57–4.38 (m, 6H),
4.04 (dd, J = 4.6 and 2.3 Hz, 1H), 3.96 (dd, J = 5.3 and 2.3 Hz, 1H), 3.67–3.60 (m, 2H), 3.55 (dd, J = 8.6
and 6.3 Hz, 1H), 3.36 (q, J = 6.1Hz, 1H), 2.86–2.78 (m, 2H), 1.62 (s, 3H, NH, NH2); 13C NMR (125 MHz,
CDCl3) δ (ppm): 138.3, 138.2, 138.1, 128.47, 128.42, 128.3, 127.8, 127.77, 127.74, 127.69, 127.60, 127.5,
82.9, 82.5, 73.4, 72.3, 71.9, 69.6, 61.1, 58.6, 42.1; HRMS (ESI): calcd for C27H33O3N2

+ [M + H+] 433.2486,
found 433.2478.

Data for (2R,3R,4S,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (G-3):
Colourless syrup, 375 mg, 87% yield from hydroxylamine G-2 (450 mg, 1.01 mmol); [α]D

22 +9.2 (c 1.1
in CH2Cl2); νmax/cm−1: 3362 (w), 3061 (m), 3029 (m), 2859 (s), 1496 (m), 1453 (s), 1363 (m), 1094 (vs),
1027 (m), 735 (vs), 697 (vs); 1H NMR (400 MHz, CDCl3) δ (ppm): 7.34–7.22 (m, 15H), 4.60–4.42 (m,
6H), 3.75 (t, J = 5.0 Hz, 1H), 3.55 (t, J = 5.9 Hz,1H), 3.49 (q, J = 5.0 Hz, 1H), 3.46–3.34 (m, 2H), 3.30 (dd,
J = 10.8 and 5.9 Hz,1H), 2.78 (dd, J = 12.8 and 4.4 Hz, 1H), 2.60 (dd, J = 12.8 and 6.1 Hz,1H), 1.45 (s,
3H, NH, NH2); 13C NMR (125 MHz, CDCl3): δ (ppm): 138.31, 138.30, 138.27, 128.4, 128.3, 128.1, 127.9,
127.7, 127.69, 127.66, 79.4, 78.6, 73.2, 72.1, 71.7, 71.5, 62.9, 61.1, 44.9; HRMS (ESI): calcd for C27H33O3N2

+

[M + H+] 433.2486, found 433.2479.

Data for (2S,3S,4R,5R)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)pyrrolidine (H-3):
Colourless syrup, 380 mg, 88% yield from hydroxylamine H-2 (450 mg, 1.01 mmol); [α]D

23
−15.4 (c 1.0

in CH2Cl2); νmax/cm−1: 3061 (m), 3029 (m), 2861 (s), 1496 (m), 1453 (s), 1362 (m), 1122 (s), 1094 (s), 1027
(m), 736 (s), 697 (vs); 1H NMR (400 MHz, CDCl3) δ (ppm): 7.34–7.23 (m, 15H), 4.60–4.43 (m, 6H), 3.75
(t, J = 5.0 Hz, 1H), 3.55 (t, J = 5.9 Hz,1H), 3.49 (dd, J = 9.9 and 5.0 Hz, 1H), 3.46–3.34 (m, 2H), 3.30 (dd,
J = 10.8 and 5.9 Hz,1H), 2.78 (dd, J = 12.8 and 4.4 Hz, 1H), 2.60 (dd, J = 12.8 and 6.1 Hz, 1H), 1.43 (s,
3H, NH, NH2); 13C NMR (125 MHz, CDCl3) δ (ppm): 138.3, 138.29, 138.26, 128.4, 128.3, 128.1, 127.9,
127.7, 127.69, 127.65, 79.4, 78.6, 73.2, 72.1, 71.7, 71.5, 62.9, 61.1, 44.9; HRMS (ESI): calcd for C27H33O3N2

+

[M + H+] 433.2486, found 433.2479.

3.3.3. Synthesis of (2S,3S,4S,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)-2-cyano-pyrrolidine (A-6)

To a suspension of iron powder (560 mg, 10.00 mmol, used as received) in acetic acid was added
Copper (II) acetate (20 mg, 0.10 mmol), and the mixture was stirred at room temperature for 5–10 min
until the bluish green suspension turned into reddish brown. The solution of hydroxylamine A-2
(450 mg, 1.01 mmol) in acetic acid (10 mL) was added, and the reaction mixture was stirred at room
temperature overnight. Solvent was removed in vacuo, the residue was neutralized by aqueous
NaHCO3 and filtered. The resulting filtrate was extracted with EtOAc (3 × 50 mL), then organic
phases were combined, dried over MgSO4 and concentrated under reduced pressure. Purification
by flash chromatography on silica gel (petroleum ether/EtOAc = 3/1) afforded pyrrolidine A-6 (light
yellow syrup, 389 mg, 91% yield). Data for (2S,3S,4S,5S)-3,4-bis(benzyloxy)-5-(benzyloxymethyl)
-2-cyano-pyrrolidine (A-6): [α]D

23
−21.2 (c 1.0 in CH2Cl2); νmax/cm−1: 3293 (w), 3030 (w), 2926 (m),

2869 (m), 2246 (w), 1717 (m), 1661 (s), 1453 (s), 1397(m), 1149 (s), 1102 (s), 1027 (m), 736 (s), 697 (vs); 1H
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NMR (500 MHz, CDCl3) δ (ppm): 7.36–7.25 (m, 15H), 4.59–4.45 (m, 6H), 4.27 (t, J = 3.1 Hz, 1H), 3.76 (d,
J = 2.9 Hz, 1H), 3.83 (dd, J = 5.5 and 3.3 Hz, 1H), 3.59 (q, J = 6.5 Hz, 1H), 3.49–3.45 (m, 2H), 2.45 (br, 1H,
NH); 13C NMR (125 MHz, CDCl3) δ (ppm): 137.7, 1377.5, 136.7, 128.6, 128.4, 128.2, 128.0, 127.87, 127.82,
127.78, 127.74, 119.3, 87.4, 84.1, 73.3, 72.5, 72.2, 69.7, 62.1, 51.9; HRMS (ESI): calcd for C27H29O3N2

+

[M + H+] 429.2173, found 429.2181.

3.3.4. Synthesis of tert-butyl-(2S,3S,4S,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5-(benzyloxy
methyl)pyrrolidine-1-carboxylate (A-8)

The mixture of compound A-6 (389 mg, 0.91 mmol) and Et3N (190 µL, 1.37 mmol) in
dichloromethane (5 mL) was cooled by an ice-water bath, and Boc2O (298 mg, 1.37 mmol) was
added. After stirring overnight at room temperature, the reaction was quenched by aqueous NaHCO3.
The solution was then extracted with dichloromethane (3 × 10 mL), then organic phases were combined,
dried over MgSO4 and concentrated in vacuo to give intermediate A-7 as a light yellow syrup (479 mg,
99% yield). The crude A-7 was directly dissolved in methanol (5 mL), and Raney Ni (500 mg, 60%)
was added. The suspension was stirred under hydrogen atmosphere for 24 h when TLC showed
part of intermediate A-7 remained unreacted. Longer reaction time did not lead to any further
change. Hydrogen was then replaced by nitrogen, and catalyst was removed from the reaction
mixture. The filtrate was concentrated in vacuo to afford a colourless oil, which was purified by flash
chromatography (silica gel, dichloromethane/methanol = 50:1) to give compound A-8 (colourless
syrup, 126 mg, 26% yield). Data for tert-butyl-(2S,3S,4S,5S)-2-(aminomethyl)-3,4-bis(benzyloxy)-5
-(benzyloxymethyl)pyrrolidine-1-carboxylate (A-8): [α]D

23
−12.7 (c 0.6 in CH2Cl2); νmax/cm−1: 3029

(w), 2973 (m), 2929 (m), 1688 (s), 1453 (m), 1391 (vs), 1367 (s), 1160 (s), 1108 (s), 1027 (m), 734 (s), 697 (s);
1H NMR (500 MHz, CDCl3) δ (ppm): 7.37–7.23 (m, 15H), 4.77–4.41 (m, 6H), 4.18 (d, J = 7.7 Hz, 1H),
4.15–4.10 (m, 2H), 3.99–3.94 (m, 1H), 3.94–3.87 (m, 1H), 3.57 (d, J = 6.5 Hz,1H), 3.24 (d, J = 13.0 Hz, 1H),
2.87 (dd, J = 12.9 and 8.5 Hz, 1H), 1.39 (s, 9H); 13C NMR (125 MHz, CDCl3) δ (ppm): 156.7, 138.3, 137.8,
137.7, 128.38, 128.33, 128.2, 127.89, 127.84, 127.69, 127.60, 127.5, 127.4, 82.1, 80.3, 77.2, 73.2, 72.4, 72.1,
69.5, 60.3, 59.2, 44.4, 28.2; HRMS (ESI): calcd for C32H40O5N2

+ [M + H+] 533.3010, found 533.3013.

3.3.5. Synthesis of tert-butyl-(2S,3S,4S,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-
(benzyloxymethyl)pyrrolidine-1-carboxylate (A-9)

Compound A-8 (126 mg, 0.24 mmol) was dissolved in dichloromethane (5 mL), followed by Ac2O
(28 µL, 0.29 mmol) and catalytic amount of DMAP. The solution was stirred at room temperature
for 3-4 h, when TLC showed completion of the reaction. The solution was quenched by aqueous
NaHCO3, and extracted with dichloromethane (3 × 10 mL). The organic phases were combined,
dried over MgSO4 and concentrated in vacuo. The residue was purified by flash chromatography
(silica gel, petroleum ether/EtOAc = 1/1) to afford compound A-9 (colourless syrup, 124 mg, 93%
yield). Data for tert-butyl-(2S,3S,4S,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxy
methyl)pyrrolidine-1-carboxylate (A-9): [α]D

23
−19.1 (c 1.0 in CH2Cl2); νmax/cm−1: 3299 (w), 3029

(w), 2927 (m), 1690 (vs), 1682 (m), 1453 (m), 1390 (s), 1366 (s), 1274 (m), 1174 (m), 1096 (s), 1027 (m), 735
(m), 697 (m); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.33–7.25 (m, 15H), 6.64 (br, 1H, NHCO), 4.75–4.44
(m, 6H), 4.18 (dd, J = 8.8 and 6.1 Hz, 1H), 4.15–4.09 (m, 2H), 3.95–3.85 (m, 2H), 3.57 (d, J = 6.5 Hz,1H),
3.46–3.37 (m, 1H), 3.19–3.10 (m, 1H), 1.87 (s, 1H), 1.39 (s, 9H); 13C NMR (125 MHz, CDCl3) δ (ppm):
170.3, 155.5, 138.4, 138.1, 128.3, 128.2, 127.8, 127.7, 127.68, 127.62, 127.4, 80.7, 79.8, 77.8, 73.2, 72.5, 72.4,
70.0, 61.7, 58.6, 43.0, 28.3, 23.2; HRMS (ESI): calcd for C34H43O6N2

+ [M + H+] 575.3116, found 575.3118.

3.3.6. General Procedure for Synthesis of Compounds A-5, B-5, C-5, D-5, E-5a, E-5b, F-5a, F-5b, G-5
and H-5 with A-5 as an Example

To the solution of compound A-3 (215 mg, 0.50 mmol) in dichloromethane (10 mL) was added
N,N’,N”,N”’-tetraacetylglycoluril (170 mg, 0.55 mmol). The solution was refluxed for 3–5 h, when TLC
showed disapearance of the starting material. The reaction was quenched by aqueous NaHCO3, and
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extracted with dichloromethane (3× 10 mL). The organic phases were combined, dried over MgSO4 and
concentrated under reduced pressure. The crude product was purified by flash chromatography (silica
gel, dichloromethane/methanol = 50:1) to give compound A-5 (colourless syrup, 208 mg, 88% yield).
Data for (2S,3S,4S,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5- (benzyloxymethyl)pyrrolidine
(A-5): [α]D

23
−7.7 (c 0.9 in CH2Cl2); νmax/cm−1: 3292 (w), 3030 (m), 2860 (m), 1656 (s), 1453 (m), 1363

(m), 1094 (s), 1027 (m), 737 (s), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.25 (m, 15H),
6.08 (br, 1H, NHCO), 4.55–4.49 (m, 6H), 3.88 (t, J = 3.5 Hz, 1H), 3.76 (t, J = 3.4 Hz, 1H), 3.54–3.48
(m, 2H), 3.43–3.38 (m, 1H), 3.37–3.31 (m, 2H), 3.28–3.23 (m, 1H), 2.1 (br, 1H, NH), 1.88 (s, 3H); 13C
NMR (125 MHz, CDCl3) δ (ppm): 170.2, 137.9, 137.83, 137.81, 128.46, 128.44, 127.87, 127.84, 127.81,
127.77, 127.73, 86.8, 85.5, 73.2, 72.0, 71.8, 69.8, 61.9, 61.0, 41.4, 23.2; HRMS (ESI): calcd for C29H35O4N2

+

[M + H+] 475.2591, found 475.2588.

Data for (2R,3R,4R,5R)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(B-5) (Ref. [62]): Colourless syrup, 216 mg, 91% yield from diamine B-3 (215 mg, 0.50 mmol); [α]D

23

+11.9 (c 1.0 in CH2Cl2); νmax/cm−1: 3283 (w), 3030 (m), 2859 (m), 1656 (s), 1454 (m), 1363 (m), 1093
(s), 1028 (m), 737 (s), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.25 (m, 15H), 6.08 (br, 1H,
NHCO), 4.55–4.49 (m, 6H), 3.88 (t, J = 3.5 Hz, 1H), 3.76 (t, J = 3.4 Hz, 1H), 3.54–3.48 (m, 2H), 3.43–3.38
(m, 1H), 3.37–3.31 (m, 2H), 3.28–3.23 (m, 1H), 2.16 (br, 1H, NH), 1.88 (s, 3H); 13C NMR (125 MHz,
CDCl3) δ (ppm): 170.2, 137.9, 137.83, 137.81, 128.46, 128.44, 127.87, 127.84, 127.81, 127.77, 127.73, 86.8,
85.5, 73.2, 72.0, 71.8, 69.8, 61.9, 61.0, 41.4, 23.2; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591,
found 475.2586.

Data for (2S,3S,4R,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(C-5): Colourless syrup, 201 mg, 85% yield from diamine C-3 (215 mg, 0.50 mmol); [α]D

23 +11.9 (c 1.0
in CH2Cl2); νmax/cm−1: 3288 (w), 3029 (w), 2924 (m), 2855 (m), 1652 (s), 1453 (m), 1366 (m), 1089 (s),
1027 (m), 736 (s), 697 (s); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.35–7.25 (m, 15H), 5.87 (br, 1H, NH),
4.73–4.49 (m, 6H), 4.00 (t, J = 4.0 Hz, 1H), 3.68−3.62 (m, 2H), 3.58 (t, J = 7.5 Hz, 1H), 3.44–3.38 (m, 2H),
3.35–3.25 (m, 2H), 2.16 (br, 2H, NH2), 1.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ (ppm): 170.3, 138.3,
138.0, 137.8, 128.47, 128.42, 128.3, 127.89, 127.88, 127.86, 127.80, 127.7, 127.6, 82.4, 77.6, 73.4, 73.2, 72.5,
69.5, 59.07, 59.04, 42.3, 23.2; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2588.

Data for (2R,3R,4S,5R)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(D-5): Colourless syrup, 194 mg, 82% yield from diamine D-3 (215 mg, 0.50 mmol); [α]D

23
−2.5 (c 1.0 in

CH2Cl2); νmax/cm−1: 3296 (w), 3028 (w), 2921 (m), 2855 (m), 1652 (s), 1554 (m), 1453 (s), 1365(m), 1091
(s), 1027 (m), 736 (s), 696 (s); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.35–7.25 (m, 15H), 5.87 (br, 1H,
NHCO), 4.73–4.49 (m, 6H), 4.00 (t, J = 4.1 Hz, 1H), 3.68–3.62 (m, 2H), 3.58 (t, J = 7.5 Hz, 1H), 3.44–3.38
(m, 2H), 3.35–3.25 (m, 2H), 2.16 (br, 1H, NH), 1.89 (s, 3H); 13C NMR (125 MHz, CDCl3) δ (ppm): 170.3,
138.4, 138.0, 137.9, 128.49, 128.44, 128.3, 127.9, 127.8, 127.7, 127.6, 82.4, 77.7, 73.4, 73.3, 72.6, 69.5, 59.09,
59.06, 42.3, 23.2; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2588.

Data for (2R,3R,4R,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(E-5a): Colourless syrup, 213 mg, 90% yield from diamine E-3a (215 mg, 0.50 mmol); [α]D

23 +9.2 (c 1.0
in CH2Cl2); νmax/cm−1: 3295 (w), 3030 (w), 2924 (m), 2855 (m), 1652 (s), 1554 (m), 1493 (s), 1365 (m),
1091 (s), 1027 (m), 736 (s), 696 (s); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.24 (m, 15H), 6.81 (br, 1H,
NHCO), 4.58–4.42 (m, 6H), 4.19 (br, 1H, NH), 3.90 (d, J = 3.9 Hz, 1H), 3.77 (s, 1H), 3.73 (dd, J = 9.3
and 5.8 Hz, 1H), 3.68 (dd, J = 9.5 and 6.7 Hz, 2H), 3.62 (dd, J = 10.3 and 6.0 Hz, 1H), 3.48–3.43 (m, 1H),
3.39–3.34 (m, 1H), 1.76 (s, 3H); 13C NMR (125 MHz, CDCl3) δ (ppm): 170.6, 138.1, 137.7, 137.6, 128.54,
128.52, 128.4, 127.99, 127.91, 127.8, 127.79, 127.75, 127.6, 85.0, 82.2, 73.5, 71.9, 71.8, 69.6, 62.0, 60.4, 42.4,
22.8; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2585.

Data for (2S,3R,4R,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(E-5b): Colourless syrup, 194 mg, 82% yield from diamine E-3b (215 mg, 0.50 mmol); [α]D

23
−17.2 (c

1.2 in CH2Cl2); νmax/cm−1: 3290 (m), 3063 (m), 3030 (m), 2925 (s), 2861 (s), 1651 (vs), 1549 (m), 1453 (s),
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1367 (s), 1092 (vs), 1027 (m), 736 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.36–7.25 (m, 15H),
6.11 (br, 1H, NHCO), 4.56–4.35 (m, 6H), 3.99 (d, J = 1.6 Hz, 1H), 3.93 (d, J = 3.1 Hz, 1H), 3.63–3.61 (m,
2H), 3.57–3.52 (m, 3H), 3.30–3.25 (m, 1H), 2.36 (br, 1H, NH), 1.85 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
(ppm): 170.4, 138.1, 137.9, 137.7, 128.6, 128.4, 128.0, 127.89, 127.86, 127.84, 127.7, 82.6, 82.0, 73.4, 72.3,
72.1, 68.8, 58.9, 58.2, 39.6, 23.2; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2584.

Data for (2S,3S,4S,5R)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(F-5a): Colourless syrup, 206 mg, 87% yield from diamine F-3a (215 mg, 0.50 mmol); [α]D

22
−4.1 (c

1.0 in CH2Cl2); νmax/cm−1: 3295 (w), 3064 (m), 3030 (m), 2924 (m), 2855 (m), 1652 (s), 1554 (m), 1493
(m), 1365 (m), 1091 (s), 1027 (m), 736 (s), 696 (s); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.23 (m,
15H) 6.54 (br, 1H, NHCO), 4.58–4.42 (m, 6H), 3.89 (dd, J = 4.1 and 0.6 Hz, 1H), 3.74–3.71 (m, 2H), 3.65
(dd, J = 8.9 and 6.9 Hz, 1H), 3.59 (dd, J = 10.0 and 5.4 Hz, 1H), 3.44–3.40 (m, 2H), 3.35–3.31 (m, 1H),
3.19 (br, 1H, NH), 1.73 (s, 3H); 13C NMR (125 MHz, CDCl3) δ (ppm): 170.6, 138.1, 137.7, 137.6, 128.54,
128.52, 128.4, 127.99, 127.9, 127.8, 127.79, 127.75, 127.6, 85.0, 82.2, 73.5, 71.9, 71.8, 69.6, 62.0, 60.4, 42.4,
22.8; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2587.

Data for (2R,3S,4S,5R)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(F-5b): Colourless syrup, 197 mg, 83% yield from diamine F-3b (215 mg, 0.50 mmol); [α]D

22 +20.5 (c
1.0 in CH2Cl2); νmax/cm−1: 3293 (m), 3063 (m), 3030 (m), 2924 (s), 2861 (s), 1651 (vs), 1549 (m), 1453
(s), 1367 (s), 1092 (vs), 1027 (m), 736 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.35–7.24 (m,
15H) 6.24 (br, 1H, NHCO), 4.55–4.35 (m, 6H), 3.98 (dd, J = 6.0 and 1.9 Hz, 1H), 3.92 (dd, J = 4.9 and
1.9 Hz, 1H), 3.63 (m, 2H), 3.57–3.52 (m, 3H), 3.29–3.23 (m, 1H), 3.12 (br, 1H, NH), 1.84 (s, 3H); 13C
NMR (125 MHz, CDCl3) δ (ppm): 170.4, 138.1, 137.9, 137.7, 128.6, 128.48, 128.42, 128.0, 127.89, 127.86,
127.85, 127.7, 82.5, 82.0, 73.4, 72.3, 72.1, 68.9, 58.9, 58.2, 39.6, 23.2; HRMS (ESI): calcd for C29H35O4N2

+

[M + H+] 475.2591, found 475.2585.

Data for (2R,3R,4S,5S)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(G-5): Colourless syrup, 204 mg, 86% yield from diamine G-3 (215 mg, 0.50 mmol); [α]D

23 +7.5 (c 1.0 in
CH2Cl2); νmax/cm−1: 3293 (m), 3062 (m), 3029 (m), 2924 (s), 2861 (s), 1653 (vs), 1539 (m), 1453 (s), 1365
(m), 1100 (vs), 1027 (m), 736 (s), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.34–7.24 (m, 15H), 6.12
(br, 1H, NHCO), 4.58–4.45 (m, 6H), 3.77 (t, J = 4.7 Hz, 1H), 3.60 (t, J = 5.5 Hz, 1H), 3.50 (q, J = 4.4 Hz,
1H), 3.47–3.38 (m, 4H), 3.18–3.13 (m, 1H), 2.14 (br, 1H, NH), 1.74 (s, 3H); 13C NMR (125 MHz, CDCl3) δ
(ppm): 170.2, 138.0, 137.9, 128.47, 128.40, 128.1, 128.0, 127.86, 127.80, 127.7, 80.0, 78.2, 73.3, 72.0, 71.6,
61.0, 59.6, 42.3, 23.0; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2587.

Data for (2S,3S,4R,5R)-2-N-acetylaminomethyl-3,4-bis(benzyloxy)-5-(benzyloxymethyl) pyrrolidine
(H-5): Colourless syrup, 192 mg, 81% yield from diamine H-3 (215 mg, 0.50 mmol); [α]D

23
−1.6 (c 1.2 in

CH2Cl2); νmax/cm−1: 3304 (m), 3062 (m), 3030 (m), 2865 (s), 1651 (vs), 1549 (m), 1453 (s), 1365 (m), 1099
(vs), 1027 (m), 736 (vs), 697 (vs); 1H NMR (500 MHz, CDCl3) δ (ppm): 7.33–7.24 (m, 15H), 6.11 (br, 1H,
NHCO), 4.57–4.43 (m, 6H), 3.76 (t, J = 4.8 Hz, 1H), 3.59 (t, J = 5.6 Hz, 1H), 3.49 (dd, J = 8.9 and 4.4 Hz,
1H), 3.47–3.37 (m, 4H), 3.18–3.13 (m, 1H), 2.14 (br, 1H, NH), 1.74 (s, 3H); 13C NMR (125 MHz, CDCl3):
δ (ppm): 170.2, 138.0, 137.9, 128.47, 128.40, 128.1, 128.0, 127.86, 127.80, 127.7, 80.0, 78.2, 73.3, 72.0, 71.6,
61.0, 59.6, 42.3, 23.0; HRMS (ESI): calcd for C29H35O4N2

+ [M + H+] 475.2591, found 475.2588.

3.3.7. General Procedure for Synthesis of 1-N-Acetylamino Derivatives (A-10, 4·HCl, C-10, D-10,
E-10a, E-10b, F-10a, F-10b, G-10 and H-10) and 1-Amino Derivatives (A-11, B-11, C-11, D-11, E-11a,
E-11b, F-11a, F-11b, G-11 and H-11) with A-10 as an Example

To a stirred solution of A-5 (95 mg, 0.20 mmol) and 3 N HCl (0.5 mL) in MeOH (10 mL)
was added Pd/C (10 wt%, 30 mg) under Ar atmosphere and the reaction mixture was stirred
under H2 atmosphere for 8 h. Then the catalyst was filtered and the solvent was removed
under reduced pressure to afford compound A-10 (colourless syrup, 47 mg, 99% yield). Data
for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-l-mannitol hydrochloride (A-10) (Ref. [16], reported
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as free base): [α]D
23
−30.4 (c 0.5 in MeOH); νmax/cm−1: 3290 (vs), 2932 (s), 1646 (m), 1550 (m), 1369

(m), 1132 (m), 1041 (m); 1H NMR (500 MHz, D2O) δ (ppm): 4.25 (s, 1H,), 4.11 (s, 1H), 3.98 (dd, J = 12.0
Hz and 4.6 Hz, 1H), 3.95–3.91 (m, 1H), 3.86 (dd, J = 11.8 Hz and 8.7 Hz, 1H), 3.66 (d, J = 6.8 Hz, 2H),
3.63–3.61 (m, 1H), 2.04 (s, 3H, COCH3); 13C NMR (125 MHz, D2O): δ (ppm): 175.2, 75.7, 74.6, 67.5, 61.5,
59.2, 35.8, 21.7; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+] 205.1183, found 205.1181.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-d-mannitol hydrochloride (4·HCl) (Ref. [16,62],
reported as free base): Colourless syrup, 50 mg, 99% yield from compound B-5 (101 mg, 0.21 mmol);
[α]D

25 +34.6 (c 0.5 in MeOH); νmax/cm−1: 3297 (vs), 2937 (s), 1644 (m), 1550 (m), 1369 (m), 1132 (m),
1042 (m); 1H NMR (500 MHz, D2O) δ (ppm): 4.22 (d, J = 2.0 Hz, 1H), 4.09 (t, J = 1.6 Hz, 1H), 3.95 (dd,
J = 12.1 Hz and 4.8 Hz, 1H), 3.91 (dt, J = 6.9 Hz and 3.7 Hz, 1H), 3.83 (dd, J = 12.1 Hz and 8.6 Hz, 1H),
3.66 (d, J = 6.8 Hz, 2H), 3.61–3.58 (m, 1H), 2.01 (s, 3H, COCH3); 13C NMR (125 MHz, D2O) δ (ppm):
175.2, 75.7, 74.6, 67.5, 61.5, 59.2, 35.8, 21.7; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+] 205.1183,
found 205.1183.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-l-altritol hydrochloride (C-10) (Ref. [17], reported
as free base): Colourless syrup, 45 mg, 99% yield from compound C-5 (90 mg, 0.19 mmol); [α]D

22
−18.0

(c 0.7 in MeOH); νmax/cm−1: 3291 (vs), 2936 (s), 1635 (m), 1550 (m), 1419 (m),1369 (m), 1136 (m), 1042
(m); 1H NMR (500 MHz, D2O) δ (ppm): 4.33(s, 1H), 4.23 (dd, J = 9.3 Hz and 3.7 Hz, 1H), 3.99 (dd,
J = 12.0 Hz and 4.8 Hz, 1H), 3.90 (dd, J = 11.6 Hz and 8.4 Hz, 1H), 3.82–3.80 (m, 1H), 3.72–3.66 (m, 2H),
3.59 (dd, J = 15.3 Hz and 7.7 Hz, 1H), 2.04 (s, 3H, COCH3); 13C NMR (125 MHz, D2O) δ (ppm): 176.0,
72.5, 69.8, 62.0, 60.5, 57.4, 38.9, 21.6; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+] 205.1183, found
205.1186.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-d-altritol hydrochloride (D-10) (Ref. [16,61],
reported as free base): Colourless syrup, 41 mg, 99% yield from compound D-5 (82 mg, 0.17 mmol);
[α]D

22 +21.3 (c 0.4 in MeOH); νmax/cm−1: 3296 (vs), 2936 (s), 1635 (m), 1550 (m), 1419 (m),1371 (m),
1136 (m), 1042 (m); 1H NMR (500 MHz, D2O) δ (ppm) 4.33 (t, J = 3.2 Hz, 1H), 4.23 (dd, J = 9.3 Hz and
3.7 Hz, 1H), 3.99 (dd, J = 12.0 Hz and 4.8 Hz, 1H), 3.90 (dd, J = 11.6Hz and 8.4Hz, 1H), 3.82–3.80 (m,
1H), 3.72–3.66 (m, 2H), 3.59 (dd, J = 15.3 Hz and 7.75 Hz, 1H), 2.04 (s, 3H, COCH3); 13C NMR (125 MHz,
D2O) δ (ppm): 176.0, 72.5, 69.8, 62.0, 60.5, 57.4, 38.9, 21.6; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+]
205.1183, found 205.1185.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-d-glucitol hydrochloride (E-10a) (Ref. [63],
reported as free base): Colourless syrup, 46 mg, 99% yield from compound E-5a (91 mg, 0.19 mmol);
[α]D

25 +36.9 (c 0.85 in MeOH); νmax/cm−1: 3292 (vs), 2935 (s), 1645 (m), 1550 (m), 1369 (m), 1132 (m),
1045 (m); 1H NMR (400 MHz, D2O) δ (ppm): 4.27 (s, 1H), 4.12 (s, 1H), 3.98 (d, J = 9.4 Hz, 1H), 3.94–3.88
(m, 2H), 3.68–3.57 (m, 3H), 2.01 (s, 3H, COCH3); 13C NMR (125 MHz, D2O) δ (ppm):175.8, 76.8, 74.5,
65.1, 63.0, 57.0, 39.4, 21.6; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+] 205.1183, found 205.1182.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-l-iditol hydrochloride (E-10b) (Ref. [64], reported
as free base): Colourless syrup, 52 mg, 99% yield from compound E-5b (104 mg, 0.22 mmol); [α]D

25

−9.6 (c 1.2 in MeOH); νmax/cm−1: 3292 (vs), 2936 (s), 1651 (m), 1553 (m), 1370 (m), 1136 (m), 1042 (m);
1H NMR (500 MHz, D2O) δ (ppm): 4.35 (d, J = 3.3 Hz, 1H), 4.28 (d, J = 2.0 Hz, 1H), 4.01–3.95 (m, 3H),
3.87 (dd, J = 11.9 and 8.3 Hz, 1H), 3.60 (d, J = 6.8 Hz, 2H), 2.01 (s, 3H, COCH3); 13C NMR (125 MHz,
D2O) δ (ppm): 175.8, 75.5, 74.1, 62.6, 61.3, 57.9, 38.6, 21.6; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+]
205.1183, found 205.1180.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-l-glucitol hydrochloride (F-10a): Colourless
syrup, 44 mg, 99% yield from compound F-5a (88 mg, 0.19 mmol); [α]D

25
−29.2 (c 1.05 in MeOH);

νmax/cm−1: 3285 (vs), 2931 (s), 1645 (m), 1551 (m), 1370 (m), 1090 (m), 1063 (m); 1H NMR (400 MHz,
D2O) δ (ppm): 4.30 (t, J = 1.6 Hz, 1H), 4.16 (t, J = 1.6 Hz, 1H), 4.01 (dd, J = 8.8 and 2.8 Hz, 1H), 3.95–3.88
(m, 2H), 3.69–3.59 (m, 3H), 2.04 (s, 3H, COCH3); 13C NMR (125 MHz, D2O) δ (ppm):175.8, 76.8, 74.6,
65.2, 63.1, 57.0, 39.4, 21.6; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+] 205.1183, found 205.1183.
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Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-d-iditol hydrochloride (F-10b): Colourless syrup,
42 mg, 99% yield from compound F-5b (83 mg, 0.17 mmol); [α]D

25 +7.7 (c 1.0 in MeOH); νmax/cm−1:
3296 (vs), 2936 (s), 1651 (m), 1553 (m), 1371 (m), 1136 (m), 1041 (m); 1H NMR (500 MHz, D2O) δ (ppm):
4.34 (d, J = 3.4 Hz, 1H), 4.27 (t, J = 1.8 Hz, 1H), 4.00–3.94 (m, 3H), 3.86 (dd, J = 11.6 and 8.3 Hz, 1H), 3.60
(d, J = 6.9 Hz, 2H), 2.01 (s, 3H, COCH3); 13C NMR (125 MHz, D2O) δ (ppm): 175.8, 75.5, 74.1, 62.6, 61.3,
57.9, 38.6, 21.7; HRMS (ESI): calcd for C8H17O4N2

+ [M + H+] 205.1183, found 205.1183.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-d-allitol hydrochloride (G-10): Colourless syrup,
46 mg, 99% yield from compound G-5 (92 mg, 0.19 mmol); [α]D

23
−23.1 (c 1.0 in MeOH); νmax/cm−1:

3306 (vs), 2928 (s), 1635 (s), 1551 (s), 1419 (m),1370 (m), 1089 (m), 1063 (m); 1H NMR (500 MHz, D2O)
δ (ppm): 4.22–4.19 (m, 2H), 3.93 (dd, J = 12.6 Hz and 3.8 Hz, 1H), 3.83 (dd, J = 12.6 Hz and 3.8 Hz,
1H), 3.78–3.74 (m, 1H), 3.73–3.66 (m, 2H), 3.57 (dd, J = 15.1 Hz and 7.4 Hz, 1H), 2.04 (s, 1H, COCH3);
13C NMR (125 MHz, D2O): δ(ppm): 176.1, 71.1, 70.2, 64.2, 62.8, 57.9, 38.5, 21.6; HRMS (ESI): calcd for
C8H17O4N2

+ [M + H+] 205.1183, found 205.1182.

Data for 1-N-acetylamino-2,5-imino-1,2,5-trideoxy-l-allitol hydrochloride (H-10): Colourless syrup,
41 mg, 99% yield from compound H-5 (81 mg, 0.17 mmol); [α]D

23 +27.3 (c 0.95 in MeOH); νmax/cm−1:
3296 (vs), 2936 (s), 1651 (s), 1546 (s), 1419 (m), 1372 (m), 1091 (m), 1061 (m); 1H NMR (500 MHz, D2O)
δ (ppm): 4.22–4.18 (m, 2H), 3.93 (dd, J = 12.5 Hz and 3.6 Hz, 1H), 3.82 (dd, J = 12.6 Hz and 3.6 Hz,
1H), 3.78−3.74 (m, 1H), 3.71–3.66 (m, 2H), 3.57 (dd, J = 15.1 Hz and 7.4 Hz, 1H), 2.04 (s, 1H, COCH3);
13C NMR (125 MHz, D2O) δ(ppm): 176.1, 71.1, 70.2, 64.2, 62.8, 57.9, 38.5, 21.5; HRMS (ESI): calcd for
C8H17O4N2

+ [M + H+] 205.1183, found 205.1184.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-l-mannitol dihydrochloride (A-11) (Ref. [61], reported as
free base): Colourless syrup, 46 mg, 99% yield from compound A-3 (86 mg, 0.2 mmol); [α]D

23
−66.7 (c

1.0 in MeOH); νmax/cm−1: 3313 (s), 2939 (s), 1115 (m), 1058 (m), 1033 (m), 1014 (m); 1H NMR (400 MHz,
D2O) δ (ppm): 4.20–4.12 (m, 2H), 3.98 (dd, J = 12.5 Hz and 3.5 Hz, 1H), 3.91–3.81 (m, 2H), 3.74–3.69
(m, 1H), 3.57 (d, J = 10.5 Hz, 2H); 13C NMR (125 MHz, D2O) δ (ppm): 76.5, 73.9, 63.4, 58.4, 58.1, 38.7;
HRMS (ESI): calcd for C6H15O3N2

+ [M + H+] 163.1077, found 163.1077.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-d-mannitol dihydrochloride (B-11) (Ref. [17]): Colourless
syrup, 35 mg, 99% yield from compound B-3 (66 mg, 0.15 mmol); [α]D

23
−66.7 (c 1.0 in MeOH);

νmax/cm−1: 3314 (s), 2942 (s), 1113 (m), 1063 (m), 1033 (m), 1014 (m); 1H NMR (400 MHz, D2O) δ (ppm):
4.19–4.12 (m, 2H), 3.98 (dd, J = 12.6 Hz and 3.6 Hz, 1H), 3.88 (dd, J = 12.5 Hz and 3.6 Hz, 1H), 3.83 (q, J
= 7.2 Hz, 1H), 3.73–3.69 (m, 1H), 3.56 (d, J = 10.5 Hz, 2H); 13C NMR (125 MHz, D2O) δ (ppm): 76.5,
73.9, 63.4, 58.4, 58.1, 38.7; HRMS (ESI): calcd for C6H15O3N2

+ [M + H+] 163.1077, found 163.1077.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-l-altritol dihydrochloride (C-11) (Ref. [17]): Colourless
syrup, 39 mg, 99% yield from compound C-3 (73 mg, 0.17 mmol); [α]D

23
−42.0 (c 1.0 in MeOH);

νmax/cm−1: 3314 (s), 2923 (s), 1132 (m), 1033 (m), 1014 (m); 1H NMR (500 MHz, D2O) δ (ppm): 4.38 (t,
J = 3.2 Hz, 1H), 4.34 (dd, J = 9.5 Hz and 3.7 Hz, 1H), 4.04–3.97 (m, 1H), 3.97–3.92 (m, 2H), 3.85 (ddd,
J = 13.8 Hz and 7.8 Hz and 5.9 Hz, 1H), 3.62–3.53 (m, 2H); 13C NMR (125 MHz, D2O) δ (ppm): 74.0,
69.3, 62.9, 57.3, 56.9, 39.0; HRMS (ESI): calcd for C6H15O3N2

+ [M + H+] 163.1077, found 163.1078.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-d-altritol dihydrochloride (D-11) (Ref. [61], reported as
free base): Colourless syrup, 37 mg, 99% yield from compound D-3 (69 mg, 0.2 mmol); [α]D

23 +39.0 (c
0.8 in MeOH); νmax/cm−1: 3318 (s), 2923 (s), 1131 (m), 1033 (m), 983 (m); 1H NMR (500 MHz, D2O)
δ(ppm): 4.38 (t, J = 2.5 Hz, 1H), 4.34 (dd, J = 9.5 Hz and 3.7 Hz, 1H), 4.06–4.01 (m, 1H), 3.98–3.93 (m,
2H), 3.86 (dd, J = 14.9 Hz and 7.9 Hz, 1H), 3.62–3.53 (m, 2H); 13C NMR (125 MHz, D2O) δ (ppm): 74.0,
69.3, 62.9, 57.3, 56.9, 39.0; HRMS (ESI): calcd for C6H15O3N2

+ [M + H+] 163.1077, found 163.1076.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-d-glucitol dihydrochloride (E-11a) (Ref. [17]): Colourless
syrup, 38 mg, 99% yield from compound E-3a (71 mg, 0.16 mmol); [α]D

23 +21.6 (c 0.5 in MeOH);
νmax/cm−1: 3313 (s), 2935 (s), 1118 (m), 1063 (m), 1033 (m); 1H NMR (300 MHz, D2O) δ (ppm): 4.32–4.29
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(m, 1H), 4.26 (t, J = 2.8 Hz, 1H), 4.02–3.90 (m, 3H), 3.80 (dt, J = 6.9 and 2.9 Hz, 1H), 3.54 (d, J = 6.8 Hz, 2H);
13C NMR (125 MHz, D2O) δ (ppm): 77.5, 74.1, 64.1, 62.4, 56.9, 39.2; HRMS (ESI): calcd for C6H15O3N2

+

[M + H+] 163.1077, found 163.1077.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-l-iditol dihydrochloride (E-11b) (Ref. [17]): Colourless
syrup, 44 mg, 99% yield from compound E-3b (81 mg, 0.19 mmol); [α]D

23 +5.5 (c 1.0 in MeOH);
νmax/cm−1: 3322 (s), 2924 (s), 1131 (m), 1039 (m), 984 (m); 1H NMR (500 MHz, D2O) δ (ppm): 4.46 (d,
J = 5.1 Hz, 1H), 4.44 (d, J = 5.1Hz, 1H), 4.22 (dt, J = 6.8 Hz and 3.5 Hz, 1H), 4.12-4.09 (m, 1H), 4.03 (dd,
J = 12.2 Hz and 4.6Hz, 1H), 3.94 (dd, J = 12.2 Hz and 8.8 Hz, 1H), 3.62 (dd, J = 13.7 Hz and 6.8 Hz, 1H),
3.55–3.51(dd, J = 13.7 Hz and 6.8 Hz, 1H); 13C NMR (125 MHz, D2O) δ(ppm): 74.6, 74.2, 63.8, 58.3, 57.3,
35.9; HRMS (ESI): calcd for C6H15O3N2

+ [M + H+] 163.1077, found 163.1076.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-l-glucitol dihydrochloride (F-11a) (Ref. [61], reported as
free base): Colourless syrup, 31 mg, 99% yield from compound F-3a (57 mg, 0.13 mmol); [α]D

23
−27.5

(c 0.65 in MeOH); νmax/cm−1: 3313 (s), 2935 (s), 1118 (m), 1063 (m), 1033 (m); 1H NMR (500 MHz, D2O)
δ (ppm): 4.35 (s, 1H), 4.31 (s, 1H), 4.05–3.96 (m, 3H), 3.88–3.84 (m, 1H), 3.59 (d, J = 6.6 Hz, 2H); 13C
NMR (125 MHz, D2O) δ(ppm): 77.4, 74.0, 64.1, 62.5, 56.8, 39.2; HRMS (ESI): calcd for C6H15O3N2

+

[M + H+] 163.1077, found 163.1076.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-d-iditol dihydrochloride (F-11b) (Ref. [61], reported as
free base): Colourless syrup, 34 mg, 99% yield from compound F-3b (62 mg, 0.14 mmol); [α]D

23
−7.3 (c

0.3 in MeOH); νmax/cm−1: 3310 (s), 2936 (s), 1131 (m), 1076 (m), 1031 (m); 1H NMR (500 MHz, D2O) δ
(ppm): 4.41–4.39 (m, 2H), 4.22 (dt, J = 6.7 Hz and 3.5 Hz, 1H), 4.05–3.99 (m, 2H), 3.91 (dd, J = 11.8 Hz
and 8.5 Hz, 1H), 3.57 (dd, J = 13.7 Hz and 6.8 Hz, 1H), 3.47(dd, J = 13.7 Hz and 6.8 Hz, 1H); 13C NMR
(125 MHz, D2O) δ (ppm): 74.7, 74.4, 63.6, 58.1, 57.4, 36.0; HRMS (ESI): calcd for C6H15O3N2

+ [M + H+]
163.1077, found 163.1076.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-d-allitol dihydrochloride (G-11) (Ref. [61], reported as free
base): Colourless syrup, 35 mg, 99% yield from compound G-3 (65 mg, 0.15 mmol); [α]D

23 +8.1 (c 1.0
in MeOH); νmax/cm−1: 3322 (s), 2947 (s), 1122 (m), 1078 (m), 1034 (m), 979 (m); 1H NMR (500 MHz,
D2O) δ (ppm): 4.33 (dd, J = 7.6 Hz and 5.0 Hz, 1H), 4.29 (dd, J = 4.7 Hz and 4.0 Hz, 1H), 3.96 (dd,
J = 12.2 Hz and 3.5 Hz 1H), 3.92–3.84 (m, 3H) 3.61–3.53 (m, 2H); 13C NMR (125 MHz, D2O) δ (ppm):
72.5, 70.0, 66.0, 58.6, 58.1, 38.4; HRMS (ESI): calcd for C6H15O3N2

+ [M + H+] 163.1077, found 163.1077.

Data for 1-amino-2,5-imino-1,2,5-trideoxy-l-allitol dihydrochloride (H-11) (Ref. [61], reported as free
base): Colourless syrup, 36 mg, 99% yield from compound H-3 (67 mg, 0.16 mmol); [α]D

22
−7.2 (c 1.0

in MeOH); νmax/cm−1: 3313 (s), 2951 (s), 1124 (m), 1079 (m), 1034 (m), 980 (m); 1H NMR (400 MHz,
D2O) δ (ppm):4.34–4.27 (m, 2H), 3.96 (dd, J = 12.0 Hz and 3.4 Hz, 1H), 3.92–3.84 (m, 3H), 3.62–3.52
(m, 2H); 13C NMR (125 MHz, D2O) δ (ppm): 72.5, 70.1, 66.1, 58.7, 58.1, 38.4; HRMS (ESI): calcd for
C6H15O3N2

+ [M + H+] 163.1077, found 163.1077.

4. Conclusions

In summary, a general and efficient synthetic strategy has been developed for the synthesis
of 1-N-acetylamino and 1-amino pyrrolidine analogues of pochonicine (1) with l-arabino-nitrone
(A), d-arabino-nitrone (B), l-lyxo-nitrone (C), d-lyxo-nitrone (D), l-xylo-nitrone (E), d-xylo-nitrone (F),
l-ribo-nitrone (G) and d-ribo-nitrone (H) as the starting materials 4 and 5 steps, respectively. Glycosidase
inhibition assays on a range of enzymes showed that 1-N-acetylamino pyrrolidine analogues with
the same configuration as DMDP and pochonicine (1) showed powerful inhibition of β-HexNAcases
and moderate inhibition of α-GalNAcase, while the other compounds showed weak or no inhibition
of the tested glycosidases. This work has further examined the glycosidase inhibition of pyrrolidine
analogues of pochonicine and its stereoisomers, and would be helpful for the study of potent and
selective β-HexNAcase inhibitors.
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