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Abstract: The use of enzymes, organo-catalysts or transition metal catalysts, as opposed to the
employment of stoichiometric quantities of other traditional promoters of different organic synthetic
processes (like, inorganic/organic bases, Brønsted acids, radicals, etc.) has allowed the discovery
of a great number of new synthetic protocols within the toolbox of organic chemists. Moreover,
the employment of the aforementioned catalysts in organic synthesis permits: (i) the diminution of
the global energy demand and production cost; (ii) the enhancement of both the chemoselectivity
and stereoselectivity of the global process; and (iii) the reduction of metal-, organo- or bio-catalyst
consumption, thanks to the possible recycling of the catalysts; all these being synthetic concepts
closely related with the principles of so-called Green Chemistry. Thus, this Special Issue on “Advances
in Homogenous Catalysis” has been aimed to showcase a series of stimulating contributions from
international experts within different sub-areas of catalysis in organic synthesis (ranging from metal-,
organo-, or bio-catalyzed organic reactions).
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During recent decades, the use of metal- [1,2], organo- [3], or bio-catalysts [4] in Organic Synthesis
has granted access to new molecules of complex structure through the formation of new carbon–carbon
or carbon–heteroatom bonds, in a myriad of scientific reports. In addition, and as Gadi Rothenberg
stated in his book “Catalysis” [5], catalysis is the key to sustainability. A catalyst is a chemical substance
that facilitates a chemical reaction without changing its thermodynamic parameters, by creating a new
and kinetically favored reaction pathway that is faster than the non-catalyzed version of the reaction.
Moreover, the catalyst is not consumed in the process, thus, a small amount of the aforementioned
catalyst can participate in several catalytic cycles, paving the pathway for the possible recyclability of
the catalytic system [6]. Moreover, the employment of catalysts in organic synthesis also offers other
interesting advantages, thus opening the door to the improvement of:

(i) The selectivity of a selected process, which indirectly affects its efficiency, obtaining the desired
product with minor amounts of by-products and waste, thus decreasing the energy consumption
and maximizing the total atom economy [7] of the process.

(ii) The tolerance to potentially degradable or sensitive functional groups, since catalytic reactions
usually take place under milder reaction conditions than stoichiometric processes.

(iii) The enantiomeric excess: the employment of chiral catalysts allows to transfer the chiral
information from the catalyst to the desired enantiomerically pure compounds, which usually
present high added value and are very interesting for the pharmaceutical industry.

Furthermore, it is important to note that, in the field of organic synthesis, the use of metallic
complexes, organocatalysts or enzymes represents one of the cornerstones of the development of
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new synthetic methodologies, since it not only allowed previously discovered stoichiometric organic
reactions to be carried out in a catalytic manner [1–4], but also unlocked the discovery of new processes
in organic synthesis that were unknown until the irruption of catalysis. Finally, it is worth noting that
it is difficult to find advanced organic syntheses (both at the academic or industrial level) in which any
of the aforementioned catalytic methodologies (metal-, organo- or bio-catalysis) are not used in any of
their synthetic stages.

Thus, this Special Issue includes two original research articles and two review articles,
covering different topics ranging from transition-metal-catalyzed organic transformations to
ionic-liquid-mediated organic reactions. Firstly, in a communication-type article, Song, Xiao and
co-workers report an efficient and selective Zn(OTf)2-catalyzed cascade cyclization of 2-propynol
benzyl azides (1) with different diphenylphoshine oxides (2) in acetonitrile as solvent at 100 ◦C (see
Scheme 1). The desired phosphorylated isoindolines, fused with triazoles (3), were obtained with
moderate to excellent yields (57–91%) [8].
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Scheme 1. Zn(II)-catalyzed cyclization of 2-propynol benzyl azides (1) with different diphenylphoshine
oxides (2), reported by Song, Xiao et al. [8].

In the second original research paper, Glotov and co-workers present the synthesis of seven
different polyoxometalate based-ionic-liquids (derived from pyridine or nicotinic acid, see Figure 1)
and their use as catalyst in the oxidation of organosulfur compounds (like methylphenylsulfide,
benzothiophene, 5-methylbenzothiophene, dibenzothiophene, 4-methyldibenzothiophene or
4,6-dimethyldibenzothiophene) in both model and real diesel fuels [9]. Moreover, the authors
show that the catalytic system can operate for five consecutive cycles without any decrease in its
catalytic activity.
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Figure 1. Different polyoxometalate-based ionic liquids derived from pyridine or pinacolinic acid,
employed by Glotov and co-workers as catalysts for the oxidation of organosulfur compounds in both
model and real diesel fuels [9].

Regarding the review-type contributions to this Special Issue, Guo and co-workers present
a general overview of the use of cyclic carbonates and carbamates as starting building blocks
in organic synthesis via transition-metal-catalyzed decarboxylation for the synthesis of different
heteroaromatic organic architectures, ranging from chiral tetrahydroquinolines, functionalized indoles
and furanbenzodihydropyran derivatives to chiral 3-indolin malononitriles, among others [10].
Finally, Dr. Noel Nebra reports an outstanding and complete review of high-valent Ni(III) and Ni(IV)
organometallic species [11], which is nowadays a hot topic area in the field of transition-metal-catalyzed
formation of C–C and C–Heteroatom bonds. Moreover, the author also presents in his review the
actual state of the art on the different mechanistic proposals to support the catalytic activity of the
aforementioned high-valent Ni(III) and Ni(IV) organometallic species.
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In summary, the collection of original research and review articles included in this themed issue
offer a broad view of the state of the art in “Advances in Homogenous Catalysis”, highlighting the
enormous scope for advancement and application in this field.
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