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Abstract: Due to the large application of tapered beams in smart devices, such as scanning
tunneling microscopes (STM), nano/micro electromechanical systems (NEMS/MEMS), atomic force
microscopes (AFM), as well as in military aircraft applications, this study deals with the vibration
behavior of laminated composite non-uniform nanobeams subjected to different boundary conditions.
The micro-structural size-dependent free vibration response of composite laminated Euler–Bernoulli
beams is here analyzed based on a modified couple stress elasticity, which accounts for the presence
of a length scale parameter. The governing equations and boundary conditions of the problem
are developed using the Hamilton’s principle, and solved by means of the Rayleigh–Ritz method.
The accuracy and stability of the proposed formulation is checked through a convergence and
comparative study with respect to the available literature. A large parametric study is conducted to
investigate the effect of the length-scale parameter, non-uniformity parameter, size dimension and
boundary conditions on the natural frequencies of laminated composite tapered beams, as useful for
design and optimization purposes of small-scale devices, due to their structural tailoring capabilities,
damage tolerance, and their potential for creating reduction in weight.

Keywords: composites; Euler–Bernoulli beam; new modified coupled stress elasticity; Rayleigh–Ritz
method; vibration

1. Introduction

In the last decades, composite structures and materials have received an increased interest in
many industries such as the aerospace, automotive, biomedical, architectural, mechanical, and civil
sectors [1], due to their high mechanical performances. In particular, micro/nano-scale mechanical
structures usually feature a characteristic size of micron or submicron order, e.g., micro/nano-beams,
and micro-nano-cylinders, largely used in micro- and nano-electromechanical devices (MEMS and
NEMS). Several experimental evidences in literature, have revealed that the behavior of micro-structures
is size-dependent [2–5]. Thus, a large number of works has been recently published to conceive
novel structural solutions, systems, and devices, while adopting different types of reinforcement
phase, such as graphene nanoplatelets [6–14], or carbon nanotubes [15–19]. Among a large variety
of numerical strategies, higher order theories represent the most useful tool for the investigation of
the static and dynamic response of materials at different scales [20–24]. Classical theories, indeed,
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have largely revealed to be inaccurate for the study of nano- or micro-structures. This has increased
the adoption of higher-order continuum theories that include the size dependence of materials, e.g.,
the coupled stress theory (CST), the modified couple stress theory (MCST), the novel modified couple
stress theory (NMCST), the strain gradient theory, the modified strain gradient theory, the Eringen’s
nonlocal theory, among others. For nano- or micro-sized beam applications, a Timoshenko beam
model was developed by Ma et al. [25] based on a MCST for a microstructure-dependent analysis of
the static bending and free vibration response of the structure. The small-scale static, buckling, and/or
postbuckling behavior of functionally graded (FG) micro- or nano-beams was successfully investigated
in References [26–28] using different beam theories with the MCST, while focusing on the sensitivity of
the response to size-dependent scale parameters.

In the further works [29–34], the nonlocal MCST was combined to the Euler–Bernoulli
or Timoshenko nanocomposite FG beams subjected to a moving load, also in coupled-loading
conditions. Some novel coupled-stress based models have been recently employed to study the
microstructure-dependent structural behavior of laminated systems, and to predict possible-size effects
from subscales (e.g., the interaction among fibers or voids within laminae) to upper scales by considering
the gradients of displacement as micro-rotations [35–40]. Moreover, in References [41,42], the authors
investigated the vibration behavior of doubly-curved shells in a general orthogonal curvilinear
coordinate systems. In line with the previous works, Kim et al. [43] studied the bending, buckling
and vibration behavior of microplates made of FG porous material, whereas Mahmoudpour et al. [40]
investigated the nonlinear forced vibration behavior of embedded FG double layered nanoplates.
For further interesting studies based on the application of higher order theories, the reader is referred
to References [44–48]. For similar problems, it is worth noticing that the governing equations of such
systems are essentially non-linear, such that a closed-from solution is usually difficult to be found,
unless some appropriate simplifications are considered. In many cases, however, the application of
different numerical methods is unavoidable [49,50].

Due to the optimization requirements in the engineering structural design, the non-uniform
materials and tapered geometries with a progressive variation in thickness and/or width,
are increasingly adopted in a wide range of applications at different scales, such as in tennis rackets,
aerospace, mechanical engineering structures (micro-pumps, accelerometers etc.), military aircraft
(composite aircraft-wing skins, helicopter flexbeams, fly-wheels), devices (NEMS/MEMS), and civil
engineering structures, due to their tailoring elastic properties, along with a high stiffness-to-weight
and strength-to-weight ratios. In this context, Lal and Dangi [51] studied the vibration behavior of
bi-directional FG non-uniform Timoshenko nanobeams. Rajasekaran and Khaniki [52] investigated the
bending, buckling and vibration of tapered beams at a nanoscale. Akgoz and Civalek [53] investigated
the buckling behavior of tapered microbeams by means of strain gradient theories, and applied the
Rayleigh–Ritz method to solve the problem in terms of buckling load for different non-uniformity
ratios. Other applications of the strain gradient theory for the vibration and/or buckling analysis of
small-scale beams with a non-uniform geometry and material, can be found in References [54–59],
where, in most cases, the differential quadrature method has been applied to solve the governing
equations of the problem. In the further work by Aranda-Ruiz et al. [60], the authors analyzed the
flapwise bending vibration response of a tapered rotating nanocantilever beam through the Eringen’s
nonlocal elastic theory, while using the pseudospectral collocation method based on Chebyshev
polynomials to solve the problem. Based on a large parametric investigation, a pronounced sensitivity
of the dynamic response was found to the nonlocal small scale, angular speed and non-uniform section
of the nanocantilever.

Despite the large application of nonlocal elastic theories, few works in the literature have applied
the coupled stress theories (CSTs) to describe the mechanical behavior of non-uniform small scale
beams [61–64], and found some closed form solutions for some particular loading and boundary
conditions. This represents the main concern of the present investigation, where we propose a NMCST
as higher-order continuum-based theory for the vibration size-dependent analysis of tapered composite
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beams with arbitrary lay-ups. The formulation proposed in this work starts considering similar
CST-based assumptions as in Ref. [35], which are here generalized to handle composite laminated
Euler–Bernoulli beams with a more complicated tapered geometry and different boundary conditions.
Among different numerical approaches, in the present work we apply a Ritz-type solution with
harmonic trial functions to solve the problem, whose stability and accuracy is verified through a
systematic investigation. In line with predictions from the literature [65–73], the Rayleigh–Ritz method,
represents an efficient tool for the analysis of the structural behavior of beams, whose accuracy and
stability are well known to be related to the selected trial functions. The trial functions must satisfy the
enforced boundary conditions. When this condition is not fulfilled, the Lagrangian multipliers and
penalty method could be adopted to handle arbitrary boundary conditions. This approach, however,
can cause an overall increase in dimension for both the stiffness and mass matrices, with a consecutive
increase in the computational cost. Therefore, in the present work we first check for the stability of the
numerical solution for the selected harmonic trial functions, by means of a systematic investigation.
The numerical study also aims at evaluating the sensitivity of the response to different geometrical
and/or mechanical parameters, which could be of great interest for design purposes in practical
engineering application, and could serve for future studies on non-uniform beams and devices.

The outline of the paper is as follows: in Section 2 we introduce the mathematical problem
for tapered nanobeams, which is solved numerically by means of the Ritz method in Section 3.
The numerical examples and applications are discussed comparatively in Section 4 for different
mechanical and geometrical parameters. Finally, in Section 5, we draw the main conclusions of
our work.

2. Theory and Mathematical Problem

Let us consider the orthotropic non-uniform nanobeam in Figure 1, with length L, constant
thickness h, variable width b(x), in a Cartesian coordinate system (x,y,z).
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Figure 1. Geometry of the laminated composite nanobeam.

Based on the Timoshenko beam theory, the displacement field u, is defined by its components,
as follows [35,61]:

u(x, z, t) = u0(x, t) − zφ(x, t)
v(x, z, t) = 0
w(x, z, t) = w0(x, t)

(1)

where u0(x, t) and w0(x, t) are the axial and transverse displacements of an arbitrary point of
the mid-plane along the x- and z-directions, respectively, whereas φ(x, t) is the angle of rotation
around the y-axis of the cross section, that will be defined as φ(x, t) = ∂w0(x, t)/∂x for an
Euler–Bernoulli formulation.
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Based on the NMCST, the rotational field θ = 1/2curlu is defined by the following components:

θx = 1
2

(
∂w
∂y −

∂v
∂z

)
= 0

θy = 1
2

(
∂u
∂z −

∂w
∂x

)
= − 1

2

(
φ+ ∂w0

∂x

)
θz =

1
2

(
∂v
∂x −

∂u
∂y

)
= 0

(2)

The non-null components of the strain tensor ε for the kth ply of a laminated beam, are governed
by the following kinematic relations:

εk
x = ∂u

∂x = ∂u0
∂x − z∂φ∂x

γk
xz =

∂u
∂z + ∂w

∂x = ∂w0
∂x −φ

χk
xy = χk

yx = 1
2

(
∂θx
∂y +

∂θy
∂x

)
= − 1

4

(
∂φ
∂x + ∂2w0

∂x2

) (3)

where γk
xz becomes equal to zero according to Euler–Bernoulli theory.

In line with the NMCST proposed in [35], we introduce the constitutive relations for the kth
ply of a laminated micro-composite beam, in the global system of coordinates, where two length
scale parameters are introduced, l2kb and l2km for fibers and matrix in the kth lamina, respectively.
More specifically, l2kb refers to the micro-scale material constant of an arbitrary fiber rotating in the y− z
plane, where the fiber is considered as the impurity affecting the rotational equilibrium; l2km stands for
the micro-scale material constant within the matrix rotating about the impurity in the x− z plane.

Thus, the stress-strain relations in the global coordinate system, are expressed in compact form as:

σk = Qkε (4)

where σk =
[
σk

x σ
k
y τ

k
xz τ

k
yz mk

xy mk
yx

]T
, ε =

[
εx εy γxz γyz χxy χyx

]T
, mi j stand for the modified couple

stresses, and Qk = TkTCkTk depends on the coordinate transformation matrix Tk and on the elastic
properties matrix Ck, defined as follows:

Tk =



m2 n2 0 0 0 0
n2 m2 0 0 0 0
0 0 m n 0 0
0 0 −n m 0 0
0 0 0 0 m2

−n2

0 0 0 0 −n2 m2


(5)

Ck =



Ck
11 Ck

12 0 0 0 0
Ck

21 Ck
22 0 0 0 0

0 0 Ck
44 0 0 0

0 0 0 Ck
55 0 0

0 0 0 0 l2kbCk
44 l2kmCk

55
0 0 0 0 l2kbCk

44 l2kmCk
55


(6)

In the matrix (5), m = cosϕk, n = sinϕk,ϕk is the fiber angle of a layer with respect to the x-axis,
while the elastic stiffness components Ci j in matrix (6) are defined as in Reference [35]:

Ck
11 =

Ek
1(

1−(νk
12)

2
) , Ck

12 =
νk

12Ek
2

(1−νk
12ν

k
21)

, Ck
22 =

Ek
2(

1−(νk
22)

2
) , Ck

44 = Gk
13,

Ck
55 = Gk

23, Ck
66 = Gk

12

(7)

with Gi j and Ei the shear and normal elastic modulus, respectively, and νi j the Poisson ratios.
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Once the coordinate transformation from a local to the global system is performed, the constitutive
relations take the following form:

σk
x

τk
xz

mk
xy

mk
yx

 =


Qk

11 0 0 0
0 Qk

44 0 0
0 0 l2kQ̃k

44 l2kQ̃k
55

0 0 l2kQ̃k
44 l2kQ̃k

55



εx

γxz

χxy

χyx

 (8)

where the elastic coefficients are defined as [35]:
Qk

11 = m4Ck
11 + n4Ck

22 + 2m2n2
(
Ck

12 + 2Ck
66

)
Qk

44 = m2Ck
44 + n2Ck

55 + 2m2n2
(
Ck

12 + 2Ck
66

)
l2kQ̃k

44 = m4l2kbCk
44 + n4l2kmCk

55 + m2n2
(
l2kbCk

44 + l2kmCk
55

)
l2kQ̃k

55 = n4l2kbCk
44 + m4l2kmCk

55 + m2n2
(
l2kbCk

44 + l2kmCk
55

) (9)

Starting with the above-mentioned constitutive relations for composite laminated beams based
on the NMCST, we determine the governing equations of motion by means of the Hamilton’s principle.
In absence of external forces acting on the structure, the total potential energy Π takes the following
form:

Π = U −K (10)

U and K being the strain energy and the kinetic energy, respectively. More specifically, the strain
energy of the beam is defined, in the domain V, as follows:

U =
1
2

∫
V

(
σxεx + τxzγxz + 2mxyχxy

)
dV (11)

which is combined to Equations (3) and (4) to yield the following expression:

U = 1
2

L∫
0

n∑
k=1

zk+1∫
zk

Qk
11

[(
∂u0
∂x

)2
− 2z∂u0

∂x
∂φ
∂x + z2

(
∂φ
∂x

)2
]
b(x)dxdz

+ 1
2

L∫
0

n∑
k=1

zk+1∫
zk

Qk
44

[(
∂w0
∂x

)2
+ φ2

− 2φ∂w0
∂x

]
b(x)dxdz

+ 1
2

L∫
0

n∑
k=1

zk+1∫
zk

1
4 l2k

(
Q̃k

44 + Q̃k
55

)[(∂φ
∂x

)2
+

(
∂2w0
∂x2

)2
+ 2∂φ∂x

∂2w0
∂x2

]
b(x)dxdz

(12)
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Under the Euler–Bernoulli assumption of the type φ(x, t) = ∂w0(x, t)/∂x, Equation (12) becomes:

U = 1
2

L∫
0

n∑
k=1

zk+1∫
zk

Qk
11

[(
∂u0
∂x

)2
− 2z∂u0

∂x
∂2w0
∂x2 + z2

(
∂2w0
∂x2

)2
]
b(x)dxdz

+ 1
2

L∫
0

n∑
k=1

zk+1∫
zk

Qk
44

[
2
(
∂w0
∂x

)2
− 2

(
∂w0
∂x

)2]
b(x)dxdz

+ 1
2

L∫
0

n∑
k=1

zk+1∫
zk

1
4 l2k

(
Q̃k

44 + Q̃k
55

)[
2
(
∂2w0
∂x2

)2
+ 2

(
∂2w0
∂x2

)2
]
b(x)dxdz =

= 1
2

L∫
0

n∑
k=1

zk+1∫
zk

Qk
11

[(
∂u0
∂x

)2
− 2z∂u0

∂x
∂2w0
∂x2 + z2

(
∂2w0
∂x2

)2
]
b(x)dxdz

+ 1
2

L∫
0

n∑
k=1

zk+1∫
zk

l2k
(
Q̃k

44 + Q̃k
55

)(
∂2w0
∂x2

)2
b(x)dxdz =

= 1
2

L∫
0

[
C0

(
∂u0
∂x

)2
− 2C1

∂u0
∂x

∂2w0
∂x2 + (C2 + D)

(
∂2w0
∂x2

)2
]
b(x)dx

(13)

where

Ci =
n∑

k=1

zk+1∫
zk

Qk
11zidz, i = 0, 1, 2

D =
n∑

k=1

zk+1∫
zk

l2k
(
Q̃k

44 + Q̃k
55

)
dz,

(14)

and b(x) refers to the non-uniform width, whose variation is defined as:

b(x) = b0 exp(Nx) (15)

where b0 is the width of the tapered beam, at x = 0, and N is the exponential non-uniform parameter.
The kinetic energy in Equation (10) is expressed as follows:

K = 1
2

∫
V
ρ(z)

( .
u2

+
.
v2

+
.

w2)dV =

= 1
2

∫
V
ρ(z)

(( .
u0 − z

.
φ
)2
+

.
w2

0

)
dV =

= 1
2

∫
V
ρ(z)

(
.
u2

0 − 2z
.
u0

.
φ+ z2

.
φ

2
+

.
w2

0

)
dV

(16)

For a Euler–Bernoulli beam formulation, Equation (16) becomes as follows:

K =
1
2

L∫
0

I0
( .
u2

0 +
.

w2
0

)
− 2I1

.
u0
∂

.
w0

∂x
+ I2

(
∂

.
w0

∂x

)2b(x)dx (17)

with

Ii =
n∑

k=1

zk+1∫
zk

ρkzidz (18)
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By a combination of Equations (10), (13), (17) we get the following expression for the total energy
for the Euler–Bernoulli beam:

Π = 1
2

L∫
0

[
C0

(
∂u0
∂x

)2
− 2C1

∂u0
∂x

∂2w0
∂x2 + (C2 + D)

(
∂2w0
∂x2

)2
]
b(x)dx

−
1
2

L∫
0

(
I0
( .
u2

0 +
.

w2
0

)
− 2I1

.
u0

∂
.

w0
∂x + I2

(
∂

.
w0
∂x

)2
)
b(x)dx

(19)

3. The Rayleigh–Ritz Procedure

The Rayleigh–Ritz method, with two different exponential trial functions, is here applied to
approximate the displacement field as proposed by Nguyen et al. [72], and determine the solution of
the problem. Thus, the kinematic quantities are approximated as follows:

u0(x, t) =
m∑

j=1

∂ψ j(x)
∂x u j exp(iωt)

w0(x, t) =
m∑

j=1
ψ j(x)w j exp(iωt)

(20)

where ω is the natural frequency, i2 = −1 refers to the imaginary unit, u j, w j are the unknowns of the
problem, and ψ j are the trial functions which depend on the selected boundary conditions. In the
present study we consider two different types of boundary conditions, namely simply supports (S-S)
and clamped-free (C-F) supports, such that the following trial functions are assumed [71]:

ψ j(x) = sin
( jπx

L

)
for S-S beams

ψ j(x) = 1− cos
(
(2 j−1)πx

2L

)
for C-F beams

(21)

Upon substitution of Equations (20), (21) into Equation (19), and by using the Lagrange’s equations,
we get the following relation:

∂Π
∂p j
−

d
dt
∂Π
∂

.
p j

= 0 (22)

p j being the values of u j, w j, that describe the vibration response of the tapered beam structure.
After some mathematical manipulation, the generalized eigenvalue problem gets the following form[

K−ω2M
]
[u0 w0]

T (23)

where K and M stand for the stiffness and mass matrix, respectively, whose components are defined as
follows:

K11
i j = C0

L∫
0

∂2ψi
∂x2

∂2ψ j

∂x2 b(x)dx

K12
i j = −C1

L∫
0

∂2ψi
∂x2

∂2ψ j

∂x2 b(x)dx

K22
i j = (C2 + D)

L∫
0

∂2ψi
∂x2

∂2ψ j

∂x2 b(x)dx

(24a)

M11
i j = I0

L∫
0

∂ψi
∂x

∂ψ j
∂x b(x)dx

M12
i j = −I1

L∫
0

∂ψi
∂x

∂ψ j
∂x b(x)dx

M22
i j = I0

L∫
0
ψiψ jb(x)dx + I2

L∫
0

∂ψi
∂x

∂ψ j
∂x b(x)dx

(24b)
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The natural frequencies of the orthotropic nanostructure are, finally, determined through the
enforcement of the following condition:

det
[
K−ω2M

]
= 0 (25)

4. Numerical Results and Discussion

In this section, we present the results of different numerical examples, selected to test the
accuracy of the formulation with respect to the available literature, and the sensitivity of the free
vibration response to the boundary conditions, length-scale parameter, non-uniformity parameter,
or size dimension.

For validation purposes, we compute the first five natural frequencies for a S-S three-layer
[90◦,0◦,90◦] microbeam, with the following geometrical properties: b = h = 25× 10−6 m, L = 200 × 10−6 m.
The mechanical properties of the material are assumed as in Reference [35], i.e., E2 = 6.9 × 109 Pa, E1

= 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2, ν12 = ν13 = ν23 = 0.25, ρ = 1.578 kg/m3. Table 1 summarizes
the results for the first five frequency parameters, and different values of m. As clearly visible in
Table 1, m = 5 represents a convergence point for the numerical computation of the natural frequencies.
This value of m is assumed hereafter for the parametric study.

Table 1. Convergence study for first five natural frequency of the S-S three-layer [90◦,0◦,90◦]
Euler–Bernoulli beam.

m ω1 ω2 ω3 ω4 ω5

classic

2 5.285 21.142 - - -
3 5.285 21.142 47.569 - -
4 5.285 21.142 47.569 84.566 -
5 5.2854 21.142 47.569 84.566 132.13

Ref. [35] 5.28539 21.1416 47.5686 84.5663 132.135

l = 0.1

2 5.2857 21.143 - - -
3 5.2857 21.143 47.571 - -
4 5.2857 21.143 47.571 84.57 -
5 5.2857 21.143 47.571 84.57 132.14

Ref. [35] 5.28544 21.1417 47.569 84.5671 132.136

A further comparative example is chosen to assess the capabilities of the present formulation,
namely, an isotropic S-S uniform nanobeam, as proposed originally by Chen and Li [35]. The first
five natural frequencies computed with our formulation are compared to predictions by Chen and
Li [35], as summarized in Table 2, for a different length-scale parameter. A good agreement with
the available literature is observed, which confirms the accuracy of the proposed formulation, along
with a general increase of each natural frequency for an increased length-scale parameter. Small
differences between our predictions and the ones in Reference [35] are noticed for an increased length
scale parameter. This is mainly related to the different basic assumptions considered in the two works,
namely a Euler–Bernoulli beam model instead of a Timoshenko-based formulation. In agreement with
findings by Reference [35], it seems that an Euler–Bernoulli-based formulation gets higher natural
frequencies than a Timoshenko-based theory.
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Table 2. Comparative study for the first five natural frequency of the S-S three-layer [90◦,0◦,90◦]
Euler–Bernoulli beam.

ω1 ω2 ω3 ω4 ω5

l = 0.1 5.2857 21.143 47.571 84.57 132.14
Ref [35] 5.28544 21.1417 47.569 84.5671 132.136

l = 1 5.3105 21.242 47.795 84.968 132.76
Ref [35] 5.28959 21.1583 47.6063 84.6334 132.24

l = 3 5.5074 22.03 49.566 88.118 137.68
Ref [35] 5.32304 21.2922 47.9073 85.1685 133.076

After the preliminary validation, we perform a parametric analysis of the vibration response for
an orthotropic non-uniform nanobeam under two different sets of boundary condition, while including
the effects of size, length-scale and non-uniformity. A three layer [90◦,0◦,90◦] non-uniform nanobeam
is considered, with h = 10 nm, b0 = 2 h, different values of L, and material properties stemming from
Reference [23], i.e., E2 = 13.67 GPa, E1 = 37.41 GPa, G12 = 6.03 GPa, G13 = 6.03 GPa, G23 = 6.67 GPa,
ν12 = ν13 = ν23 = 0.3, ρ = 1938.9 kg/m3.

Tables 3 and 4 illustrate the main results in terms of natural frequency for different size ratios, L/h,
non-uniformity parameter, Nh, length scale, l, for a S-S and C-F non-uniform nanobeam, respectively.
Based on these tables, an increased length scale and a decreased size ratio leads to an overall increase
of the natural frequencies. A non-monotonic behavior, instead, is exhibited by the natural frequencies
for an increasing non-uniformity Nh, while keeping fixed the other parameters. In Figure 2, we plot the
variation of the first and the fifth natural frequencies for a three-layer [90◦,0◦,90◦] Euler-Bernoulli S-S
non-uniform beam with size ratio L/h, and fixed values of h = 10 nm, b0 = 2 h, Nh = 0.5. The NMCST
under the assumption of l = 1 nm is here compared to the classical approach (i.e., for l = 0 nm). As clearly
shown in Figure 2, the classical theory predicts lower values of natural frequencies with respect to the
NMCST here proposed, whereby, both natural frequencies (ω1, ω5) decrease for increased geometrical
lengths of nanobeams. The parametric study is thus repeated for a C-F nanobeam, whose results are
plotted in Figure 3 in terms of the natural frequencies ω1, ω5, while assuming the same geometrical
and mechanical parameters as in the previous investigation. Additionally, in this case, the NMCST
yields higher values of natural frequencies compared to a classical approach. The main difference
between the two approaches, in this case, is less pronounced because of the lower deformability of the
C-F nanobeam compared to a S-S boundary condition.
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Table 3. Natural frequency of the S-S three-layer [90◦,0◦,90◦] Euler–Bernoulli beams.

L/h Nh l
Natural Frequency (MHz)

ω1 ω2 ω3 ω4 ω5

2

0

0 204.5367 818.1467 1840.83 3272.587 5113.417
0.1 204.6292 818.5169 1841.663 3274.067 5115.730
0.5 206.8380 827.3519 1861.542 3309.408 5170.949
1 213.5932 854.3726 1922.338 3417.491 5339.829

0.5

0 202.5349 820.068 1844.083 3276.601 5136.471
0.1 202.6265 820.4391 1844.917 3278.083 5138.795
0.5 204.8136 829.2948 1864.831 3313.467 5194.263
1 211.5027 856.379 1925.735 3421.682 5363.904

1

0 196.6233 825.9774 1853.967 3289.191 5205.040
0.1 196.7123 826.3511 1854.806 3290.679 5207.395
0.5 198.8356 835.2707 1874.827 3326.199 5263.603
1 205.3294 862.5501 1936.057 3434.83 5435.509

5

0 73.49691 1116.877 2251.706 3894.916 7160.348
0.1 73.53017 1117.382 2252.725 3896.679 7163.588
0.5 74.32385 1129.443 2277.041 3938.739 7240.911
1 76.75122 1166.33 2351.407 4067.376 7477.394

10

0

0 8.181467 32.72587 73.63320 130.9035 204.5367
0.1 8.185169 32.74067 73.66652 130.9627 204.6292
0.5 8.273519 33.09407 74.46167 132.3763 206.8380
1 8.543726 34.17491 76.89354 136.6996 213.5932

0.5

0 6.365682 34.93440 77.13089 135.8051 226.6082
0.1 6.368563 34.95020 77.16579 135.8666 226.7108
0.5 6.437305 35.32745 77.99871 137.3331 229.1579
1 6.647543 36.48122 80.54610 141.8183 236.6420

1

0 2.939876 44.67508 90.06824 155.7967 286.4139
0.1 2.941207 44.69529 90.109 155.8672 286.5435
0.5 2.972954 45.17773 91.08163 157.5496 289.6364
1 3.070049 46.6532 94.05629 162.695 299.0958

5

0 0.000810 562.0597 709.8402 1031.638 2059.529
0.1 0.000553 562.0737 709.3336 1030.639 2059.634
0.5 0.000677 568.0907 716.7862 1041.347 2081.615
1 0.000698 587.0221 741.525 1077.762 2150.972

20

0

0 2.045367 8.181467 18.40830 32.72587 51.13417
0.1 2.046292 8.185169 18.41663 32.74067 51.15730
0.5 2.068380 8.273519 18.61542 33.09408 51.70949
1 2.135932 8.543726 19.22338 34.17491 53.39829

0.5

0 0.734969 11.16877 22.51706 38.94916 71.60348
0.1 0.735302 11.17382 22.52725 38.96679 71.63588
0.5 0.743238 11.29443 22.77041 39.38739 72.40911
1 0.767512 11.66330 23.51407 40.67376 74.77394

1

0 0.065155 25.58565 39.19111 62.86697 125.5065
0.1 0.065185 25.59722 39.20884 62.89541 125.5632
0.5 0.065888 25.87351 39.63205 63.57429 126.9186
1 0.068040 26.71853 40.92641 65.65059 131.0636

5

0 0.000225 8.265543 424.5829 633.7069 1295.298
0.1 0.000162 7.726310 425.0330 634.0109 1295.894
0.5 0.000228 15.30474 429.4644 640.8440 1309.876
1 1.66 × 10−5 21.26517 443.7296 661.7879 1352.664
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Table 4. Natural frequency of the C-F three-layer [90◦,0◦,90◦] Euler–Bernoulli beams.

L/h Nh l
Natural Frequency (MHz)

ω1 ω2 ω3 ω4 ω5

2

0

0 72.88189 457.6423 1290.903 2536.334 4475.916
0.1 72.91487 457.8494 1291.487 2537.481 4477.941
0.5 73.70190 462.7914 1305.428 2564.871 4526.275
1 76.10896 477.9059 1348.062 2648.638 4674.101

0.5

0 53.20652 417.1568 1258.329 2512.959 4589.336
0.1 53.23060 417.3456 1258.898 2514.097 4591.412
0.5 53.80516 421.8504 1272.486 2541.234 4640.972
1 55.56241 435.6277 1314.045 2624.229 4792.543

1

0 38.22259 379.7801 1234.672 2504.318 4735.686
0.1 38.23989 379.9519 1235.231 2505.451 4737.829
0.5 38.65265 384.0531 1248.564 2532.495 4788.969
1 39.91502 396.5960 1289.341 2615.205 4945.374

5

0 1.919722 145.8122 1431.766 3013.441 6965.49
0.1 1.920590 145.8782 1432.414 3014.804 6968.642
0.5 1.941321 147.4528 1447.876 3047.346 7043.861
1 2.004724 152.2685 1495.162 3146.870 7273.909

10

0

0 2.915276 18.30569 51.63613 101.4534 179.0366
0.1 2.916595 18.31398 51.65949 101.4993 179.1176
0.5 2.948076 18.51166 52.21710 102.5948 181.0510
1 3.044358 19.11623 53.92248 105.9455 186.9640

0.5

0 0.523811 11.20938 48.88157 102.9362 214.2888
0.1 0.524048 11.21445 48.90369 102.9828 214.3857
0.5 0.529704 11.33550 49.43155 104.0944 216.6998
1 0.547004 11.70571 51.04596 107.4941 223.7771

1

0 0.076789 5.832488 57.27066 120.5376 278.6196
0.1 0.076824 5.835127 57.29657 120.5922 278.7457
0.5 0.077653 5.898111 57.91503 121.8938 281.7544
1 0.080189 6.090739 59.80650 125.8748 290.9564

5

0 9.66 × 10−5 0.014512 591.1270 855.0637 1978.064
0.1 0.000138 0.014404 591.3888 855.4374 1978.953
0.5 5.77 × 10−5 0.014593 597.7759 864.6805 2000.319
1 0.000215 0.015137 617.2996 892.9213 2065.648

20

0

0 0.728819 4.576423 12.90903 25.36334 44.75916
0.1 0.729149 4.578494 12.91487 25.37481 44.77941
0.5 0.737019 4.627914 13.05428 25.64871 45.26275
1 0.761090 4.779059 13.48062 26.48638 46.74101

0.5

0 0.019197 1.458122 14.31766 30.13441 69.65490
0.1 0.019206 1.458782 14.32414 30.14804 69.68642
0.5 0.019413 1.474528 14.47876 30.47346 70.43861
1 0.020047 1.522685 14.95162 31.46870 72.73909

1

0 0.000505 0.257315 28.78270 50.96007 123.7777
0.1 0.000505 0.257432 28.79573 50.98313 123.8337
0.5 0.000511 0.260210 29.10654 51.53344 125.1703
1 0.000528 0.268709 30.05715 53.21649 129.2583

5

0 3 × 10−5 0.000409 47.09510 652.2625 1516.248
0.1 6.75 × 10−5 0.000338 47.13148 652.5578 1516.935
0.5 3.73 × 10−5 0.000278 47.53909 659.6012 1533.308
1 3.23 × 10−5 0.000304 49.23231 681.1439 1583.385
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In Figure 4a,b, we plot the first natural frequency vs. the non-uniformity parameter Nh, for the
S-S and C-F non-uniform nanobeam, along with different length scale parameters, namely, l = 0; 0.1;
0.5; 1, and a fixed geometry h = 10 nm, b0 = 2h, L/h = 10. As shown in Figure 4, for both sets of
boundary conditions, the natural frequency decreases with an increased non-uniformity parameter
(see the zoom-ups of Figure 4). Moreover, the natural frequency decreases monotonically between
Nh = 0 and Nh = 3 or 2, depending on the selected boundary condition, with a drastic reduction up
to a null asymptotic value. A monotone increase of the natural frequency is also observed for an
increasing length scale parameter l, at least for lower values of Nh, whose variation is finally visualized
in Figure 5a,b, for a S-S- and C-F nanostructure, respectively. Based on the last results, it seems that
uniform beams are more sensitive to the length parameter, compared to tapered geometries, which
could be accounted for design purposes of nanodevises.
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5. Conclusions

In this work, we employ a novel modified couple stress theory for studying the vibration response
of laminated composite non-uniform beams under two different boundary conditions. The problem
is tackled with the Rayleigh–Ritz formulation, here proposed as promising numerical approach to
predict the size-dependent responses of micro composite beams. This is verified through a comparative
study with the available literature, at least for uniform geometries. A parametric investigation is,
thus, repeated systematically to check for the sensitivity of the vibration behavior for non-uniform
nanobeams with different geometrical shape, non-uniformity parameter, length scale parameter, and
boundary condition. The numerical outcomes show that the length-to-thickness ratio, non-uniformity,
and boundary condition, play a key role in the vibration response of the nanostructure, compared to
the length-scale sensitivity. More specifically, an increased length scale and a decreased size ratio yields
an overall increase in the natural frequencies, along with an increased stiffness. As expected, a classical
theory predicts lower values of natural frequencies with respect to the NMCST here proposed, whereby,
an increased geometrical length of the nanobeams yields an overall decrease in the natural frequencies
and structural stiffness. In addition, an increased non-uniformity in the beam gets lower natural
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frequencies. This means that the non-uniformity parameter of a tapered beam could enable a tailorable
stiffness and vibration response, depending on the design requirements. These conclusions could
be of interest for the nanotechnology community, as well as for design purposes and optimization
processes of many engineering nanodevices, nanoelectronics, or nanosensors. The basic notions of
the formulation here proposed, could be also used to treat other mechanical aspects, such as buckling
problems or fracture mechanics problems of tapered beams.
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