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Abstract: Benefits of nanotechnology in agriculture include reduced fertilizer loss, improved seed
germination rate and increased crops quality and yield. The objective of this research was to evaluate
the effects of zinc oxide nanoparticles (ZnO-NPs), at 1500 ppm, on tomato (Solanum lycopersicum
L.) growth. ZnO-NPs were synthetized to produce either spherical or hexagonal morphologies. In
this research, we also studied two application methods (foliar and drench) and nanoparticles’ (NPs)
surface modification with maltodextrin. The results obtained indicate that ZnO-NP-treated tomato
plants significantly increased plant height, stem diameter and plant organs (leaves, stem and root)
dry weight compared to plants without NP treatment.
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1. Introduction

Nanotechnology (NT) is a multidisciplinary science that has gained importance in agriculture and
other economic activities including industries such as the textile, cosmetics, medicine, electronics, food
production and hydraulics industries [1–7]. Nanotechnology in agriculture has attained acceptance in
the last decade because it has arisen as a technological advancement to produce different tools; for
example, nanoproducts can be used as nanosensors for stress detection caused by biotic and abiotic
factors, nanopesticides to increase pesticide efficiency [8] and nanofertilizers (Nf). Nanofertilizers
have been defined as modified fertilizers that may improve crop productivity and quality, as well as
soil fertility [9]. It is known that agriculture faces different challenges that threaten food production
sustainability: climatic change, population increase and the extensive use of chemicals that pollute
soil, water and plants, causing ecological imbalance and directly affecting animals and humans [10].
The particular interest in Nf is to reduce the rate of chemical fertilizers required to achieve increased
crop growth and yield [11].

Zinc (Zn) plays a key role in enzymatic activation for protein synthesis in plants. It is considered
an essential microelement because it is required in small quantities but it is also crucial for vegetative

Molecules 2020, 25, 1282; doi:10.3390/molecules25061282 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0003-2550-2093
https://orcid.org/0000-0002-9148-9205
http://www.mdpi.com/1420-3049/25/6/1282?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25061282
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 1282 2 of 11

development [12]. This nutrient acts as a precursor in phytohormones like auxins, which influence cell
elongation and division, furthermore, Zn is essential for photosynthesis and facilitates carbohydrate
metabolism in plants because Zn stabilizes or activates the proteins involved in these processes [13].

Zinc, along with iron, copper, silver and titanium, is among the metals most commonly used for
the synthesis of nanoparticles (NPs). Numerous studies have reported that plant development and
growth respond to ZnO-NP application and that they have the capacity to inhibit and control some
diseases [11].

Tarafdar mentioned that ZnO-NPs increase the activity of phytase and alkaline and acid
phosphatases, contributing to phosphorus solubilization and plant uptake [14]. The ZnO-NPs
are also reported to (1) increase by 21.6% the number of shoots in chickpea seedlings [15], (2) increase
by 10% the germination of cucumber seeds compared to the control (Zn) [16], (3) stimulate flowering
up to 14 days earlier in onions [17], and (4) increase the length of the main and lateral roots by
17% and 26%, respectively, in tobacco plants treated with ZnO-NPs compared to plants treated with
ZnSO4 [18]. The application of ZnO-NPs to Setaria italica increased seed oil and nitrogen content and
plants exhibited higher water stress tolerance [19]. There are many benefits from the use of ZnO-NPs;
nevertheless, it should be noted that they present a photo-catalytic activity that gives rise to oxidative
reactions in the particle’s surface, unleashing free radicals that promote degradation ([20].

However, ZnO-NPs exhibit stability and dispersion problems due to their nanometric size. NPs
often gather together causing particle agglomeration [21] due to their wide surface area, therefore
presenting poor dispersion [22]. In order to decrease NPs’ agglomeration and oxidation, and to
improve their dispersion and stability, scientists have investigated different methods of NP coating or
surface modification. Several works on ZnO-NPs’ modification or coating with aggregated organic
and inorganic compounds and polymeric matrixes have been reported [23–26]. ZnO-NP modification
with different types of modifiers is summarized in Figure 1.
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Figure 1. Used agents for surface modification of ZnO. PEG = polyethylene glycol; PS = polystyrene;
PMMA = polymethylmethacrylate.

Maltodextrin (MDX) is a polysaccharide derived from starch hydrolysis and its main application
is in the food industry as an artificial sweetener [27]. It is also used in agriculture as a constituent in
some insecticides and acaricides [28]. It has been shown that NPs’ morphology affects their optical,
electrochemical, sensory, thermal and mechanical properties. This morphology effect is a phenomenon
known as magnetic anisotropy [29]. Particle morphology also contributes to the dispersion, degradation
process, stability and compatibility of ZnO-NPs [30]. However, despite the previous investigations
conducted in this field, the ZnO-NPs’ morphology effect, as well as the effect of surface modification,
have not been thoroughly explored.

Mexico is one of the world’s main tomato (Solanum lycopersicum L.) producers and exporter [31].
Tomato nutritional value is high and is appreciated due to its vitamins, minerals, sugars, proteins,
fiber, organic acids and lycopene, an antioxidant with anticarcinogenic qualities [32]. The objective of
this research was to determine the effect of ZnO-NPs with two different morphologies (spherical or
hexagonal) in interaction with MDX modification and two application methods (foliar or drench), on
the growth parameters of tomato plants.
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2. Materials and Methods

2.1. NPs Synthesis

Two ZnO-NPs morphologies (spherical and hexagonal) were prepared using 26.33 g of Zn
(O2CCH3)2, 1700 mL of ethanol and 300 mL of deionized water. Immediately, 5.36 mL of triethanolamine
(TEA) and 1.42 mL of n-propylamine (NPA) were added. The reaction was conducted at 65 ◦C in reflux
and with constant stirring for 6 h (for hexagonal NPs synthesis) or 12 h (for spherical NPs synthesis).
After the system was cooled, the material obtained was rinsed, centrifuged and dried under a vacuum
for 12 h at 80 ◦C. The precipitation method described by Hsieh [33] was used in this research.

2.2. ZnO-NPs’ Surface Modification

The ZnO-NPs’ surface modification was conducted using an MDX:ZnO-NPs 1:1 molar ratio
(1.5 g:1.5 g). Ethanol was used as a dispersion agent. The reaction was carried out at 65 ◦C in reflux
and with constant stirring for 6 h. The system was immediately cooled. The modified ZnO-NPs were
decanted and dried out for 12 h at 80 ◦C for their further analysis.

2.3. ZnO-NPs Characterization

The infrared analysis (FT-IR) was carried out using Nicolet iS50 equipment (Thermo Fisher
Scientific Inc., Madison, WI, USA.) KBr tablets were prepared with ZnO-NPs samples to identify the
ZnO-NPs and the respective modifying agent. The XRD analysis was conducted with a Siemens D-500
diffractometer (SIEMENS, Munich, GER) with CuKα radiation to identify the crystalline phase in
both modified and non-modified ZnO-NPs. The morphology and surface modification of ZnO-NP
samples were carried out through a high-resolution transmission electronic microscope (HRTEM) Titan
80–300 kV (FEI Company, Hillsboro, OR, USA).

2.4. Plant Material and Management

The effect of ZnO-NPs was measured at experiment termination on tomato cv Clermon plants
grown under greenhouse conditions. Seeding was carried out on 13 February, 2018, using 1 L containers
filled with sphagnum peat.

Two NP application methods were used: drench and foliar. Drench was conducted before planting
with 50 mL of a 1500 ppm ZnO-NPs solution dispersed by a sonicator (SONICS model VC505) for
15 min at 38% Abs. Foliar application was conducted manually five weeks after planting, when leaves
were fully developed. Plants were transplanted nine weeks after seeding in 10 L containers with a
mixture of sphagnum peat and perlite (60%:40% v/v). A second ZnO-NP application was performed
five weeks after transplanting, both via drench or foliar.

Plants were fed with a Steiner’s [34] nutrient solution adjusted to the plant’s phenological stage
through a drip irrigation system with two 4 L/h emitters. Lateral shoots and older foliage were pruned
weekly. The experiment was terminated on August 2018.

2.5. Growth and Plant Organs Biomass Measurement

Plant height and stem diameter were measured at experiment termination, while pruned leaves
were collected and placed on a drying oven at 65 ◦C for 48 h prior recording the dry weight. Root and
stem dry weight was measured at experiment termination and after dried in an oven, as previously
described, for leaves.

2.6. Statistical Data Analyses

Treatments were arranged in a randomized block design using a factorial arrangement with
12 treatments and 5 replications, one plant per replication. The factors considered were: two ZnO-NPs
morphologies (spherical and hexagonal, plus a control with no NPs application), two application
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methods (drench and foliar) and NPs surface modification with MDX (modified and non-modified).
The software used for the statistical analysis was SAS (SAS Version 9.4, SAS Institute, Cary, NC, USA)
and a means comparison test was conducted according to Tukey’s multiple comparison test (p < 0.05).

3. Results and Discussion

3.1. ZnO-NPs Characterization

The HRTEM micrograph of the ZnO-NPs reveals the presence of spherical particles of <30 nm and
with an even distribution size (Figure 2a). The larger particles are attributed to particle agglomeration.
The particle size distribution histogram indicates that it ranges from 11 to 40 nm, with an average of
22.5 nm (Figure 2b). Additionally, hexagonal NPs (Figure 3a–b) with single particles ranging from
60 to 120 nm and an average of 85 nm were obtained. ZnO-NPs’ morphology, size and distribution
observed in our study are similar to those reported by Hsieh [33], who performed the NPs synthesis
with the precipitation method.
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Figure 3. Transmission electron microscopy micrograph showing the hexagonal morphology of
ZnO-NPs (a), and histogram of particle size distribution (b).

Figure 4a,b shows MDX-modified ZnO-NPs HRTEM images showing the presence of agglomerates
as well as a fairly even MDX coating over the hexagonal and spherical NPs surface; Coating thickness was
0.92 and 1.22 nm for hexagonal and spherical NPs, respectively, suggesting that particle agglomeration
does not affect surface modification.
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Figure 4. Transmission electron microscopy micrograph. Malotodextrine-modified ZnO-NPs with (a)
spherical and (b) hexagonal morphology.

MDX-modified and non-modified NPs infrared spectra are shown in Figure 5. A belt appears
at 450 cm−1 in both hexagonal and spherical nanoparticle spectrum due to the stretching of the ZnO
bond. MDX-modified ZnO-NP spectra verifies that, in both morphologies, NPs were superficially
coated with MDX. This was confirmed by MDX absorption bands at 1000 cm−1 as well as the band
corresponding to ZnO which are present in both spectrums. In this way, FT-IR-aided, it is perceived
that both ZnO-NPs synthesis and modification were properly carried out.
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In Figure 6, non-modified ZnO-NPs (Figure 6a,b) and MDX-modified ZnO-NPs (Figure 6c)
corresponding X-ray (DRX) diffraction patterns are shown. Peaks present in DRX patterns match with
wurtzite-type crystalline structures corresponding to the ZnO standard (JCPDS 36-1451) [35,36]. This
means that the surface modification at which the NPs were subjected did not affect their crystalline
structure [22,24].
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3.2. ZnO-NPs Effects on Plant Growth and Biomass

Nanoparticle morphology, surface modification with MDX and application method significantly
affected tomato growth (Table 1). Stem diameter increased when hexagonal ZnO-NPs were applied,
whilst surface modification with MDX and application method did not affect this parameter. However,
an interaction between the assessed factors, such as the interaction between morphology and surface
modification, and between morphology and application method, was observed (Table 1).

Table 1. Effect of different morphology, modification or non-modification with maltodextrine, and
application methods of ZnO-NPs on different growth parameters of tomato plants.

Stem Diameter
(mm)

Plant Height
(cm)

Leaf Dry
Weight (g)

Root Dry
Weight (g)

Stem Dry
Weight (g)

Morphology
Control 21.8 b 239 b 223.9 c 39.7 a 84.2 a

Spherical 21.9 b 230 b 253.2 b 36.7 b 85.4 a
Hexagonal 24.5 a 251 a 278.5 a 39.0 a 90.5 a

ANOVA p ≤ <.0001 p ≤ <.0001 p ≤ <.0001 p ≤ 0.0045 p ≤ 0.1396
MDX

Non-Modified 22.4 a 234 b 245.3 b 36.2 b 82.8 b
Modified 23.1 a 246 a 258.4 a 40.9 a 90.5 a
ANOVA p ≤ 0.0898 p ≤ 0.0006 p ≤ <.0001 p ≤ <.0001 p ≤ 0.006

Application method
Foliar 23.0 a 239 a 252.3 a 36.4 b 82.9 b

Drench 22.5 a 241.1 a 251.4 a 40.5 a 90.4 a
ANOVA p ≤ 0.2243 p ≤ 0.5336 p ≤ 0.0035 p ≤ <.0001 p ≤ 0.0073

Interactions
M*MDX p ≤ 0.0003 p ≤ <.0001 p ≤ <.0001 p ≤ <.0001 p ≤ <.0001

M*A p ≤ 0.0003 p ≤ 0.015 p ≤ 0.0006 p ≤ <.0001 p ≤ 0.0024
MDX*A p ≤ 0.5866 p ≤ 0.3323 p ≤ 0.7354 p ≤ <.0001 p ≤ 0.0301

M*MD*A p ≤ 0.2135 p ≤ 0.0005 p ≤ 0.6123 p ≤ <.0001 p ≤ 0.6338

M = morphology, MDX = maltodextrin, A = application. Different letters in same column are statistically different
according to Tukey’s multiple comparison test, (p < 0.05).

Plant height was higher when hexagonal, MDX-modified NPs where applied, however, the
application method did not have a significant effect (Table 1). Every assessed factor interacted among
them, having a significant influence on plant height (Table 1). Hexagonal ZnO-NPs, as well as MDX
modification, significantly increased leaf dry weight; however, the application method, foliar or drench,
did not affect this parameter. Root and stem dry weight displayed a similar response, since they
were not affected by ZnO-NPs morphology; however, MDX surface modification as well as drench
application increased root and stem dry weight (Table 1).
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Stem diameter increased with spherical and hexagonal NPs application, but this occurred only
without MDX. In comparison, there was no effect when modified NPs were applied (Figure 7a). Stem
diameter increased when spherical and hexagonal NPs via foliar were applied. However, no effect was
observed when a drench application was used (Figure 7b).
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Plant height increased when MDX-modified hexagonal NPs were applied (Figure 8a) and when
in control plants, when MDX but no NPs were applied via drench (Figure 8b), suggesting that the
polysaccharide used in NP modification is acting as a plant growth stimulant. However, this effect
may be enhanced when used along with ZnO-NPs. MDX has been used as an ingredient for very few
agrochemicals like stimulants and has displayed beneficial effects in crop growth and development, as
in lettuce, in which fresh biomass and yield increased 69% and 64%, respectively [37].
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0.05). 

Plant height increased when MDX-modified hexagonal NPs were applied (Figure 8a) and when 

in control plants, when MDX but no NPs were applied via drench (Figure 8b), suggesting that the 

polysaccharide used in NP modification is acting as a plant growth stimulant. However, this effect 

may be enhanced when used along with ZnO-NPs. MDX has been used as an ingredient for very few 

agrochemicals like stimulants and has displayed beneficial effects in crop growth and development, 

as in lettuce, in which fresh biomass and yield increased 69% and 64%, respectively [37]. 

Foliar

Control Sph-NP Hex-NP

P
la

n
t 
h
e

ig
h
t 
(c

m
)

0

50

100

150

200

250

300

350
Without MDX

With MDX
Drench

Control Sph-NP Hex-NP

P
la

n
t 
h
e

ig
h
t 
(c

m
)

0

50

100

150

200

250

300

350
Without MDX

With MDX

a) b)

a

e

cde

e

bcd abc

ab

cdecdecdebcde
de

 

Figure 8. Effect of ZnO-NPs application on plant height. (a) Morphology*MDX*foliar application 

interaction, (b) Morphology*MDX*drench application interaction. Bars represent the standard error 

of the mean. Different letters indicate significant differences according to Tukey ś multiple 
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Figure 8. Effect of ZnO-NPs application on plant height. (a) Morphology*MDX*foliar application
interaction, (b) Morphology*MDX*drench application interaction. Bars represent the standard error of
the mean. Different letters indicate significant differences according to Tukey’s multiple comparison
test (p < 0.05). Sph = spherical, Hex = hexagonal.

Leaf dry weight increased with both hexagonal and spherical NPs application, although surface
modification had no influence. However, MDX application without using NPs resulted in a substantial
leaf dry weight increase compared to the control without MDX (Figure 9a), confirming that MDX has a
growth regulation effect. Foliar dry weight increased with hexagonal and spherical NPs application,
but it was more substantial when drench application with hexagonal NPs was used (Figure 9b).



Molecules 2020, 25, 1282 8 of 11

Molecules 2020, 25, x FOR PEER REVIEW 8 of 12 

 

Leaf dry weight increased with both hexagonal and spherical NPs application, although surface 

modification had no influence. However, MDX application without using NPs resulted in a 

substantial leaf dry weight increase compared to the control without MDX (Figure 9a), confirming 

that MDX has a growth regulation effect. Foliar dry weight increased with hexagonal and spherical 

NPs application, but it was more substantial when drench application with hexagonal NPs was used 

(Figure 9b). 

Control Sph-NP Hex-NP

T
o

ta
l l

e
a
f 

d
ry

 w
e

ig
h
t 
(g

)

0

50

100

150

200

250

300

350
Without MDX

With MDX

Control Sph-NP Hex-NP

T
o

ta
l l

e
a
f 

d
ry

 w
e

ig
h
t 
(g

)

0

50

100

150

200

250

300

350
Foliar

Drench 

a) b)

c

b
b b

a
a

c c

b b
b

a

 

Figure 9. Effect of ZnO-NPs application on leaf dry weight. (a) Morphology and maltodextrin (MDX) 

modification interaction, (b) morphology and application method interaction. Bars represent the 

standard error of the mean. Different letters indicate significant differences according to Tukey ś 
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MDX without NPs application increased stem dry weight, nevertheless, using MDX and hexagonal
NPs exhibited a slight further increase in stem dry weight (Figure 10a). On the other hand, a decrease
in stem dry weight with NPs application, regardless of their morphology and application mode, was
observed. There was an increase in stem dry weight in plants treated without ZnO-NPs, only with
MDX, as long as it was by drench application (Figure 10b).
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Figure 10. Effect of ZnO-NPs application on stem dry weight. (a) Morphology and maltodextin (MDX)
interaction, (b) morphology and application method interaction. Bars represent the standard error of
the mean. Different letters indicate significant differences according to Tukey’s multiple comparison
test (p < 0.05).

MDX-modified hexagonal NPs increased root dry weight compared to control plants (Figure 11a).
On the other hand, MDX application without ZnO-NPs drench-applied significantly increases root
dry weight (Figure 11b). This result is similar to that on the stem dry weight. Syu reported that using
spherical NPs in Arabidopsis plants and roots increased their growth compared to triangular NPs [38].

The positive effects of ZnO-NPs in plants, as observed in this research, have not been completely
understood, however, greater absorption and retention of nutrients by plants has been reported when
nanometric materials are applied [39], ZnO-NPs have the capacity of increasing enzyme activity,
such as phytase, alkaline and acid phosphatase, which may contribute to nutrient solubilization
like phosphorus [14]. Even though the effect of NP morphology is not very well understood yet,
it is clear that is of utmost importance to take advantage of NPs’ physical and chemical properties.
Morphology, along with other characteristics that NPs should have, such as purity, crystalline state
and size, determine the final product’s yield, since NP distribution and ion release rate depend on
them [40].
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Figure 11. Effect of ZnO-NPs application on root dry weight. (a) Morphology*maltodextine
(MDX)*foliar application interaction, (b) Morphology*MDX*drench application interaction. Bars
represent standard error of the mean. Different letters indicate significant differences according to
Tukey’s multiple comparison test (p < 0.05). Sph = spherical, Hex = hexagonal.

The application of materials at a nanoscale has still unknown interactions with plants, however, it
is more clear that the application of ZnO-NPs improves not only growth but also biomass accumulation,
as reported in tobacco plants as ZnO positively affected the stem diameter, length and dry root
weight [18]. Faizan reported enhanced growth, photosynthetic attributes, increased antioxidant activity
and increased protein accumulation in tomato plants exposed to ZnO-NPs on untreated plants [41].

There are no studies in agriculture that prove either NPs’ morphology or MDX coating effects.
However, studies in medicine that explain that, as there is no control of the morphology in the
synthesis of nanoparticulated systems, pharmaceuticals use surface coating to release the medical
drugs in a controlled fashion, to avoid intoxicating consumers [42]. We hypothesize that the effect
of surface-modified and MDX-coated ZnO-NPs on tomato plants may be due to this controlled
released attribute.

4. Conclusion

ZnO-NP was synthesized with spherical and hexagonal morphologies and the procedure
for modifying or coating NPs with maltodextrin was established. Tomato plants treated with
ZnO-NP significantly improved plant height, stem diameter and dry weights, usually with hexagonal
morphology and superficially modified. The modification of ZnO-NPs with MDX enhances the effect
of ZnO-NPs, however, the application via drench of MDX without ZnO-NPs, in general, improved
plant growth, supporting the hypothesis that MDX acts as a plant stimulant.
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