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Abstract: Quantitative analysis of formaldehyde (HCHO, FA), especially at low levels, in various
environmental media is of great importance for assessing related environmental and human health
risks. A highly efficient and convenient FA detection method based on surface-enhanced Raman
spectroscopy (SERS) technology has been developed. This SERS-based method employs a reusable
and soft silver-coated TiO2 nanotube array (TNA) material, such as an SERS substrate, which can
be used as both a sensing platform and a degradation platform. The Ag-coated TNA exhibits
superior detection sensitivity with high reproducibility and stability compared with other SERS
substrates. The detection of FA is achieved using the well-known redox reaction of FA with
4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) at room temperature. The limit of detection
(LOD) for FA is 1.21 × 10−7 M. In addition, the stable catalytic performance of the array allows the
degradation and cleaning of the AHMT-FA products adsorbed on the array surface under ultraviolet
irradiation, making this material recyclable. This SERS platform displays a real-time monitoring
platform that combines the detection and degradation of FA.
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1. Introduction

Formaldehyde (FA), a colorless molecule that is a strong irritant, is a major hazard to human
health and has been identified as a carcinogen [1–3]. The commercial product is an aqueous solution,
and a 35–40% aqueous solution is commonly called formalin [4,5]. At present, many FA detection
methods have been studied, including high-performance liquid chromatography (HPLC) [6], gas
chromatography-mass spectrometry (GC-MS) [7], and fluorescence analysis [8]. However, these
methods have certain disadvantages, such as a long detection time, complicated preprocessing steps,
and incomplete detection ability. Therefore, it is important to establish a simple, fast, green, sensitive,
and selective trace FA detection method.

Raman spectroscopy is an important analytical technique that provides molecular information by
obtaining structural fingerprints of molecular vibrational levels [9,10]. However, Raman spectroscopy
has the disadvantages of very weak signals and low reproducibility due to the inelastic scattering of
radiation. Surface-enhanced Raman scattering (SERS), a fast, sensitive, and nondestructive spectroscopy
tool for identifying and detecting chemical/biological species, has received considerable attention
because it significantly amplifies the effect of adsorbed molecules on the target Raman signal [11–18].
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SERS was first used in 1973 with pyridine adsorbed on rough silver [19]. Since its discovery, SERS
has attracted widespread attention, and many studies on SERS have been launched and are ongoing.
SERS has shown great advantages in terms of high selectivity, fluorescence quenching ability, and
nonphotodegradation of molecules. In recent years, semiconductor nanoarrays modified with metal
nanoparticles have been used to generate high-density internal hot spots to improve the uniformity
and detection sensitivity of the substrate [20–23]. In this work, we have developed an SERS method
for the detection of target molecules (such as FA) on metal-semiconductor substrates. The use of SERS
technology is expected to solve the above problems of FA detection.

Recently, photocatalytic organic molecular processes have also been successfully detected by
SERS. Semiconductor-based composite materials including Ag/TiO2, Au/TiO2, Ag/SiO2, Ag/RGO,
Au/ZnO, Cu2O/Ag, etc., have been shown to have both SERS activity and photocatalytic degradation
activity [24–41]. In particular, semiconductor structures based on one-dimensional arrays have been
proven to serve as excellent SERS substrates with higher sensitivity, uniformity, and reproducibility than
other structures. However, semiconductor surface cleanliness is particularly important for overall SERS
performance. Due to the limitations of the synthesis methods, most metal-semiconductor composite
substrates cannot avoid factors that degrade SERS performance, such as surface functionalization and
the occurrence of residues of synthetic materials during the synthesis procedure. In addition, Ag or Au
nanoparticles in most metal-semiconductor composites show extremely uncontrollable aggregation,
which greatly reduces the repeatability of SERS detection. Therefore, it is still challenging to prepare a
metal-semiconductor SERS substrate with a clean surface and high repeatability.

TiO2 nanotube array structures have been shown to have high light scattering efficiency, high
surface cleanliness, high specific surface area, and excellent electron transport properties. These
structures also provide greater flexibility and maneuverability than other structures for use as SERS
substrates. In this work, the TiO2 nanotube array, prepared based on the anodic oxidation method,
has a relatively clean surface, which is conducive to absorbing a large amount of the target on the
surface. Moreover, we combine the highly uniformly distributed liquid, Ag sol, with the highly ordered
TiO2 nanotube array (TNA) structure, thereby greatly improving the SERS repeatability of the overall
substrate, compared with the repeatability of other substrates. At the same time, the substrate retains
the recyclability and SERS activity for photocatalytic degradation inherent in the Ag-TiO2 structure.

In this study, we first prepared an ideal TNA by optimizing the experimental conditions. Silver
sol was then used to adsorb silver nanoparticles on the TNA to increase the SERS signal. Finally,
4-amino-3-hydrazino-5-mercapto-1,2,4-triazole (AHMT) was used as a Raman probe to sensitively
detect FA, and to simultaneously reveal the reusability of the SERS substrate and the ability to degrade
organic FA [42]. In summary, we have prepared a new type of SERS substrate with high sensitivity
and selective recognition of FA; the substrate is inexpensive, environmentally friendly and reusable.

2. Results and Discussion

Figure 1A shows scanning electron microscopy (SEM) images of the TNA material prepared by
surface pretreatment of pure titanium foil through two anodizing methods in a 0.5 wt% NH4F ethylene
glycol system at a controlled voltage of 60 V. From the top view, it can be seen that the surface of the
TNA consists of a nanotube array, and the diameter of the tubes is 100–200 nm. From the side view,
it can be seen that the TNA is open at the top and closed at the bottom. At the bottom of the film,
there is a thin and dense barrier layer. The barrier layer is uniformly distributed, perpendicular to the
substrate nanotube array, and the tube length is 4–7 µm.
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Figure 1. (A) Top-view and side-view SEM images of the TiO2 nanotube array (TNA) and; (B) XRD
pattern of the TNA calcined at 450 ◦C.

Figure 1B shows the XRD patterns of TiO2 nanotubes produced at 60 V with 120 min of oxidation
time. The eight sharp peaks at 2θ = 25.2◦, 47.9◦, 53.8◦, 55.0◦, 62.8◦, 68.8◦, 70.4◦, and 74.9◦ were
indexed to anatase TiO2 (101), (200), (105), (211), (204), (116), (220), and (215), respectively. The results
indicated that the prepared TiO2 nanotubes are in anatase crystal form. The distribution of Ag over
the nanotubes is shown in Figure S1. Most Ag nanoparticles were distributed on the TNA surface.
During the preparation of SEM samples, Ag may aggregate during the drying step. The SERS test can
be completed in 1 min; during this time, the Ag nanoparticles are moving, and their distribution is
more uniform than that shown in the figure.

Figure 2 shows the preliminary preparation scheme in our experiment. The figure illustrates
the preparation of the TNA on titanium foil by the anodization method. Silver nanoparticles were
applied to the TNA by coating a silver sol to ensure the formation of an SERS substrate with the
attached precious metal. Studies have reported that Ag-TiO2 composites can be used to detect and
degrade organic pollutants. We optimized an Ag-TiO2 material to explore whether the detection of FA
was satisfactory.
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Figure 2. Illustration of TNA and Ag-TNA preparation.

In this work, the SERS method is based on the reaction of excess AHMT with FA (Figure 3A).
Under basic conditions, FA and AHMT undergo a condensation reaction to form 6-mercapto-5-triazolo
[4,3-b]-s-tetrazine (MTT). It can be seen from Figure 3B that with a decrease in FA concentration, the
characteristic band intensity in the ultraviolet-visible (UV-vis) absorption spectrum has a tendency to
first increase and then decrease. An FA concentration of 10−4 M cannot be detected. Therefore, the
sensitivity of UV-vis spectroscopy to FA is not ideal. Thus, we prepared a recyclable SERS substrate
with photocatalytic performance to detect FA. We also investigated the reproducibility, stability, and
recycling characteristics of the SERS substrate for use as a catalyst. To examine these properties, we
performed the following experiments.
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Figure 3. (A) Derivative reaction of formaldehyde (FA) and 4-amino-3-hydrazino-5-mercapto-1,2,
4-triazole (AHMT) under alkaline conditions. (B) UV-vis absorption spectra of different concentrations
of FA after reaction with AHMT. (a–j) FA (1.44, 1.44 × 10−1, 1.44 × 10−2, 1.44 × 10−3, 1.44 × 10−4,
1.44× 10−5, 1.44× 10−6, 1.44× 10−7, 1.44× 10−8, and 1.44× 10−9 M) + AHMT (3.34× 10−3 M); (h) AHMT
(3.34 × 10−3 M).

Figure 4A shows the SERS spectra of a mixture of AHMT and AHMT-MTT in the 600–1800 cm−1

region using the Ag-sol substrate. Figure 4B shows the scheme of the SERS sample deposition and
measurement. As shown in Table 1, the bands at 710 and 832 cm−1 are due to the S-C-N tensile
vibration and N-C-N tensile vibration of the AHMT and MTT molecules, respectively. The six rings of
MTT make its N-C-N tensile vibration stronger than that of AHMT. The SERS band at 1473 cm−1 is
significantly enhanced, which is attributed to the tensile vibration mode of C-C rings. The other main
bands of AHMT are observed at 1217, 1286, and 1391 cm−1, which are attributed to in-ring breathing
vibrations and in-plane deformation. Compared to AHMT, several bands of MTT are blueshifted due
to the six rings.
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Figure 4. (A) Surface-enhanced Raman scattering (SERS) spectra of AHMT and AHMT-FA
(6-mercapto-5-triazolo [4,3-b]-s-tetrazine,MTT): (a) A mixture of AHMT and MTT (with an excess of
AHMT in the reaction.); (b) AHMT (3.34 × 10−3 M). (B) SERS detection process diagram. (C) SERS
detection of FA (from 1.44 × 10−2 to 1.44 × 10−9 M) using AHMT as a probe (3.34 × 10−3 M) after 16 h of
reaction. (a–h) FA (1.44 × 10−2–1.44 × 10−9 M) + AHMT (3.34 × 10−3 M) and (i) AHMT (3.34 × 10−3 M).

Table 1. Vibration modes represented by AHMT-FA characteristic bands.

Functional Group/Vibration Raman Bands of AHMT-FA

Eg 144, 636 cm−1

B1g 396 cm−1

A1g/B1g 514 cm−1

ν(S-C-N) 710 cm−1

ν(N-C-N) 832 cm−1

ν(C-C) 1473 cm−1

Breathing vibration 1217, 1286, 1391 cm−1
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Figure 4C shows the SERS spectra of AHMT-FA with various concentrations of FA (from
1.44 × 10−2 to 1.44 × 10−9 M). With decreasing FA concentration, the intensity of the Raman band at
1473 cm−1 greatly decreased, and the band was clearly observed down to an FA solution concentration
of 1.44× 10−9 M, relative to the band of the probe solution (AHMT). Therefore, this method is reasonable
and suitable for the detection of FA with a detection limit of 1.44 × 10−9 M. Figure 5 shows the Raman
intensity of the characteristic band at 1286 cm−1 at different concentrations. The test was repeated
six times for each concentration. The results also show the average and standard deviation for each
concentration during the test. The accuracy of the SERS method for detecting FA is shown. It can be
seen from Figure 5 that as the MTT concentration decreases, the average value and standard deviation
also decrease. The results show that the SERS method is sensitive to the detection of FA and further
prove the feasibility of this method.
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Figure 5. Concentration-dependent curve for the SERS detection of FA using AHMT as a probe
(3.34 × 10−3 M). (A) Intensity of the Raman band at 1286 cm−1 plotted vs the concentration of FA (from
1.44 to 1.44 × 10−9 M). (B) Linear relationship between the logarithmic Raman intensity and logarithmic
concentration of FA (from 1.44× 10−2 to 1.44 × 10−9 M).

The calculated limit of detection (LOD) is given by the black line. The standard curve of the
AHMA-FA solution obeys the equation Y = 5.1399 + 0.2701 X, which shows a linear relationship and
has a correlation coefficient of 0.9639. The limit of detection (LOD) was determined according to the
IUPAC recommendations (the minimally acceptable signal intensity must be three times greater than
the standard deviation of the blank signal). As depicted in Figure 5, this intensity approximately
corresponds to 10−6.92 M (i.e., 1.21 × 10−7 M). Finally, in terms of reproducibility and repeatability,
SERS measurements were obtained on 20 spots, randomly selected on the Ag-TNA substrates. (see
Figure S2 in the Supplementary Materials).

The degradation process during the experiments was monitored by the changes in the band
intensity of AHMT-FA in the SERS spectra. Taking 1.44 × 10−4 M as an example, as shown in Figure 6A,
lines a–h correspond to Ag-TNA substrates used to adsorb AHMT-FA and irradiated under ultraviolet
light at 254 nm for 40, 50, 60, 70, 100, 130, 160, and 190 min, respectively. Line i is the Raman spectrum
of Ag-TNA without adsorbed probe molecules. The comparison shows that the probe molecules,
AHMT and FA, were completely degraded after approximately 3 h of irradiation. This result shows
that the Ag-TNA substrate has a self-cleaning function under ultraviolet irradiation, and this function
can overcome the disadvantage of being able to use SERS substrates only once.
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As mentioned in the introduction, organic molecules on the surface of TiO2 can be degraded
by the generation of free radicals and oxidizing substances on the surface of TiO2 under ultraviolet
irradiation. In visible light, the localized surface plasmon resonance (LSPR) of AgNPs is excited and
decays to generate hot electrons. The energy of these electrons is higher than the potential barrier
between TiO2 and AgNPs, and the electrons can jump to the conduction band of TiO2 and generate
holes in AgNPs. The interface state density of the TNA and Ag is relatively large, and most of the
hot electrons are captured by the interface state, thus greatly reducing the total number of electrons
that can reach the conduction band of TiO2. The remaining electrons that reach the conduction band
of TiO2 migrate to the surface of TiO2, combine with molecular oxygen adsorbed on the surface to
form · O2−, or combine with ·OH, resulting from the decomposition of H2O in the oxygen vacancy to
form ·OH. Note that ·O2− and ·OH have strong catalytic activity and are the main active species for
catalyzing the degradation of organic matter. Due to the characteristics of TiO2 nanotubes, they have a
higher electron transport efficiency than other compounds, which is conducive to the transfer of hot
electrons from AgNPs to the conduction band of TiO2, thus increasing the photocatalytic efficiency.

Figure 6C shows the intensity of the characteristic band at 1286 cm−1 as a function of degradation
time. The results show that as the degradation time increases, the intensity of the Raman band
significantly decreases, and the overall Raman signal intensity decreases. Furthermore, after detecting
FA, the reversible SERS active substrate could degrade the FA and AHMT adsorbed on the substrate
surface into small inorganic molecules and water molecules by photocatalytic degradation (Figure 6B).
This result further proves the self-cleaning function.

To evaluate the degradation performance and recyclability of this Ag-TNA substrate, we performed
three detection-degradation cycle experiments on the Ag-TNA substrate. We used 1.44 × 10−4 M FA as
an example (Figure 7). In the first cycle, line a represents the Raman spectrum of AHMT-FA reacting
for 16 h (first reaction), and line b represents the Raman spectrum after 3 h of 254 nm irradiation (first
ultraviolet irradiation). In the second cycle, line c indicates the Raman spectrum of AHMT-FA reacting
for 16 h using the substrate in line b (second reaction), and line d indicates the Raman spectrum
after 3 h of 254 nm irradiation (second ultraviolet irradiation). In the third cycle, line e indicates
the Raman spectrum of AHMT-FA reacting for 16 h (third reaction), and line f indicates the Raman
spectrum after 3 h of 254 nm irradiation (third ultraviolet irradiation). The Ag-TNA SERS substrate
used in this experiment can be completely reused. This figure also shows how a reversible SERS-active
substrate works; after detecting FA via SERS, the substrate can photocatalytically degrade FA and
AHMT adsorbed on the substrate surface, exhibiting a self-cleaning function. This result provides
prospects for the on-site detection and degradation of organic pollutants by SERS. At the same time,
FA is a major indoor pollutant. The existing commercial FA detection method is mainly based on
electrochemical sensing technology, and its shortcomings are low specificity and an insufficient ability
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to discriminate volatile organic compounds (VOCs). In this work, the preparation method of Ag-TNA
is simple, and it is easy to prepare in a large area. At the same time, Ag-TNA is an excellent SERS
substrate for FA detection with good SERS activity and photocatalytic degradation performance. In
the future, we will try to detect gaseous formaldehyde based on this work. This method has great
potential to complement the selectivity of existing formaldehyde gas detection methods.

Figure 7. SERS substrate for recyclable FA detection (three cycles of FA detection). (A) First cycle;
(B) second cycle; and (C) third cycle. The red and black spectra represent the detection of FA and the
degradation after UV light irradiation, respectively.

3. Materials and Methods

3.1. Chemicals

AHMT was purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA) and was used without
further purification. Titanium foil and silver nitrate (AgNO3) were also purchased from Sigma-Aldrich
Co., Ltd. (St. Louis, MO, USA). FA (40%) was purchased from Liaoning Quanrui Reagent Co., Ltd.
Hydrofluoric acid, ammonium fluoride, and ethylene glycol (analytical reagents) were purchased from
Aladdin Company and were used without further purification. The water used in the experiment was
ultrapure water, and the ethanol used was anhydrous ethanol.

3.2. Instruments

SEM characterization was performed by a JEOL 7610 p thermal field emission scanning electron
microscope. UV-vis absorption spectra were recorded on a Cary 5000 ultraviolet–visible–near infrared
(UV–VIS–NIR) spectrometer (Agilent Technologies, Inc., Santa Clara, CA, USA). XRD testing was
conducted by a Rigaku Smartlab X-ray diffractometer using CuKα radiation (λ = 1.5418 Å) at 45 kV
and a 200 mA excitation light source. Raman spectroscopy was performed using a Jobin Yvon/Horiba
LabRAM HR Evolution confocal micro-Raman spectrometer equipped with a multichannel air-cooled
charge-coupled device (CCD) detector. A 532 nm laser was used as the excitation light source. A
monocrystalline silicon wafer was used to calibrate the Raman spectrometer. All Raman spectra were
measured with a 600 g/mm grating using a 50×, 0.50 NA (OLYMPUS LMPlanFLN, Tokyo, Japan)
long-working-distance (LWD) microscope objective. The laser power reaching the sample surface was
approximately 5 mW. The acquisition time of Raman spectra was 30 s for each window. For ultraviolet
light degradation, a ZF-7 portable ultraviolet analyzer (including 254 nm and 365 nm ultraviolet
radiation) produced by Shanghai Daluo Scientific Instrument Co., Ltd. (Shanghai, China) was used.
The UV degradation experiment was performed under irradiation with a 254 nm UV lamp with a
power of 8 W.

3.3. Preparation of Silver Sol

AgNO3 (169 mg) was added to a three-necked flask, 100 mL of deionized water and a stir bar
were added, and a thermometer and a condenser tube were connected. Sodium citrate (0.01 g) was
added to 1 mL of deionized water. Good silver sol was obtained by heating the AgNO3 and deionized
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water until slightly boiling, dropwise adding sodium citrate (discoloration within 3 min), and heating
for 30 min.

3.4. Preparation of the TNA

Titanium foil with a size of 4 × 5 cm was used as the raw material. The surface of the titanium
foil was cleaned with acetone, isopropanol, methanol, and ultrasonication. Then, the surface was
washed with deionized water and blown with nitrogen before use. Graphite flakes (also ultrasonically
cleaned with distilled water) were used as the cathode, and titanium foil was used as the anode. Anode
oxidation was performed at room temperature, and 0.5 wt% NH4F glycol was used as the electrolyte.
After the electrolytic titanium dioxide was washed with distilled water, it was soaked in water; the
titanium dioxide film formed on the surface, was peeled off in the water and dried under strong
nitrogen flow, and a second round of electrolysis was performed for 2 h. The electrolyzed titanium
foil was washed with absolute ethanol and ultrapure water, soaked in absolute ethanol overnight,
removed under strong nitrogen flow, blown dry, and calcined in a muffle furnace at 450 ◦C for 2 h. The
TNA was stored in a box protected from light.

3.5. Preparation of the Test Solution

At room temperature, 0.0124 g AHMT was added into a 50 mL centrifuge tube. Then, 25
mL of deionized water and 25 mL of 5.0 M NaOH were added to yield a probe solution with a
concentration of 3.34 × 10−3 M. The concentration of the FA (40%) solution was 14.4 M, which was
sequentially diluted to 10−9 M. One milliliter of each FA solution and 2 mL of probe solution were
mixed and reacted at room temperature for 30 min to obtain the test liquids (FA concentrations of 1.44,
1.44 × 10−1, 1.44 × 10−2, 1.44 × 10−3, 1.44 × 10−4, 1.44 × 10−5, 1.44 × 10−6, 1.44 × 10−7, 1.44 × 10−8, and
1.44 × 10−9 M).

3.6. SERS Detection of FA

The calcined TNA was placed into the test liquid for 16 h. Then, the TNA was removed, 150 µL
silver sol was added, and the confocal micro-Raman spectrometer with a 532 nm excitation laser was
used to examine the test liquids with different concentrations of FA. The Raman signal of the probe
(AHMT concentration of 3.34 × 10−3 M) was detected by the same method.

3.7. UV Degradability of AHMT-FA with the Ag-TNA

A test liquid with a concentration of 1.44 × 10−4 M was selected to evaluate the ultraviolet
photodegradability of the SERS substrate. First, the TNA was immersed in the 1.44 × 10−4 M test
solution for 16 h, and then the TNA was removed. Silver sol was added to measure its initial Raman
signal; then, it was directly put into a portable ultraviolet analyzer and irradiated with 254 nm
ultraviolet light for 3 h. The Raman signal was detected every 10 or 30 min until the degradation
was complete.

3.8. Recyclable SERS Substrate

(1) As the degradation time increased, the Raman intensity continued to decrease until the
Raman signal basically disappeared; this time corresponded to the time required to obtain complete
degradation of AHMT-FA. (2) The same TNA was put into the test solution again for 16 h. Then,
the silver sol was removed, and the Raman signal of AHMT-FA was detected. (3) The solution was
placed under ultraviolet light with a wavelength of 254 nm and irradiated to complete degradation.
(4) The experiment was repeated one more time at the end for a total of three replicates to check the
substrate recyclability.
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4. Conclusions

In this study, we show a new method for FA detection based on SERS. The combination of a
surface-cleaned TNA array material prepared by electrochemical anodization and Ag-sol constitutes
a dual-function Ag-TNA FA-sensing material that has a SERS effect and photocatalytic degradation.
The results show that the SERS intensity of the FA reaction product has a strong FA concentration
dependence, and that the lowest detection concentration of FA in solution can reach 10−9 M. Furthermore,
it has been proven that the composite array is a highly sensitive, stable, self-cleaning and recyclable
SERS-active substrate. In addition, the excellent photocatalytic degradation performance and SERS
activity of the substrate show great potential for the on-site detection and degradation of organic
pollutants by the SERS method.

Supplementary Materials: The following are available online. Figure S1. (A) Top-view SEM image of the
Ag-TNA; (B–D) energy dispersive X-ray (EDX) mapping analysis of the Ag-coated TNA material and the mapping
distribution of (B) Ti, (C) Ag, and (D) O; (E) the EDX spectrum of the Ag-coated TNA material, Figure S2.
Repeatability and reproducibility measurement of the detection of FA obtained on 20 spots randomly selected
on the Ag-TNA substrates. (A) SERS spectra of 1.44 × 10−5 M FA and (B) intensity distribution of the band at
1286 cm−1 after normalizing the SERS spectra of (A) to the 514 cm−1 band (A1g/B1g mode of anatase TiO2). The
average intensity is indicated with a red dashed line.
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