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Abstract: A great variety of computational approaches support drug design processes, helping in 

selection of new potentially active compounds, and optimization of their physicochemical and 

ADMET properties. Machine learning is a group of methods that are able to evaluate in relatively 

short time enormous amounts of data. However, the quality of machine-learning-based prediction 

depends on the data supplied for model training. In this study, we used deep neural networks for 

the task of compound activity prediction and developed dropout-based approaches for estimating 

prediction uncertainty. Several types of analyses were performed: the relationships between the 

prediction error, similarity to the training set, prediction uncertainty, number and standard 

deviation of activity values were examined. It was tested whether incorporation of information 

about prediction uncertainty influences compounds ranking based on predicted activity and 

prediction uncertainty was used to search for the potential errors in the ChEMBL database. The 

obtained outcome indicates that incorporation of information about uncertainty of compound 

activity prediction can be of great help during virtual screening experiments. 
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1. Introduction 

Computational methods have now become indispensable part of drug design process, 

supporting its every stage, from proposing new drug candidates, via optimization of their activity, 

to tuning their physicochemical and pharmacokinetic properties and minimizing adverse effects 

(computer-aided drug design, CADD) [1–8]. Great desire for new medications for various diseases is 

an impulse for conduction of experiments in the field, which causes the exponential growth of the 

amount of pharmaceutical-related data that can then be used for modeling of compounds bioactivity 

and properties. 

There is a number of databases storing information about various aspects of biologically active 

compounds—from data on compounds activity towards particular target, such as the ChEMBL 

database [9] or PDSP [10], through the information on 3-dimensional structure of proteins (PDB) [11], 

data on existing drugs (DrugBank) [12] or compounds toxicity (TOXNET) [13]. The information 
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stored in such databases can be very useful during the design of new compounds with desired 

biological activity; however, the great amount of information stored there makes it impossible to be 

carried out by simple statistical tools. Therefore, more sophisticated tools need to be use in order to 

derive relationships that can facilitate the process of finding new drug candidates. This is the reason 

why machine learning (ML) methods have recently gained such great popularity in the field of drug 

design. They are used both to select potential drug candidates from large compounds databases, but 

also to generate the structures of new chemical compounds de novo—or to optimize their 

physicochemical and pharmacokinetic properties [14–27]. 

Despite a wide range of possibilities offered by ML methods, there are also problems which 

leads to inaccurate predictions of compounds activity or other evaluated properties. First of all, in 

order to apply ML methods for dealing with cheminformatic problems, the structures of chemical 

compounds need to be properly represented. One of the most popular approaches to this task is 

fingerprinting that is translating a compound into the form of a bit string coding information about 

its structure [28–32]. There are two main types of this way of compound transformation: hashed 

fingerprints and key-based fingerprints and each type of compounds translation is connected with 

losing some pieces of information about compound structure. For example, in the key-based 

fingerprints, subsequent positions provide information about the presence or absence of particular 

chemical moieties in the molecule; however, after representing compound in such a form, 

information about the connections between these moieties is lost. 

Another problem with application of ML methods in the process of selecting new drug 

candidates is related to the fact that the already known ligands of a given receptor usually cover 

relatively narrow chemical space [33]. It then causes, that if they are used for training a ML 

model, we obtain correct predictions on the activity of compounds that are structurally close to 

the previously examined ones, but there are difficulties in evaluation of structurally novel 

compounds. Generalization issues are difficult to be solved and various approaches have already 

been tested to improve the prediction accuracy on the molecules with dissimilar structures to 

known ligands [34,35]. 

Each computational model, before application in CADD tasks, needs to be evaluated in terms of 

its prediction accuracy. Such retrospective studies are also challenging, as the proper testing 

approach needs to be selected. It was already reported in several studies, that cross-validation (CV) 

with random splitting leads to overoptimistic results as we rather obtain information on a model that 

works via memorizing the training set than generalizing it on new data. However, other splitting 

approaches (such as cluster-based or scaffold-based splitting) are also not perfect; they also do not 

fully solve the problem of providing information about the ability of a model to evaluate structurally 

novel compounds [33,34]. 

Another problem related to application of computational tools in CADD is the fact that most of 

them (not only ML-based, but also pharmacophore modeling or homology modeling when model 

evaluation is considered) need first to be trained, which is usually performed on experimental data 

stored in various databases. However, as it was already indicated and what is also a subject of this 

study, experimental data are not always reproducible and the provided compound activity values 

are not always reliable [36]. 

There are different types of uncertainty that can be considered. Two most important categories 

of this problem are epistemic and aleatoric uncertainty. The latter type of uncertainty is sometimes 

called also a systematic uncertainty and its source is lack of knowledge of various types. It can be 

related to misunderstanding of the analyzed process or missing data of a particular type. Epistemic 

uncertainty influences evaluations of events of ‘accident’ types, such as probability of failure of 

particular machine and evaluation of probability of human error (when the analyst does not possess 

enough data to make proper decision). On the other hand, aleatoric uncertainty is also known as 

statistical uncertainty and is related to randomness occurring during experiment (causing differences 

in the obtained outcome when experiment is run several times with the same settings) [37]. 

Out of a wide range of ML models applied in CADD, great popularity is now gained by deep 

learning (DL) approaches. DL methods are known for their ability to model complicated 
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dependencies in data, much more efficiently than their shallow counterparts. In CADD, they are both 

used for evaluation of compounds activity and other properties (physicochemical, ADMET), as well 

as for the generation of molecules with properties falling in specific range of values (e.g., with defined 

solubility, stability, etc.) [38–45]. 

There are different approaches to estimate prediction uncertainty. At first, we would like to 

remark on the use of the soft-max probabilities in uncertainty estimation. It should be pointed out 

that measures calculated solely on the output of soft-max probability distribution are not actually 

modeling uncertainty. As shown by Gal et al. [46], the model can be certain (meaning high probability 

of class assignment) for a data point that was never seen by the model during training. Given a perfect 

classifier, for a sample out of the training distribution, but with some features resembling an specific 

subgroup of the training set (e.g., active compounds), we would like to predict the ligand active; 

however, with a measurable margin of uncertainty (as the model has not observed such an exact 

sample before). The certainty of such activity prediction is the expected outcome in the soft-max 

distribution, as it does not provide any additional information about its decision. 

In this study, we used a method for uncertainty estimation proposed by Gal et al.—dropout-

based uncertainty. It uses an indeterministic model both during training and evaluation. The 

stochasticity is expressed by the dropout mechanic [47], which was originally developed to combat 

overfitting of neural networks. In the original formulation, some of the network weights (i.e., 

neurons) are dropped out, zeroing their weighs, which in turn means that they do not contribute to 

the prediction. The set of neurons that are dropped out is different in each iteration (for each data 

batch, different neurons are dropped). In the typical dropout setting, none of the weights are dropped 

during evaluation, as we typically want the prediction to be deterministic. 

Nevertheless, for the dropout-based uncertainty, the dropout on during inference is kept. 

Moreover, each testing sample is passed through the network multiple times, each with different 

dropout mask (i.e., different set of neurons dropped) and prediction statistics are calculated based on 

those outputs. Measuring the variance of each run for a given data point yields the model uncertainty. 

We would like also to mention two other approaches for estimating model uncertainty. Bayesian 

neural networks are a popular framework for models with built-in uncertainty weights, with 

Probabilistic Backpropagation [48] as an example have already been used to estimate model 

uncertainty. Other approach, related to Bayesian models belongs to the group of Variational Inference 

methods, which provide an approximation to Bayesian inference over network’s weights [49]. The 

drawback of those methods is computational complexity, whereas the approach used in the study 

requires only few additional forwards passes through the model. 

In the study, several types of experiments have been performed: 

 the relationships between the prediction error, similarity to the training set and prediction 

uncertainty for the data from the test set were examined, together with analysis of correlation 

between uncertainty and the number of activity values provided—and also between uncertainty 

and standard deviation of activity values 

 we tested whether incorporation of information about prediction uncertainty improves the 

compounds ranking on the basis of predicted activity 

 uncertainty of predictions was used to search for the potential errors in the ChEMBL database. 

The study was carried out for two sets of targets: 10 targets from previous benchmark 

experiments [35] and additional 15 targets from various G protein coupled receptors (GPCRs) 

families. The predictions (numerical regression of bioactivity of ligands) were carried out in two 

settings: random CV and balanced agglomerative clustering (BAC) for two compounds 

representations. 

2. Results and Discussion 

2.1. General Observations 

Table 1 and Table 2 gather values of mean squared error (MSE) for CV and BAC splitting, 

together with the estimation of uncertainty. 
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Table 1. Regression results obtained for random CV. 

Target 
Morgan MACCSFP 

MSE Dropout MSE Uncertainty MSE Dropout MSE Uncertainty 

5-HT1A 0.416 ± 0.02 0.406 ± 0.02 0.318 ± 0.01 0.568 ± 0.04 0.552 ± 0.04 0.580 ± 0.00 

ACM1 0.665 ± 0.18 0.660 ± 0.17 0.352 ± 0.01 0.781 ± 0.16 0.763 ± 0.15 0.567 ± 0.01 

D2 0.352 ± 0.03 0.344 ± 0.03 0.298 ± 0.01 0.436 ± 0.00 0.420 ± 0.00 0.510 ± 0.00 

5-HT2A 0.467 ± 0.03 0.459 ± 0.03 0.319 ± 0.01 0.559 ± 0.06 0.551 ± 0.05 0.523 ± 0.01 

5-HT2C 0.494 ± 0.02 0.488 ± 0.02 0.304 ± 0.01 0.532 ± 0.03 0.518 ± 0.02 0.535 ± 0.04 

A1 0.429 ± 0.03 0.421 ± 0.03 0.308 ± 0.00 0.479 ± 0.02 0.474 ± 0.02 0.547 ± 0.03 

A2A 0.412 ± 0.03 0.406 ± 0.03 0.326 ± 0.01 0.528 ± 0.03 0.515 ± 0.02 0.561 ± 0.02 

H3 0.407 ± 0.04 0.399 ± 0.04 0.300 ± 0.01 0.504 ± 0.02 0.488 ± 0.002 0.518 ± 0.02 

5-HT7 0.455 ± 0.04 0.450 ± 0.03 0.302 ± 0.02 0.899 ± 0.04 0.902 ± 0.03 0.523 ± 0.02 

5-HT6 0.461 ± 0.03 0.455 ± 0.02 0.309 ± 0.00 0.520 ± 0.00 0.507 ± 0.00 0.544 ± 0.01 

MT1A 0.630 ± 0.12 0.622 ± 0.13 0.365 ± 0.02 0.769 ± 0.10 0.761 ± 0.10 0.596 ± 0.03 

MT1B 0.630 ± 0.06 0.623 ± 0.05 0.351 ± 0.02 0.856 ± 0.13 0.839 ± 0.12 0.586 ± 0.02 

CB1 0.494 ± 0.05 0.486 ± 0.05 0.343 ± 0.01 0.584 ± 0.03 0.578 ± 0.03 0.565 ± 0.03 

MOR 0.538 ± 0.06 0.528 ± 0.06 0.380 ± 0.01 0.663 ± 0.06 0.643 ± 0.06 0.645 ± 0.02 

DOR 0.473 ± 0.01 0.466 ± 0.01 0.380 ± 0.00 0.614 ± 0.03 0.605 ± 0.03 0.636 ± 0.01 

KOR 0.513 ± 0.04 0.500 ± 0.04 0.375 ± 0.01 0.651 ± 0.04 0.636 ± 0.04 0.629 ± 0.03 

CB2 0.542 ± 0.03 0.525 ± 0.03 0.343 ± 0.01 0.641 ± 0.03 0.627 ± 0.03 0.601 ± 0.02 

MC4 0.407 ± 0.04 0.396 ± 0.04 0.361 ± 0.00 0.540 ± 0.03 0.526 ± 0.04 0.589 ± 0.01 

mGluR5 0.628 ± 0.11 0.627 ± 0.11 0.332 ± 0.02 0.720 ± 0.09 0.713 ± 0.09 0.524 ± 0.03 

CCR2 0.417 ± 0.08 0.409 ± 0.08 0.285 ± 0.02 0.546 ± 0.20 0.539 ± 0.20 0.534 ± 0.03 

B1 0.578 ± 0.15 0.576 ± 0.16 0.320 ± 0.03 0.722 ± 0.18 0.722 ± 0.17 0.618 ± 0.04 

MC5 0.484 ± 0.11 0.471 ± 0.10 0.433 ± 0.03 0.428 ± 0.11 0.423 ± 0.10 0.578 ± 0.04 

MC3 0.339 ± 0.06 0.343 ± 0.06 0.413 ± 0.02 0.422 ± 0.09 0.418 ± 0.08 0.542 ± 0.02 

OX2R 0.445 ± 0.04 0.439 ± 0.04 0.307 ± 0.01 0.562 ± 0.06 0.550 ± 0.06 0.599 ± 0.01 

OX1R 0.340 ± 0.04 0.336 ± 0.03 0.325 ± 0.01 0.510 ± 0.05 0.500 ± 0.05 0.570 ± 0.01 

Table 2. Regression results obtained for BAC. 

Target 
Morgan FP MACCSFP 

MSE Dropout MSE Uncertainty MSE Dropout MSE Uncertainty 

5-HT1A 1.323 ± 0.21 1.284 ± 0.18 0.347 ± 0.04 1.879 ± 0.10 1.746 ± 0.03 0.563 ± 0.07 

ACM1 1.788 ± 0.43 1.766 ± 0.41 0.389 ± 0.07 2.792 ± 0.80 2.706 ± 0.73 0.594 ± 0.09 

D2 0.967 ± 0.16 0.954 ± 0.16 0.342 ± 0.02 1.424 ± 0.26 1.304 ± 0.15 0.588 ± 0.04 

5-HT2A 1.667 ± 0.56 1.609 ± 0.57 0.395 ± 0.04 1.496 ± 0.00 1.449 ± 0.00 0.568 ± 0.00 

5-HT2C 1.534 ± 0.75 1.502 ± 0.72 0.338 ± 0.04 1.714 ± 0.44 1.671 ± 0.44 0.517 ± 0.01 

A1 1.378 ± 0.56 1.359 ± 0.56 0.337 ± 0.03 1.602 ± 0.00 1.537 ± 0.00 0.476 ± 0.00 

A2A 1.445 ± 0.37 1.430 ± 0.36 0.367 ± 0.03 1.264 ± 0.19 1.207 ± 0.19 0.567 ± 0.02 

H3 1.001 ± 0.13 0.961 ± 0.13 0.354 ± 0.02 1.284 ± 0.46 1.205 ± 0.43 0.547 ± 0.05 

5-HT7 1.267 ± 0.53 1.252 ± 0.54 0.316 ± 0.03 2.027 ± 0.65 1.956 ± 0.63 0.534 ± 0.04 

5-HT6 1.337 ± 0.39 1.305 ± 0.38 0.323 ± 0.03 1.597 ± 0.41 1.453 ± 0.44 0.564 ± 0.03 

MT1A 1.989 ± 0.54 1.989 ± 0.55 0.367 ± 0.06 2.101 ± 0.60 2.071 ± 0.59 0.532 ± 0.04 

MT1B 1.921 ± 0.27 1.914 ± 0.28 0.340 ± 0.06 1.925 ± 0.42 1.899 ± 0.43 0.565 ± 0.06 

CB1 1.413 ± 0.44 1.399 ± 0.41 0.351 ± 0.03 1.595 ± 0.49 1.511 ± 0.43 0.563 ± 0.02 

MOR 1.602 ± 0.30 1.546 ± 0.30 0.405 ± 0.02 1.994 ± 0.38 1.878 ± 0.38 0.653 ± 0.05 

DOR 1.921 ± 1.01 1.895 ± 0.99 0.360 ± 0.02 2.393 ± 1.07 2.251 ± 0.94 0.607 ± 0.05 

KOR 1.653 ± 0.43 1.613 ± 0.42 0.401 ± 0.03 2.159 ± 0.86 2.052 ± 0.79 0.651 ± 0.05 

CB2 1.601 ± 0.41 1.577 ± 0.43 0.350 ± 0.02 1.552 ± 0.41 1.508 ± 0.38 0.619 ± 0.08 

MC4 1.652 ± 0.87 1.561 ± 0.78 0.392 ± 0.07 1.406 ± 0.49 1.371 ± 0.48 0.577 ± 0.07 

mGluR5 2.289 ± 1.08 2.279 ± 1.08 0.336 ± 0.05 1.844 ± 0.71 1.839 ± 0.73 0.488 ± 0.07 

CCR2 0.792 ± 0.43 0.789 ± 0.43 0.288 ± 0.05 1.480 ± 0.60 1.428 ± 0.57 0.411 ± 0.04 

B1 1.903 ± 0.65 1.894 ± 0.66 0.353 ± 0.05 1.503 ± 0.42 1.478 ± 0.42 0.597 ± 0.16 

MC5 1.221 ± 1.12 1.237 ± 1.13 0.441 ± 0.04 1.230 ± 1.35 1.207 ± 1.31 0.504 ± 0.02 

MC3 0.947 ± 0.41 0.913 ± 0.39 0.482 ± 0.05 0.917 ± 0.43 0.895 ± 0.42 0.533 ± 0.05 

OX2R 1.192 ± 0.64 1.183 ± 0.63 0.291 ± 0.02 1.573 ± 0.84 1.582 ± 0.87 0.547 ± 0.05 

OX1R 1.178 ± 0.57 1.164 ± 0.56 0.345 ± 0.05 1.833 ± 0.14 1.778 ± 0.13 0.569 ± 0.08 
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The results gathered in Table 1 and Table 2 show that in general, MSE values were much higher 

for BAC splitting than random CV, which is related to increased task simplicity when compounds 

are divided into folds randomly [35]. In BAC splitting, the compounds from the test set are supposed 

to be structurally dissimilar to those that are present in the training set; therefore, via this approach 

we can evaluate the true ability of ML models to assess compounds covering broad chemical space. 

Nevertheless, using such an approach for ML methods evaluation is always related to worse 

performance, as CV-based output provides overoptimistic results (the compounds from the test set 

resemble examples from the training set, so the evaluation task is relatively simple) that are not 

reflected in real application of such models. 

Interestingly, MSE values obtained for MACCSFP are higher in both CV and BAC splitting in 

comparison to hashed Morgan FP representation. The difference is higher for BAC splitting, but it is 

related to higher MSE values for these experiments. 

Another consistent observation is that MSE is higher than dropout MSE, which means that the 

non-deterministic MSE is lower than its deterministic equivalent. It can be explained in such a way, 

that multiple drawing of dropout’s masks is identical to the prediction of the network committee, 

which usually is characterized by slightly better results. 

Our last observation is connected with uncertainty evaluation. It also reaches higher values 

for BAC experiments in comparison to CV, while on the other hand, when different compound 

representations are compared, uncertainty values are higher for MACCSFP in comparison to 

Morgan FP. 

When the results are examined from the target point of view, the highest error rate is observed 

for ACM1, mGluR5, ACM1 and ACM2 for both representations and splitting approaches and the 

lowest for D2 and MC3. In general, smaller datasets led to worse prediction efficiency. 

2.2. Analysis of Uncertainties, Errors and Compound Similarities 

The visualization of dependencies between the regression error, similarity to the training set 

(calculated for Morgan FP and with the use of Tanimoto coefficient) and uncertainty was performed 

(Figure 1, Supporting Information File S1). 
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Figure 1. Visual analysis of dependencies between mean squared error (MSE), prediction uncertainty 

and compound similarity for adenosine A1 receptor. (a) MSE vs. similarity for Morgan FP in CV; (b) 

uncertainty vs. similarity for Morgan FP in CV (c) MSE vs. uncertainty for Morgan FP in CV; (d) MSE 

vs. similarity for Morgan FP in BAC; (e) uncertainty vs. similarity for Morgan FP in BAC; (f) MSE vs. 

uncertainty for Morgan FP in BAC; (g) MSE vs. similarity for MACCSFP in CV; (h) uncertainty vs. 

similarity for MACCSFP in CV (i) MSE vs. uncertainty for MACCSFP in CV; (j) MSE vs. similarity for 

MACCSFP in BAC; (k) uncertainty vs. similarity for MACCSFP in BAC; (l) MSE vs. uncertainty for 

MACCSFP in BAC. 



Molecules 2020, 25, 1452 8 of 19 

 

The first observation coming from Figure 1 is that there is no significant difference between 

results obtained for two representation used—the only qualitative and strong indicated 

differentiation is the uncertainty vs. similarity dependence for random CV, which is spread over 

greater area for Morgan FP than MACCSFP. For this dependency it is also visible that the data points 

are placed differently when random CV vs. BAC splitting is considered—for random CV, the 

datapoints are concentrated closer to higher values of similarity coefficients, whereas for BAC they 

are spreading from the corner with lower similarity and uncertainty values. The highest 

concentration of datapoints in lower values of both parameters considered (MSE and uncertainty) is 

also observed for MACCSFP and random CV; for other combinations of dataset splitting approach 

and representation the datapoints cover much broader space of the respective chart although and 

MSE is more concentrated parameter than uncertainty, which adopts quite broad range of values. 

MSE vs. similarity charts also much more depended on the splitting approach than the compound 

representation and the highest concentration of points is shifted towards higher similarity values for 

random CV than for BAC. 

Another type of analysis involved the examination of relationships between the number of 

different activity values reported and average prediction uncertainty (Figure 2, Supporting 

Information File S2). In the case, no ‘box’ is presented on the chart, only one compound was reported 

for particular number of activity values. Activity range is shown by lines, box size refers to first and 

last quartile and orange line to median activity value. The results show that there is no direct 

relationship between the number of activity values provided for particular compound and 

uncertainty of predictions obtained for them, for both random CV and BAC. No direct conclusion 

that increasing number of activity values reported led to higher uncertainty can be drawn. 

 

Figure 2. Analysis of dependency between prediction uncertainty and number of activity values 

provided for particular compound in the ChEMBL database for dopamine D2 ligands. (a) for Morgan 

FP in CV experiments; (b) for MACCFP in CV experiments; (c) for Morgan FP in BAC experiments; 

(d) for Morgan FP in BAC experiments. 



Molecules 2020, 25, 1452 9 of 19 

 

Last type of analysis involved the examination of correlation between the standard deviation of 

activity values reported for given compound and prediction uncertainty (Figure 3, Supporting 

Information, File S3). 

 

Figure 3. Analysis of dependency between prediction uncertainty and standard deviation of activity 

values provided for particular compound in the ChEMBL database for adenosine A1 ligands. (a) for 

Morgan FP in CV experiments; (b) for MACCFP in CV experiments; (c) for Morgan FP in BAC 

experiments; (d) for Morgan FP in BAC experiments. 

The first observation coming from Figure 4 is that the consistency in data in training set 

(standard deviation of activity values equal to zero) is not related to clear and certain predictions for 

given compound and wide range of uncertainty is assigned to compounds with standard deviation 

of activity values equal to zero. Further, there is no correlation between standard deviation and 

uncertainty of predictions and even for compounds with wide range of activity values reported, 

predictions with low uncertainty can be obtained. 
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2.3. Compounds Ranking 

In this experiment, we sorted compounds using particular strategy and the results were 

compared with the sorting based on true activities. The baseline model performs sorting only on the 

basis of prediction of a model, remaining strategies use also information about model uncertainty in 

various ways. It was indicated that using information about uncertainty in general improves sorting 

efficiency. 

For the ranking strategies, we will assume that ��� is the predicted bioactivity (in terms of affinity 

values—Ki) and ui is the prediction uncertainty. We will denote �(���, ��)  as output of ranking 

function, meaning the lower the R value, the higher in our ranking the compound is. 

The following ranking strategies were used: 

 Baseline—only prediction of a model is taken into account 

�(���, ��) = ��� (1) 

 Add—to model prediction, information about uncertainty is added directly; the less 

uncertain the model is about the sample, the better 

�(���, ��) =  ��� + �� (2) 

 Scale—the uncertainty estimation is normalized to fit the range of [0,1]) and used to scale 

the prediction 

�(���, ��) =  ��� ∗  ���  (3) 

��� =
������

�
��

���
�

��
, (4) 

where ��� is a normalized uncertainty based on the measures for the whole test set. 

 Add scaled—the uncertainty estimation is normalized to fit into [0,1] and added directly 

to the prediction 

�(���, ��) =  ��� +  ���  (5) 

 Sum scaled—both prediction of a model and its uncertainty are normalized and then 

summed up 

�(���, ��) = ��� + ��� 

��� =
������

�
��

���
�

��
, 

where ��� is a normalized prediction based on the predictions over the whole dataset. 

 Comb λ—linear combination of prediction and uncertainty with the λ coefficient 

(various λ values were tested). 

�(���, ��) =  ���� + (1 − �)�� (6) 

The results are presented in the form of the so-called “precision at top 10%”, which means that 

the compounds are sorted on the basis of their activity (two lists are prepared: based on true activity 

and based on the predicted values of activity parameters). Then, the 10% of top scored compounds 

from the list of the most active compounds is picked up and it is cross-checked with the list of the 

10% of top scored compounds on the basis of predicted activity. The percentage of overlapping 

compounds between these two lists for different strategies for BAC splitting for example targets is 

gathered in Figure 4. 
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Figure 4. Precision at top 10% for various ranking strategies for selected targets. (a) 5-HT1A; (b) M1; (c) 

5-HT2C; (d) A1; (e) H3; (f) 5-HT7. 

We can notice that the results and prediction effectiveness strongly depend both on the target, 

as well as compound representation. For all targets presented in Figure 4 Morgan FP appeared to be 

more effective representation. The differences in precision between different compound 

representations also vary for various targets—from slight differences for 5-HT2C, via a ~0.1 difference 

for M1, A1, H3 and 5-HT7, to up to 0.15 difference for 5-HT1A. On the other hand, the differences related 

to various compound representations were higher than differences related to application of different 

approaches. When information on uncertainty is added, the precision values averaged over all targets 

considered revealed that for both compound representations _add approach was the best. 

Nevertheless, in both cases, the improvement in comparison to baseline was relatively low—0.004 

and 0.007 for MorganFP and MACCSFP, respectively when averaged values for all targets are taken 

into account. 

However, considering particular cases separately, there was an approach that improved the 

accuracy of ML predictions in comparison to baseline; there were examples where these 

improvement was quite significant. For example, for D2 and H3 ligands, precision at top 10% was 

higher by ~0.03 when _sum_scaled approach is compared to baseline (for Morgan FP). _sum_scaled 

approach gave the highest improvement over baseline for A2A, for MACCSFP representation (~0.04). 

In order to examine the influence of incorporation of uncertainty into ML models, the heat maps 

were prepared comparing the precision at top 10% for baseline and other approaches (Figure 5). 
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Figure 5. Heat maps presenting differences in precision at top 10% between approaches that take into 

account uncertainty and baseline for BAC splitting for 10 targets from benchmark studies. 

Figure 5 clearly show that in the majority of cases incorporation of information about prediction 

uncertainty improved efficiency of predictions of ML models (indicated by pink and red cells on heat 

maps). Nevertheless, the results strongly depend on target and compound representation. For M1, 

A2A and 5-HT6, strong improvement is observed for MACCSFP; for Morgan FP, it was D2, A2A and H3 

that led to the highest improvement. This effect (for both representations is observed mainly for _add, 

_add_scaled and _sum_scaled approaches. On the other hand, the _sum_scaled approach was the 

only one for which the worsening of the results was observed for some targets (M1, A1 and 5-HT6 for 

Morgan FP and M1 and 5-HT2C for MACCSFP) 

2.4. Detection of Potential Errors in Bioactivity Databases 

The developed methodology was used for detection of potential errors in the ChEMBL database. 

First of all, for all targets considered, the MSE of activity prediction together with uncertainties were 

calculated for the test set (Figure 6). 

 

Figure 6. Analysis of uncertainty and MSE of activity prediction (calculated for all targets considered). 

(a) uncertainty; (b) prediction error expressed as log(MSE). 

On the basis of these data, the ‘suspected’ data points were indicated; they were defined as those 

for which the MSE was in the 95 percentile (and higher) and uncertainty on the 5th percentile (and 

higher). 
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Examples of such compounds—together with the true activities reported and activities of 10 

most similar compounds—are presented below (Figure 7). 

 

Figure 7. Analysis of selected dopamine D2 ligands with terms of affinity values provided in ChEMBL, 

predicted activity, prediction uncertainty and activity of structurally similar ligands (for Morgan FP). 

The provided examples of dopamine D2 ligands prove that the prediction uncertainty is not 

correlated with the standard deviation of activity values provided in activity databases. For ligand 

CHEMBL156651, there were 8 Ki values towards D2 receptor reported, ranging from 0.067 nM to 260 

nM (with the average Ki equal to 106.23 nM) and standard deviation of 108 nM. The predicted Ki for 

this compound is however much lower than the actual affinity values and is equal to 11.11 nM which 

is expressed also by high uncertainty factor (0.708). The relatively low value of predicted Ki is a result 

of activities of similar compounds present in the dataset. Figure 7 presents only selected examples, 

but even among them can be found compounds with much lower Ki than actual average Ki, such as 

CHEMBL139089, for which two Ki values are reported (37 and 68.2 nM). On the other hand, there is 

compound CHEMBL317433, for which only one Ki value is available (0.2 nM). Although for this 

compound, the standard deviation of Ki values is equal to zero, the prediction uncertainty is similar 

to the uncertainty determined for CHEMBL156651 (0.211) and the predicted Ki for this compound is 

equal to 80.85 nM. In this case, the activity of similar compounds is in narrower range, as the most 

active CHEMBL194844 has affinity of 5.1 nM, but there is also CHEMBL196171, whose Ki is equal to 

21 nM. 

3. Materials and Methods 

The ChEMBL database [9] was used as a data source. Experiments were performed on 10 target 

proteins that were previously subject to detailed study in terms of dataset preparation for ML 

experiments [35]: serotonin receptors 5-HT1A, 5-HT2A, 5-HT2C, 5-HT6, 5-HT7 [50–53], muscarinic 

receptor ACM1 [54], adenosine receptors A1 [55] and A2A [56,57], histamine receptor H3 [58] and 

dopamine receptor D2 [59,60]. The targets are mostly representatives of aminergic GPCRs and were 

selected due to the knowledge of ligands of these receptors and the datasets themselves due to 

previous studies performed on these targets [35]. In addition, 15 proteins covering also other GPCRs’ 

families were selected to minimize results bias related to target selection: bradykinin B1 receptor [61], 

melanocortin (MC) receptors subtype 3, 4 and 5 [62], kappa opioid receptor (KOR) [63,64], mu opioid 

receptor (MOR) [64], delta opioid receptor (DOR) [64] orexin receptors 1 and 2 (OX1R, OX2R) [65], 

cannabinoid CB1 receptor [66], cannabinoid CB2 receptor [66], melatonin receptors MT1A and MT1B 

[67], metabotropic glutamate receptor mGluR5 [68] and C-C chemokine receptor type 1 (CCR1) 

[69,70]. The respective datasets were extracted using the following protocol: all records referring to 

human-related data were gathered and all cases that were not describing binding data (activity 
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parameter included in the list: Ki, log(Ki), pKi, IC50, log(IC50), pIC50) were filtered out. Then, only ‘equal 

to’ relation between activity parameter and its value were kept and units of activity parameters 

values should belong to the set {M, mM, µM, nM, pM, fM}; additional results were produced for 

extended set of relations between activity parameter and its value (“=”, “<”, “>”, “≤”, “≥”, “~”)—the 

results are presented in the Supporting Information and were obtained for the set of 10 targets from 

benchmark studies. Recalculation of IC50 into Ki was performed using the following formula: Ki = 

IC50/2 [35] Finally, the Ki values were converted to the logarithmic form and such datasets were used 

in the study. 

The predictions were carried out in two settings: random CV and BAC [35]. The compounds 

structures were represented by Morgan Fingerprint (radius equal to 2) [71] and MACCSFP [72] 

calculated by RDKit [73]. The dataset sizes in these two splitting types are presented in Table 3. 

Table 3. Size of datasets used in the study. 

Target 

CHEMBLID 
Target Name 

Training Set 

Size CV 

Test Set 

Size CV 

Training Set Size 

BAC 

Test Set Size 

BAC 

CHEMBL214 5-HT1A 2599 649 2495 753 

CHEMBL216 ACM1 676 168 652 192 

CHEMBL217 D2 4496 1124 4243 1379 

CHEMBL224 5-HT2A 2385 596 2025 956 

CHEMBL225 5-HT2C 1559 389 1590 358 

CHEMBL226 Adenosine A1 2782 695 2758 719 

CHEMBL251 Adenosine A2A 3165 791 2915 1041 

CHEMBL264 Histamine H3 2546 636 2689 493 

CHEMBL3155 5-HT7 1209 302 1070 441 

CHEMBL3371 5-HT6 2074 518 1979 613 

CHEMBL1945 MT 1A 573 143 622 94 

CHEMBL1946 MT 1B 572 142 524 190 

CHEMBL218 CB1 1945 486 1950 481 

CHEMBL233 MOR 2815 703 2997 521 

CHEMBL236 DOR 2457 614 2070 1001 

CHEMBL237 KOR 2381 595 2147 829 

CHEMBL253 CB2 2611 652 2687 576 

CHEMBL259 MC4 1450 362 1364 448 

CHEMBL3227 mGluR5 272 67 283 56 

CHEMBL4015 CCR2 168 42 180 30 

CHEMBL4308 B1 444 110 431 123 

CHEMBL4608 MC5 314 78 334 58 

CHEMBL4644 MC3 400 99 410 89 

CHEMBL4792 OX2R 1269 317 1175 411 

CHEMBL5113 OX1R 1087 271 1182 176 

The problem considered in the study is numerical regression of bioactivity of ligands toward a 

particular target. For all of the experiments we used the same model architecture, a 3-hidden layer 

Multi-layer Perceptron with following hidden layer sizes: 500, 500, 200 and a single-neuron 

regression output layer. After each fully connected layer, except the final output layer, there was an 

ReLU nonlinearity activation function. Additionally, to enable uncertainty estimation, after each 

hidden layer, there is a dropout layer with probability of a neuron to be dropped set to 0.5 (Scheme 1), 

according to Gal et al. [46]. No additional regularization penalty were used throughout the training 

procedure. For the learning process, data points were supplied in mini batches of 100 examples, 

Adam method [74] was used for the optimizer with learning rate set to 0.001, each model was trained 

for 200 epochs. For each protein-representation pair a 5-fold cross-validation scheme was performed 

using two different splitting strategies mentioned in the earlier (random CV, BAC). The model, the 

training procedure as well as the uncertainty estimation algorithm was implemented using 

DeepChem package [75]. If a specific hyperparameter value is not mentioned, the default value 

provided by DeepChem was used. 
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Scheme 1. Neural network used in the study. 

4. Conclusions 

In the study, we presented a DL-based approach for examination of uncertainty of compounds 

activity prediction. Several approaches were considered and their influence on activity prediction by 

ML methods was examined. Extended examination of the relationships between prediction 

uncertainty and compound similarity, number of activity values provided, and their standard 

deviation was carried out. We developed several dropout-based approaches for estimation of 

prediction uncertainty and applied uncertainty analysis for detection of potential errors in the 

ChEMBL database. The developed methodology can be of great help during virtual screening 

experiments, as information about prediction uncertainty for compounds indicated as potentially 

active might have crucial impact on making decision about their purchase. 
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Supplementary Materials: The following are available online. File S1. Visual analysis of dependencies between 

MSE, prediction uncertainty and compound similarity for all targets considered in the study for only ‘=’ relation 

between activity parameter and its value; File S2. Analysis of dependency between prediction uncertainty and 

number of activity values provided for particular compound in the ChEMBL database for all targets considered 

in the study for only ‘=’ relation between activity parameter and its value; File S3. Analysis of dependency 

between prediction uncertainty and standard deviation of activity values provided for particular compound in 

the ChEMBL database for all targets considered in the study for only ‘=’ relation between activity parameter and 

its value. File S4. Visual analysis of dependencies between MSE, prediction uncertainty and compound similarity 

for benchmark targets for extended set of relations between activity parameter and its value. File S5. Analysis of 

dependency between prediction uncertainty and number of activity values provided for particular compound 

in the ChEMBL database for benchmark targets for extended set of relations between activity parameter and its 

value; File S6. Analysis of dependency between prediction uncertainty and standard deviation of activity values 

provided for particular compound in the ChEMBL database for benchmark targets for extended set of relations 

between activity parameter and its value. 
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