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Abstract: In our natural products screening program for mosquitoes, we tested essential oils extracted
from different plant parts of Magnolia grandiflora L. for their insecticidal and biting deterrent activities
against Aedes aegypti. Biting deterrence of seeds essential oil with biting deterrence index value of
0.89 was similar to N,N-diethyl-3-methylbenzamide (DEET). All the other oils were active above
the solvent control but the activity was significantly lower than DEET. Based on GC-MS analysis,
three pure compounds that were only present in the essential oil of seed were further investigated to
identify the compounds responsible for biting deterrent activity. 1-Decanol with PNB value of 0.8 was
similar to DEET (PNB = 0.8), whereas 1-octanol with PNB value of 0.64 showed biting deterrence
lower than 1-decanol and DEET. The activity of 1-heptanol with PNB value of 0.36 was similar to the
negative control. Since 1-decanol, which was 3.3% of the seed essential oil, showed biting deterrence
similar to DEET as a pure compound, this compound might be responsible for the activity of this oil.
In in vitro A & K bioassay, 1-decanol with MED value of 6.25 showed higher repellency than DEET
(MED = 12.5). Essential oils of immature and mature fruit showed high toxicity whereas leaf, flower,
and seeds essential oils gave only 20%, 0%, and 50% mortality, respectively, at the highest dose of
125 ppm. 1-Decanol with LC50 of 4.8 ppm was the most toxic compound.

Keywords: Magnoliaceae; GC-FID; GC-MS; mosquito control; 1-decanol; 1-octanol; larvicidal activity;
deterrent; biopesticides

1. Introduction

Insect disease vectors transmit many disease pathogens and are important in global public health.
Aedes aegypti (L.) and Ae. albopictus (Skuse) are the primary and secondary vectors of Zika and dengue
as well as other viruses [1]. The use of synthetic insecticides in mosquito control has proven to be one
of the major approaches for the prevention and reduction of mosquito-borne disease incidence [2].
Insect repellents also play an important role in the reduction of disease incidence by preventing infected
mosquitoes from biting humans [3]. Moreover; repellents have always been used against host-seeking
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vectors as they provide immediate; localized; personal protection. N,N-Diethyl-3-methylbenzamide
(DEET) has been in use for more than 60 years and is the gold standard to which all repellents are
measured in the marketplace [4]. The discovery of novel insecticides and repellents against disease
vectors from non-toxic and biodegradable plant sources continues to be the focus of recent research
efforts [5–8].

Magnolia grandiflora L. (Magnoliaceae) is a large evergreen tree native to North America [9] that
has medicinal and ornamental values. Medicinal use of various parts of M. grandiflora is reported
in American Indian medicine and also listed as a bitter tonic and antimalarial. Several biologically
active compounds have been reported from Magnolia species [10–12]. As a part of our natural product
screening program for mosquitoes, we tested essential oils from various parts of M. grandiflora for their
larvicidal and biting deterrent activities. This paper reports insecticidal and biting deterrent activities
of essential oils and select pure compounds from various parts of M. grandiflora against yellow fever
mosquito, Aedes aegypti.

2. Results

Water-distilled essential oils of the leaves, flowers, immature fruits, mature fruits, and seeds of
M. grandiflora were analyzed by GC-FID and GC-MS. Chemical compositions of the essential oils and
total ion current (TIC) chromatogram are given in Table 1 and Figure S1 (Suplementary Material).
Chemical profiles of the oils varied among essential oils. Sesquiterpene hydrocarbons (31.5%) were
dominant in the seeds and immature fruit essential oils (32%) whereas the leaf and flower oils were
rich in monoterpene hydrocarbons (30.9% and 43.8%, respectively). Oxygenated monoterpenes (36.9%)
were the major components of the mature fruit oil followed by monoterpene hydrocarbons (15.2%),
sesquiterpene hydrocarbons (15.5%), and oxygenated sesquiterpenes (16.2%). The α- and β-pinenes
and 1,8-cineole were the major contents of leaf, flower, immature fruit, and mature fruit whereas these
compounds were either very low or absent in seed essential oil (Table 1). The seed oil was differentiated
from other essential oils because of the presence of fatty acid; hexadecanoic acid (2.9%) and fatty acid
esters (2.2%). The saturated aliphatic esters (10.9%) and two phenolic compounds; methyl chavicol
(2.6%) and eugenol (1.3%) were also only found in the seed essential oil. Major compounds, α- and
β-pinenes and 1,8-cineole present in leaf, flower, immature fruit, and fruit essential oils were either
in very low concentration or absent in seed essential oil (Table 1). Fatty acids and esters (5.1%) were
high and aliphatic esters (10.9%) were present only in the seed essential oil. Hexadecanoic acid (2.9%),
1-decanol (3.3%), 1-octanol (6.2%), and 1-heptanol were also present only in the seed essential oil.

Table 1. The chemical composition of essential oils of the Magnolia grandiflora.

RRI Compound Leaf (%) Flower
(%)

Immature
Fruit (%)

Mature
Fruit (%) Seed (%) IM

1032 α-Pinene 6.3 8.0 4.8 3.8 1.0 RRI, MS

1063 Ethyl 2-methylbutyrate - - - - 1.5 MS

1076 Camphene 0.1 0.7 1.1 1.6 - RRI, MS

1100 Isobutyl isobutyrate - - - - 0.7 MS

1118 β-Pinene 23.0 32.3 12.7 6.9 1.2 RRI, MS

1132 Sabinene - 0.3 - - - RRI, MS

1151 Propyl 2-methylbutyrate - - - - 1.0 MS

1174 Myrcene - 0.4 - - 0.6 RRI, MS

1176 α-Phellandrene - - - - 1.1 RRI, MS

1185 Isobutyl 2-methylbutyrate - - - - 2.4 MS

1198 Isobutyl 3-methylbutyrate - - - - 1.9 MS

1203 Limonene 1.1 1.0 1.7 1.4 1.0 RRI, MS

1213 1,8-Cineole 4.1 4.4 4.5 12.2 - RRI, MS

1218 β-Phellandrene - - - - 7.3 RRI, MS

1241 Butyl-2-methylbutyrate - - - - 1.3 MS
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Table 1. Cont.

RRI Compound Leaf (%) Flower
(%)

Immature
Fruit (%)

Mature
Fruit (%) Seed (%) IM

1246 (Z)-β-Ocimene - 0.8 - - - MS

1280 p-Cymene 0.4 0.3 0.8 1.3 5.5 RRI, MS

1290 Terpinolene - - 0.5 0.2 - RRI, MS

1286 2-Methyl butyl 2-methylbutyrate - - - - 1.3 MS

1299 2-Methylbutyl isovalerate - - - - 0.8 MS

1429 Perillene - - - - 0.4 MS

1450 trans-Linalool oxide (Furanoid) - 0.8 - - - MS

1452 α,p-Dimethylstyrene 0.2 - - 0.3 - MS

1463 1-Heptanol - - - - 0.5 MS

1493 α-Ylangene - - - - 0.7 MS

1497 α-Copaene - - 0.2 0.2 1.6 RRI, MS

1532 Camphor - - - 0.3 - RRI, MS

1553 Linalool 0.7 4.7 0.5 0.8 - RRI, MS

1562 1-Octanol - - - - 6.2 MS

1586 Pinocarvone 0.3 - 0.3 1.8 - RRI, MS

1591 Bornyl acetate - 0.2 2.8 4.1 0.4 RRI, MS

1594 trans-β-Bergamotene 0.3 1.2 0.7 0.4 1.7 MS

1600 β-Elemene 13.6 7.7 12.9 5.7 - MS

1611 Terpinen-4-ol 0.8 0.6 1.1 0.8 - RRI, MS

1612 β-Caryophyllene 3.4 1.1 7.9 2.9 8.8 RRI, MS

1648 Myrtenal 1.1 0.9 0.7 4.0 - MS

1661 trans-Pinocarvyl acetate 3.8 3.3 1.5 2.3 - MS

1669 Sesquisabinene - - - - 1.7 MS

1670 trans-Pinocarveol 0.9 0.8 0.5 2.4 - RRI, MS

1687 α-Humulene 0.8 0.4 1.4 0.6 1.0 RRI, MS

1687 Methyl chavicol - - - - 2.6 RRI, MS

1688 Selina-4,11-diene 0.4 0.3 1.1 - - MS

1695 (E)-β-Farnesene - - - - 0.4 MS

1704 Myrtenyl acetate - - - - - MS

1704 γ-Muurolene - - 0.6 0.5 2.7 MS

1706 α-Terpineol 2.4 2.5 5.1 3.9 - RRI, MS

1719 Borneol 0.2 - 0.7 1.2 - RRI, MS

1725 Verbenone - - - 0.7 - RRI, MS

1726 Germacrene D - 0.3 - - - RRI, MS

1740 α-Muurolene - - - - 1.6 MS

1742 Geranial - 0.5 - - - RRI, MS

1742 β-Selinene 1.5 1.2 2.9 1.6 0.9 MS

1744 α-Selinene 1.4 0.9 2.3 1.5 0.7 MS

1766 1-Decanol - - - - 3.3 MS

1773 δ-Cadinene - 0.3 1.3 0.3 4.0 MS

1776 γ-Cadinene - 0.1 - 0.5 2.0 MS

1784 (E)-α-Bisabolene 0.4 0.6 1.2 0.4 0.8 MS

1799 Cadina-1,4-diene - - - - 0.3 MS

1804 Myrtenol 1.5 1.4 0.5 2.2 - MS

1808 Nerol - 0.1 - - - RRI, MS

1849 Calamenene - - 0.5 0.4 1.8 MS

1857 Geraniol - 2.5 - - - RRI, MS

1864 p-Cymen-8-ol 1.0 0.4 - 0.6 - RRI, MS

1872 cis-Myrtanol - tr - - - MS

1879 trans-Myrtanol - 0.2 - - - MS
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Table 1. Cont.

RRI Compound Leaf (%) Flower
(%)

Immature
Fruit (%)

Mature
Fruit (%) Seed (%) IM

1941 α-Calacorene - - 0.2 0.2 0.9 MS

1948 trans-Jasmone - 1.0 - - - MS

2008 Caryophyllene oxide 3.9 0.9 1.8 7.2 1.9 RRI, MS

2029 Perilla alcohol - - - 0.3 - MS

2050 (E)-Nerolidol 1.3 1.7 0.6 0.4 1.2 RRI, MS

2071 Humulene epoxide-II 0.6 0.2 0.3 1.2 - MS

2080 Junenol (=Eudesm-4(15)-en-6-ol) - 0.2 - - - MS

2100 Heneicosane - 0.5 - - - RRI, MS

2186 Eugenol - - - - 1.3 RRI, MS

2187 T-Cadinol 0.3 0.5 0.7 0.2 0.3 MS

2209 T-Muurolol 0.3 0.8 0.9 0.7 0.1 MS

2226 Methyl hexadecanoate 0.4 - 0.6 - 0.3 RRI, MS

2219 δ-Cadinol - - 0.2 - - MS

2255 α-Cadinol 0.3 1.3 1.4 0.7 0.3 MS

2256 Cadalene - - - - 0.7 MS

2262 Ethyl hexadecanoate - - - - 0.7 MS

2269 Guaia-6,10(14)-dien-4β-ol 0.3 - 0.6 0.7 - MS

2273 Selin-11-en-4α-ol 1.0 1.8 4.0 1.5 - MS

2300 Tricosane - 0.6 - - - RRI, MS

2316 Caryophylla-2(12),6(13)-dien-5β-ol
(=Caryophylladienol I) - - - 1.4 - MS

2353 Chavicol - - - - 0.7 MS

2369 (2E,6E)-Farnesol - 2.3 - - - MS

2389 Caryophylla-2(12),6-dien-5β-ol
(=Caryophyllenol I) - - - 1.8 - MS

2456 (Z)-9-Methyl octadecanoate
(=Methyl oleate) - - 1.7 - 0.5 RRI, MS

2509 (Z.Z)-9,12-methyl octadecadienoate
(=Methyl linoleate) - - - - 0.7 RRI, MS

2931 Hexadecanoic acid - - 0.5 - 2.9 RRI, MS

Monoterpene hydrocarbons 30.9 43.8 21.6 15.2 17.7

Oxygenated monoterpenes 16.8 23.3 18.2 36.9 0.4

Sesquiterpene hydrocarbons 21.4 13.5 32.0 15.5 31.5

Oxygenated Sesquiterpenes 8.4 10.3 11.7 16.2 4.6

Fatty acids and their esters 0.4 - 2.8 - 5.1

Aliphatic esters - - - - 10.9

others 0.2 2.1 - 0.3 15.0

Total 78.1 93.0 86.3 84.1 85.2

RRI: relative retention indices calculated against n-alkanes; %: calculated from FID data; tr: trace (< 0.1 %); IM:
identification method based on the relative retention indices (RRI) of authentic compounds on the HP Innowax
column; MS, identified based on computer matching of the mass spectra with those of the Wiley and MassFinder
libraries and comparison with literature data. % calculated from FID data.; -: not detected.

The essential oils obtained from five different plant parts of M. grandiflora were investigated
for their biting deterrent activity against Ae. aegypti. All the essential oils showed biting deterrence
above the negative control. Seeds essential oil produced significantly higher biting deterrence than the
essential oils from the other parts (Figure 1). Seed essential oil with high minimum effective dose BDI
value (0.89) showed biting deterrent activity similar to DEET whereas all the other essential oils had
activity lower than DEET. 1-Decanol with PNB value of 0.8 showed biting deterrence similar to DEET
(PNB = 0.8) whereas the activity of 1-octanol was above negative control but lower than DEET and
1-decanol (Figure 2).
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Figure 1. Mean BDI (± SEM) values of the essential oils from different parts of M. grandiflora against Ae.
aegypti. All the essential oils were tested at 10 µg/cm2 whereas DEET (N,N-diethyl-3-methylbenzamide) was
tested at 25 nmol/cm2 and ethanol a solvent control. A BDI value greater than 0 indicates biting deterrence
relative to ethanol and a BDI value not significantly different from 1 shows deterrence similar to DEET.
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Figure 2. Mean proportion not biting values of the essential oils from different parts of M. grandiflora
against Ae. aegypti. Essential oils were tested at 10µg/cm2 while DEET at 25 nmol/cm2 was tested as
a positive control. Mean proportions sharing the same letter are not significantly different.
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Biting deterrence of 1-heptanol was similar to the negative control. 1-Decanol with 3.3% of seed
essential oil appears to be the major compound responsible for the biting deterrent activity of the seed
essential oil. In in vitro A & K bioassay, MED value of 1-decanol (6.25) was lower than DEET (12.5)
which indicated better repellency of 1-decanol than DEET (Figure 3).
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Figure 3. Data are %age (mean ± SEM) females biting. Minimum effective dosage (MED) values in this
bioassay were ≤ 1% biting in 1 min which is two females out of 200 in this cage.

The toxicity of essential oils from M. grandiflora against 1-d-old larvae of Ae. aegypti is given in
Table 2. In initial screening, essential oils of immature and mature fruits showed high toxicity whereas
leaf, flower, and seeds essential oils gave only 20%, 0%, and 50% mortality, respectively, at the highest
screening dose of 125 ppm. Therefore dose-response bioassays were not conducted on leaf, flower,
and seeds essential oils. Immature fruit and mature fruit essential oils with LC50 values of 49.4 and
48.9 ppm, respectively at 24-h post-treatment showed similar toxicity.

Table 2. Toxicity of essential oils from M. grandiflora and its select pure compounds against 1-day-old
Ae. aegypti at 24-h post-treatment.

Essential oil LC50 (95%CI) * LC90 (95%CI) χ2 DF

Immature fruit 49.4 (39.4–64.2) 135.9 (96.5–244.2) 43.0 48
Mature fruit 48.9 (42.3–56.9) 116.9 (94.6–158.3) 83.3 48
1-Decanol 4.8 (4.2–5.5) 10.2 (8.5–13.2) 83.2 48
1-Octanol 34.3 (30.3–38.7) 63.9 (54.4–80.5) 73.7 48

Leaf 20% **
Flower 0%

Seed 50%

* LC50 and LC90 values are in ppm and 95% C.I are confidence intervals. ** Leaf, flower and seeds essential oils gave
only 20%, 0 and 50% mortality, respectively, at the highest dose of 125 ppm.

Pure compounds 1-decanol, 1-octanol, and 1-heptanol, present in seed essential oil were also
screened for larvicidal activity. Both 1-decanol and 1-octanol were active in screening bioassays whereas
1-heptanol did not show any mortality at the highest dose of 125 ppm. 1-Decanol and 1-octanol were
further evaluated to observe the dose response. 1-Decanol with LC50 of 4.8 ppm was the most toxic
compound followed by 1-octanol (LC50 = 34.3 ppm) at 24-h post-treatment. 1-Decanol was very toxic
(LC50 = 4.8 ppm) as a pure compound, the seed essential oil that contained 3.3% of this compound
showed 50% mortality at the highest dose of 125 ppm. 1-Decanol amounted to be 4.07 ppm as a part of
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seed essential oil at 125 ppm which caused mortality similar to the pure compound. 1-Decanol and
1-octanol amounted to be 4.07 and 7.75 ppm, respectively, as a part of the essential oil dose of 125 ppm.
Since the toxicity of 1-octanol as a pure compound was low, the main compound responsible for the
toxicity of the seed essential oil appears to be 1-decanol.

3. Discussion

Schuhly et al. [13] reported β-elemene as the major compound in the fruit essential oil of M.
grandiflora which corroborates the finding of this study having β-elemene (6–14%) in all the essential
oils of M. grandiflora except seed oil. Guerra-Boone et al. [14] reported bornyl acetate (20.9%) as the
major compound in M. grandiflora leaf oil, however, we did not detect this compound in the leaf oil.
Garg and Kumar [15] reported β-caryophyllene as the major compound (34.8%) in flower essential
oil whereas only a small amount (1.1%) was detected in the present study. Farag and Al-Mahdy [16]
reported variation in the contents of M. grandiflora flower oil volatiles obtained through headspace
and water distillation techniques indicating the effects of the isolation technique on the yield of
different compounds. Such differences in chemical compositions of essential oils are expected and
can be attributed to many factors including geographic location, genetic factors, climate, crop stage,
harvesting time, and processing method [17,18].

In our previous studies, some of the compounds that were present in these essential oils
exhibited very insignificant biting deterrence. α-Phellandrene (BDI = 0.52), (+)-α-pinene (BDI = 0.47),
(-)-α-pinene (BDI = 0.41), (+)-β-pinene (BDI = 0.57), (-)-β-pinene (BDI = 0.51), p-cymene (BDI = 0.48),
trans-sabinene hydrate (BDI = 0.61) showed biting deterrent activity lower than DEET. β-caryophyllene
and caryophyllene oxide with BDI values of 0.54 and 0.66, respectively, were also significantly lower
than DEET at 25 nmol/cm2 and these two sesquiterpenes also did not repel mosquitoes up to the highest
dose of 1.5 mg/cm2 in cloth patch assay [6,19–22]. Hexadecanoic acid that was only present in seed
essential oil was reported to have biting deterrence lower (PNB = 0.72) than DEET [23]. In our previous
study, we found that mid-chain length acids (C10:0 to C13:0) showed the highest biting deterrent activity
against Ae. aegypti as compared to short-chain length acids (C6:0 to C9:0) [22]. The current study
reveals similar pattern of medium chain length fatty alcohol (C10:0) had higher biting deterrent activity
than short-chain length alcohol (C8:0). However, we shall work on this hypothesis and confirm the
activity toward short, med, and long-chain fatty alcohols. Many methylbutyrates present in the seed
essential oil were tested in our screening program and found not active as biting deterrents (Ali
personal communications). Since most of the major compounds that were present only in seed essential
oil did not show any significant activity, 1-decanol might be the main compound responsible for the
biting deterrent activity of M. grandiflora seed essential oil.

The toxicity of many natural compounds present in plant essential oils against mosquitoes has been
reported in the literature. α-Pinene (LC50 = 49.5 ppm), β-pinene (LC50 = 35.9 ppm), β-caryophyllene
(LC50 = 26.0 ppm), and caryophyllene oxide (LC50 = 29.8 ppm) were active as larvicides against Ae.
aegypti whereas 1,8-cineole did not show any mortality at the highest screening dose of 125 ppm [19,23].
Monoterpenes that were present in variable concentrations in these essential oils showed larvicidal
activity. These higher percentages of monoterpenes (α- and β-pinenes) in combination with other
compounds may be responsible for the high toxicity of immature- and mature fruit essential oils.
We will further explore other compounds present in M. grandiflora essential oils for their potential as
larvicides against mosquitoes. Ethanolic extracts of sarcotesta of the seeds of M. dealbata were reported
to have 96.4% mortality at 0.1 mg/mL against the Mexican fruit fly (Anastrepha ludens Loew) whereas
the extracts from the other parts were inactive [24].
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4. Materials and Methods

4.1. Chemicals

Individual compounds such as 1-decanol (CAS # 112-30-1), 1-octanol (CAS# 111-87-5),
and 1-heptanol (CAS # 111-70-6) were obtained from the National Center for Natural Products
Research (NCNPR) Repository of The University of Mississippi, University, MS, USA Repository.
These compounds were previously purchased from Sigma-Aldrich Co., St. Louis, MO, USA.

4.2. Plant Materials

Whole samples of leaves, flowers, immature and mature fruits, and seeds (Figure 4) were freshly
collected from an identified M. grandiflora tree at the University of Mississippi campus in 2018.
Voucher specimens of all the samples—leaves (NCNPR # 20286), stem-bark (# 20874), flowers (#
20316), immature fruit (# 20871), mature fruit with seeds removed (# 20872), and seeds (# 20873)—were
deposited in the Repository of Botanicals at NCNPR, University of Mississippi.
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Figure 4. Study material. A: flowers; B: leaves, immature fruits, mature fruits and seeds. Photos
courtesy of V.R.

4.3. Extraction of Essential Oils

For the extraction of essential oils, leaves, flowers, immature and mature fruits, and seeds of M.
grandiflora were separately subjected to hydrodistillation for 3 h, using a modified Clevenger-type
apparatus. Seeds were crushed in a mortar and pestle before hydrodistillation (Figure 5). The resultant
oils were stored in glass vials at 4 ± 0.5 ◦C with no light. The yields were calculated on a moisture-free
basis for mature fruits, flowers, seeds, immature fruits and leaves at 0.02, 0.06, 0.1, 0.1, 1.5% respectively
whereas there was no oil present in the stem-bark sample.
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Figure 5. Study material. A: Seeds were separated from mature fruits; B: seeds were prepared and
gently crushed in a mortar and pestle (C), and were subsequently hydrodistilled. Photos courtesy of
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4.4. GC-MS Analysis

The GC-MS analysis was carried out with an Agilent 5975 GC-MSD system Agilent 5975 (SEM Ltd.,
Istanbul, Turkey). Innowax FSC column (60 m× 0.25 mm, 0.25 µm film thickness) was used with helium
as the carrier gas (0.8 mL/min). GC oven temperature was kept at 60 ◦C for 10 min and programmed to
220 ◦C at a rate of 4 ◦C/min, and kept constant at 220 ◦C for 10 min and then programmed to 240 ◦C at
a rate of 1 ◦C/min. The split ratio was adjusted at 40:1. The injector temperature was set at 250 ◦C.
Mass spectra were recorded at 70 eV. The mass ranged from m/z 35 to 450.

4.5. GC Analysis

The GC analysis was carried out using an Agilent 6890N GC system Agilent 5975 (SEM Ltd.,
Istanbul, Turkey). The FID detector temperature was 300 ◦C. To obtain the same elution order with
GC-MS, simultaneous auto-injection was done on a duplicate of the same column applying the same
operational conditions. Relative percentage amounts of the separated compounds were calculated
from FID chromatograms. The analysis results are given in Table 1.

Identification of the essential oil components was carried out by comparison of their relative
retention times with those of authentic samples or by comparison of their relative retention index
(RRI) to series of n-alkanes [25,26]. Computer matching against commercial (Wiley GC/MS Library,
MassFinder Software 4.0) and in-house “Başer Library of Essential Oil Constituents” which includes
over 3200 genuine compounds with MS and retention data from pure standard compounds and
components of known oils as.

4.6. Insects

Aedes aegypti used in these studies were from a laboratory colony maintained at the Mosquito
and Fly Research Unit, Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS,
Gainesville, Florida since 1952. We received the eggs and stored them in our laboratory until needed.
Mosquitoes were reared to the adult stage by feeding the larvae on a larval diet of 2% slurry of 3:2
beef liver powder (now Foods, Bloomingdale, Illinois) and Brewer’s yeast (Lewis Laboratories Ltd.,
Westport, CT, USA). The eggs were hatched and reared to the pupal stage in an environment-controlled
room at a temperature of 27 ◦C ± 2 ◦C and 60 ± 10% RH in a photoperiod regimen of 12:12 (L: D) h.
The adults were fed on cotton pads moistened with a 10% sucrose solution placed on the top of screens
of 4-L cages.

4.7. Mosquito Biting Bioassay

Bioassays were conducted using a six-celled in vitro Klun and Debboun (K & D) module bioassay
system developed by Klun et al. [27] for quantitative evaluation of biting deterrent properties of
compounds. The K & D system consists of a six-well reservoir with each of the 4× 3 cm wells containing
6 mL of feeding solution. We used the CPDA-1±ATP solution instead of human blood [22]. CPDA-1 and
ATP preparations were freshly made on the day of the test and contained a green fluorescent tracer dye
(fluorescent water-based tracer “Green”; www.blacklightworld.com) that allowed for the identification
of mosquitoes that were fed on the solution. The squashed mosquitoes were observed under black
light (FEIT, BPESL15T/BLB 13W 120VAC 60Hz 200mA, Ul#E170906) for feeding. DEET (97% purity
N,N-diethyl-3-methylbenzamide) was used as a positive control (Sigma-Aldrich Co., St. Louis, MO,
USA) and ethanol (Fisher Scientific Chemical Co. Fairlawn, NJ, USA) was used as solvent control.
Stock and dilutions of all extracts and DEET were prepared in ethanol. All essential oils were evaluated
at dosages of 10 µg/cm2 and DEET along with the pure compounds was tested at a concentration of
25 nmol/cm2.

The temperature of the solution was maintained at 37 ◦C by using a circulatory bath. The test
compounds and controls were randomly applied to six 4 × 3 cm marked portions of nylon organdy
strip, which was positioned over the six, membrane-covered wells. A six-celled K & D module

www.blacklightworld.com
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containing five 6–15-day-old females per cell was positioned over the six wells, trap doors were opened
and mosquitoes allowed access for 3 minutes, after which they were collected back into the module.
Mosquitoes were squashed and the presence of green dye (or not) in the gut was used as an indicator
of feeding. A replicate consisted of six treatments: four samples, DEET, and ethanol as solvent control.
Five replicates were conducted per day using new batches of mosquitoes in each replication.

4.8. In vitro A & K Repellent Bioassay

Bioassays were conducted using Ali and Khan (A & K) bioassay system developed by Ali et al. [28]
for quantitative evaluation of repellency against mosquitoes. Minimum effective dosage (MED) values
in this bioassay were determined using a method described by Katritzky et al. [29]. Briefly, the bioassay
system consists of a 30 × 30 × 30 cm collapsible aluminum cage having one penal of clear transparent
acrylic sheet with 120 × 35 mm slit through which the blood box containing a removable feeding device
was attached. The top of the blood box had a sliding door used to expose the females to the treatment
during the bioassay. Rectangular areas of 4 × 7.5-cm were marked on the collagen sheet that matched the
measurement of the rectangular liquid reservoirs. Treatments were applied in a volume of 107 µL using
a micropipette. Treated collagen was secured on the feeding reservoir containing the feeding solution
using a thin layer of grease (Dow Coming Corp., Midland, MI, USA). The feeding device was then
pushed inside the blood box and the sliding door was opened to expose the females to the treatment.
The numbers of females landing and biting were recorded visually for 1 min. To ensure proper landing
and biting, we used 3-4 cages at a time and only one treatment replication of individual compounds
was completed in a single cage. The data are presented as %age biting as a function of concentration.
MED is ≤ 1% biting out of 200 females in the cage. A total of five replicates were conducted.

4.9. Larval Bioassay

Bioassays were conducted using the bioassay system described by Pridgeon et al. [30] to determine
the larvicidal activity of essential oils from different parts of Magnolia grandiflora against Ae. aegypti.
Eggs were hatched and larvae were held overnight in the hatching cup in a temperature-controlled
room maintained at a temperature of 27 ± 2 ◦C and 60 ± 10% RH. Five 1-day-old larvae were transferred
in each of 24-well tissue culture plates in a 40–50 µL droplet of water. Total of 50 µL of larval diet (2%
slurry of 3:2 beef liver powder and brewer’s yeast) and 1 mL of deionized water were added to each
well by using a Finnpipette stepper (Thermo Fisher, Vantaa, Finland). All the essential oils and pure
compounds were diluted in DMSO. After the treatment, the plates were swirled in clock-wise and
counter-clockwise motions and front and back and side to side five times to ensure even mixing of the
chemicals. Larval mortality was recorded 24-h post-treatment. Larvae that showed no movement in
the well after manual disturbance were recorded as dead. A series of 4-5 dosages were used in each
treatment to get a range of mortality. Treatments were replicated ten times for each extract/compound.

4.10. Statistical Analyses

Proportion not biting (PNB) was calculated using the procedure described by Ali et al. [22]. As the
K & D module bioassay system can handle only four treatments along with negative and positive
controls to make direct comparisons among more than four test compounds and to compensate
for variation in overall response among replicates, biting deterrent activity was quantified as biting
deterrence index (BDI) [22]. The BDI’s were calculated using the following formula:

[
BDIi, j,k

]
=

 PNBi, j,k − PNBc, j,k

PNBd, j,k − PNBc, j,k


where PNBi,j,k denotes the proportion of females not biting when exposed to test compound i for
replication j and day k (i = 1–4, j = 1–5, k = 1–2), PNBc,j,k denotes the proportion of females not biting
the solvent control “c” for replication j and day k (j = 1–5, k = 1–2) and PNBd,j,k denotes the proportion
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of females not biting in response to DEET “d”(positive control) for replication j and day k (j = 1–5, k =

1–2). This formula adjusts for inter-day variation in response and incorporates information from the
solvent control as well as the positive control.

A BDI value of 0 indicates an effect similar to ethanol, while any value greater than 0 indicates
biting deterrent effect relative to ethanol. BDI values not significantly different from 1, are statistically
similar to DEET. BDI values were analyzed using SAS Proc ANOVA [31]. To determine whether
confidence intervals include the values of 0 or 1 for treatments, Scheffe’s multiple comparison procedure
with the option of CLM was used in SAS [31]. LC50 values for larvicidal data were calculated by using
SAS, Proc Probit [31].

5. Conclusions

The essential oil of M. grandiflora seeds exhibited biting deterrent activity activity similar to
DEET. All the major compounds (concentration >1%) except 1-decanol that were present only in seed
essential oil were not active biting deterrents which indicated that the major activity of this essential oil
might be due to 1-decanol. 1-Decanol also showed promising larvicidal activity. This high activity of
1-decanol indicated the potential of this compound to be developed as an effective mosquito population
management tool. Further studies will be continued to evaluate these natural products in different
formulations in large scale laboratory bioassays and field trials.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/6/1359/s1.
The total ion current (TIC) chromatogram of essential oils of the leaves, flowers, immature fruits, mature fruits
and seeds of Magnolia grandiflora are available as supporting information (Figure S1).
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