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Abstract: Effective, non-addictive therapeutics for chronic pain remain a critical need. While
there are several potential therapeutics that stimulate anti-inflammatory mechanisms to restore
homeostasis in the spinal dorsal horn microenvironment, the effectiveness of drugs for neuropathic
pain are still inadequate. The convergence of increasing knowledge about the multi-factorial
mechanisms underlying neuropathic pain and the mechanisms of drug action from preclinical studies
are providing the ability to create pharmaceuticals with better clinical effectiveness. By targeting
and activating the peroxisome proliferator-activated receptor gamma subunit (PPARγ), numerous
preclinical studies report pleiotropic effects of thiazolidinediones (TDZ) beyond their intended use of
increasing insulin, including their anti-inflammatory, renal, cardioprotective, and oncopreventative
effects. Several studies find TDZs reduce pain-related behavioral symptoms, including ongoing
secondary hypersensitivity driven by central sensitization. Previous studies find increased PPARγ
in the spinal cord and brain regions innervated by incoming afferent nerve endings after the
induction of neuropathic pain models. PPARγ agonist treatment provides an effective reduction in
pain-related behaviors, including anxiety. Data further suggest that improved brain mitochondrial
bioenergetics after PPARγ agonist treatment is a key mechanism for reducing hypersensitivity.
This review emphasizes two points relevant for the development of better chronic pain therapies.
First, employing neuropathic pain models with chronic duration is critical since they can encompass
the continuum of molecular and brain circuitry alterations arising over time when pain persists,
providing greater relevance to clinical pain syndromes. Assisting in that effort are preclinical
models of chronic trigeminal pain syndromes. Secondly, considering the access to nerve and brain
neurons and glia across the blood–brain barrier is important. While many therapies have low
brain penetrance, a PPARγ agonist with better brain penetrance, ELB00824, has been developed.
Purposeful design and recent comparative testing indicate that ELB00824 is extraordinarily efficient
and efficacious. ELB00824 provides greatly improved attenuation of pain-related behaviors, including
mechanical hypersensitivity, anxiety, and depression in our chronic trigeminal nerve injury models.
Physiochemical properties allowing significant brain access and toxicity testing are discussed.

Keywords: neuropathic pain; anxiety; depression; thiazolidinedione; pioglitazone; rosiglitazone;
PEA; central sensitization; mechanical allodynia; mitochondrial bioenergetics; mice; rats

1. Introduction

Neuropathic pain is a chronic pain that persists over 3 months resulting from damage to nerves
and/or the nervous system itself [1]. Painful diabetic neuropathy and post-herpetic neuralgia are
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among the most common forms of neuropathic pain. Other causes include traumatic or postsurgical
nerve injuries, spinal cord injury, stroke, multiple sclerosis, cancer/chemotherapy, Herpes zoster, and
HIV infection. Neuropathic pain reportedly persists permanently in half of the patients with traumatic
nerve injury [2,3]. Neuropathic pain is often accompanied by anxiety, depression, and sleep disorders.
The neuropathic pain that reportedly affects as many as 26 million Americans is severe, relentless, and
disabling [4,5]. It was reported that 14.7% of Chinese patients suffer from chronic pain and 9% of the
entire population in Hong Kong have pain with neuropathic characteristics [6].

2. Limitations of Clinically Used and Experimental Analgesics

Current analgesics, including opioids, are far from satisfactory in providing pain relief. Safe and
effective non-addictive therapeutics remain a critical need. Pain is the primary precipitating factor that
has caused opioid overprescribing and its continued overuse has led to the current opioid epidemic [7].
Morphine equivalency in opioid consumption has precipitously increased over the last decades and is
complicated by comorbid persisting pain and opioid-induced hyperalgesia [8,9]. It was estimated that
22.8 million patients in Europe use prescription opioids and that half a million are dependent [10].
In 2017, over 70,000 Americans died from an overdose of synthetic opioids, including oxycodone,
tramadol, and especially fentanyl [2,3]. In addition, gabapentin, the 7th-most prescribed drug for pain
in the United States, is now misused to enhance an opioid high, killing over 8,000 Americans last
year [11].

The global neuropathic pain drug market is expected to reach US $8.3 billion by 2024 [12]. While
opiates are heavily overprescribed, they are of little therapeutic value for treatment of this type of
pain. Research for repurposing current drugs and development of new drugs for treating neuropathic
pain have been actively pursued, however, in the past 10 years there have been few new non-opioid
Active Pharmaceutical Ingredients approved by the FDA, making the discovery of new non-opioid
medications for this disorder imperative.

Several factors contribute to the dilemma of why potential pain therapies successful in rodent
models have failed in clinical trials. The lack of better understanding of pain chronification is a major
contributor and is under intense study. Chronic pain has a large central sensitization component
inducing altered molecular function and brain circuitry. Experimental studies investigating repurposing
of current therapeutics for neuropathic pain have found some insufficiently cross the blood–brain
barrier to be effective as analgesics. Many preclinical models used for testing pain therapeutics typically
reverse spontaneously after 3–4 weeks, indicating tissue healing and the recovery of nerve function.
These studies are not considering the continuum of molecular and brain circuitry alterations that
occur leading to chronic pain states. Convergence of increasing knowledge from preclinical studies
about the multi-factorial mechanisms underlying chronic neuropathic pain, novel drug targets for
exploration, and mechanisms of drug action will provide the ability to create pharmaceuticals with
better clinical effectiveness.

3. PPARγ

For example, re-purposing PPARγ (peroxisome proliferator activated receptor-gamma subunit)
agonists as analgesics and for other clinical syndromes has been considered. PPARγ is a nuclear
receptor that is widely expressed in adipose, immune cells, neurons, and glia. PPARγ is activated
by a variety of endogenous fatty acid derived compounds (e.g., palmitoylethanolamide (PEA) and
15-Deoxy-Delta-12,14-prostaglandin J2 (15d-PGJ2)). PEA is available in the US as a food supplement
and has been available in Italy and Spain for medical purposes for over twenty years. Related synthetic
thiazolidinedione (TZD) type drugs activating PPARγ (e.g., pioglitazone and rosiglitazone) are currently
prescribed as oral anti-diabetic drugs to improve lipid metabolism and reduce blood pressure [13].
Other pleitropic effects of TDZ drugs have emerged, including their oncopreventive effects. For example,
pioglitazone dramatically reduced both the incidence and frequency per group of mammillary tumors in
a rat model [14]. PPARγ activation was shown to provide cannabidiol-induced apoptosis of human lung
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cancer cells [15]. PPARγ activation has been recognized as a key anti-inflammatory modulator. A review
of the relevant literature finds that TZDs downregulate pro-inflammatory cytokines, such as Interleukins
(IL)-4,-5,-6, as well as interfere with production of profibrotic molecules, including platelet-derived
growth factor (PDGF), IL-1, and transforming growth factor beta (TGF-β) [16]. Anti-inflammatory
and anti-fibrotic actions of TZDs are indicated in experimental rat models of inflammatory bowel
disease, as is a role for PPARγ agonists in the treatment of inflammatory diseases, such as systemic
lupus erythematous, renal disease, atherosclerosis, brain inflammation, and pancreatitis [16]. Other
studies have examined the effects of TZDs on spinal cord trauma [17,18].

In human studies, testing over many years supports the contention that PEA has analgesic
actions in patients suffering from various neuropathic pain states including diabetic neuropathic
pain. Interestingly, endogenous and phytocannabinoids reportedly activate PPAR isoform PPARγ in
addition to PPARδ and thus likely account for some of their reported anti-nociceptive effects [19,20].
The discussion below provides evidence that PPARγ is a key therapeutic target for the treatment of
pain and for repurposing PPARγ agonists as effective modulators of pain.

4. Building Better Animal Models for Testing PPAR Therapeutics

Pain is a complex sensation that manifests in many different ways. A major knowledge gap
exists in understanding clinical pain syndromes that are chronic rather than acute in duration. It is
becoming widely apparent that the chronification of pain is accompanied over time by a continuing
evolution of molecular and circuitry alterations. At a critical time point, ~3–4 weeks post nerve injury,
behavioral testing in most neuropathic pain models reveals reversal of hypersensitivity indicative of
tissue healing and restored nerve function. In only a few of the current models does the nerve injury and
nociceptive alteration continue, inducing central sensitization and the brain circuitry changes leading
to the chronification of pain. Examples of persisting preclinical models include the spared nerve injury
models (SNI) [21,22] and the trigeminal nerve tie (CCI-ION, dIoN) [23–25] or compression models
(TIC, FRICT-ION) [26–28]. Persisting increases in levels of cytokines may explain the differences in the
persistence of hypersensitivity between acute duration and chronic duration of preclinical models [29].
It is clear that the increase in IL-1β is a factor since it increases both RNA and protein expression
of CSF1 in satellite glial cells in the dorsal root ganglia peripheral nerve cells of rats with SNI. The
activation of glia and cytokine release that occurs both peripherally and centrally in all preclinical
models after nerve injury is correlated with level of hypersensitivity, as reviewed previously [29–32].

5. PPARγ Agonist Effects on Chronic Pain Symptoms

The systemic administration of TZD drugs has been shown to reduce peripheral neuropathic pain
behaviors in several preclinical models tested with single or repeated dosing [18,32–39]. In animal
studies, the PPARγ agonist, pioglitazone, remains the best characterized to date with higher efficacy
than rosiglitazone for reducing painful diabetic and spinal nerve ligation neuropathies [18,37–39].
Pioglitazone reduces the SNI-induced increases in hypersensitivity and glial fibrillary astrocytic protein
(GFAP) biomarker expression [38]. Testing revealed pioglitazone has a more rapid effect than expected
for reversal of hypersensitivity, within 60 min. Thus, while pioglitazone has been shown to have
transcription-dependent genomic effects indicated by the decrease in the Fos protein expression
typically seen in pain models, neuropathic pain reverses rapidly even in the presence of protein
inhibition by intrathecal anisomycin [38]. Along with the decrease in the glial activation biomarker
genomic events, these findings indicate that a relevant non-genomic, transcription-independent effect
mediated by PPARγ is providing analgesia. The effectiveness of rosiglitazone treatment given in days
1–3 after partial sciatic nerve ligation in mice was much less effective than with later treatment after 21
days [36]. The effectiveness was attributed to regulation of macrophage infiltration and a reduction in
inflammatory cascades at the injury site. Intense PPARγ immunoreactivity is expressed after 3 weeks
in both the spinal cord and brainstem trigeminal nerve termination sites after sciatic nerve ligation or
trigeminal nerve injury [19,40].
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In our mouse Trigeminal Inflammatory Compression (TIC) neuropathic chronic pain model,
treatment at 8 weeks with PPARγ agonist pioglitazone (100 mg/kg) attenuates the whisker pad
mechanical hypersensitivity (allodynia) that persists indefinitely in this preclinical model [40–42].
The specificity of pioglitazone activation was demonstrated with the use of the PPARγ antagonist,
GW9662, which eliminated the effect of pioglitazone [40]. Two antagonists of the PPARα subunit tested
at 8 weeks had no effect on hypersensitization [40]. However, PPARα agonists are effective in reducing
nociceptive behaviors in inflammatory pain models [18].

There is an interplay between the physical symptoms of pain and its psychological effects
involving brain limbic circuitry that are revealed after weeks of persisting pain. Hypersensitivity,
anxiety, depression, and even cognitive deficit are measurable in preclinical models [18,27,28,41–46].
These pain-related characteristics closely resemble symptomatology present in many patients with
chronic neuropathic pain [41]. The FRICT-ION orofacial neuropathic pain mouse model while mild
enough to prevent any weight gain deficits generates measureable depression by 6 weeks (Figure 1) [28].

Figure 1. Depression assessed by spraying 10% sucrose on the rump of mice results in grooming
behaviors in naïve male mice but significantly less grooming in mice with neuropathic pain induced by
FRICT-ION model at 6 weeks. The asterisk indicates p < 0.05 compared to naïve (n = 4).

6. Building a Better Therapeutic

The clinical use of PPARγ modulators pioglitazone and rosiglitazone has revealed common
adverse effects, however [13]. Toxicity study for our recently developed PPARγ agonist included
once-daily treatment of rats for 14 days with ELB00824 (0, 30, 120, 450 mg/kg) [27]. The rats observed
daily exhibited no signs of physical, behavioral, food intake, body weight, or water consumption
abnormalities. Fifty-five hematological, blood coagulation, and serum biochemistry parameters
monitored showed virtually no changes. As another issue, efficiencies of the synthetic PPARγ agonists
for therapeutic use in patients with Alzheimer’s may be limited somewhat by their nerve and brain
permeability [47].

The following provides details toward design, synthesis, and testing of a brain penetrant PPARγ
molecule suitable as a pain therapy more accessible to brain and nerve PPARγ binding sites [27]:

(1) Computer-Assisted Drug Virtual Screening on a high-performance computer workstation was
used to search libraries of 520,000 small molecules from the Zinc15 database in order to identify
100 structures that were most likely to bind to PPARγ, with high in silico predicted permeability
to the blood–nerve barrier (BNB). Then, the leads were designed to modify the chemical structure
of a known compound and a product with much greater blood–brain barrier permeability
was synthesized.

(2) The next step was an in vitro screen of the compounds with our PPRE Luciferase reporter/PPARγ
expressing Combo cell line.

(3) The resultant product, ELB00824, was purified by recrystallization to 95% purity and then its
structure confirmed by 1H NMR (Figure 2A). The computer-generated image shows the tight
binding of ELB00824 (grey structure) with PPARγ (pink ribbon). The complete details of the
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ELB00824 synthesis are provided in our recent paper [27]. The ELB00824 therapeutic (USA
Elixeria BioTech Inc) is protected by the international patent pending (PCT/CN2019/072302).

(4) ELB00824 crosses the blood–brain barrier with high efficiency tested in conventional preclinical
models of chronic neuropathic pain and reduces pain-related behaviors in both male and female
rodents [27]. The ELB00824 pharmacologically targets the PPARγproteins in immune cells and glia
to reverse established peripheral nerve injury-induced nociceptive hypersensitivity. Exceptionally
high in vivo blood–brain barrier (BBB) permeability among the current PPARγ agonists was
confirmed by a comparative measurement of the drug key pharmacokinetic parameters in rat
brain and plasma. The PPARγ activation in a stable cell line identified the half maximal effective
concentration for ELB00824 (EC50 is 4.7 µM, Figure 2B) was higher than that of the clinically used
PPARγ agonists (rosiglitazone 6.5 µM and pioglitazone 22.1 µM).

Figure 2. (A) Nuclear magnetic resonance (NMR) structural confirmation of EL00824. ELB00824 (grey
structure) binds tightly with PPARγ (pink ribbon). (B) ELB00824 exhibits the highest in vitro PPARγ
transcriptional activity compared to clinically used PPARγ agonists. (C) EL00824 is absorbed rapidly
and the peak plasma and brain concentrations (Cmax) reached at 1 and 3 h, respectively. The chemical
structures of EL00824, pioglitazone, and rosiglitazone are shown at the side for comparison [27].

Brain concentration (Cmax), relative brain bioavailability denoted by Area Under the Curve
(AUC0–24), and the brain–plasma ratio (Kp) of ELB00824 (i.p.) were 4.43 µg/mL, 33.59 µg.h/mL, and 5.1,
respectively, analyzed by HPLC [16]. This was significantly increased compared to those of pioglitazone
(i.p.) by 6.5-,11-, and 58-fold, respectively, and compared to those of rosiglitazone (i.p.) by 8.7-, 17-,
and 61-fold (all data, p < 0.01) (Figure 2C). In comparison, less than 1% of orally administered PEA is
found in the brain [48]. On the contrary, the relative brain bioavailability (AUC0–24h) for oral vs. the i.p.
injection route of ELB00824 is 31%, indicating unprecedented high brain (or nerve) bioavailability of
ELB00824, i.e., one or two orders of magnitude higher than pioglitazone [27].
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7. The Unprecedented Therapeutic Window and BBB Permeability

Drugs, treated as foreign molecules by the BBB, are unable to pass. In fact, over 98 percent
of small molecule drugs do not show useful activity in the brain due to poor or no penetration
of the BBB [49,50]. Therefore, the distribution of compounds between blood and brain is a very
important for the consideration of new candidate drug molecules for neurological disorders. Many
models for the prediction of passive blood–brain partitioning, expressed in terms of logBB or log of
observed permeability surface area (logPS) values, were derived with a good predictive power [51,52].
For a given compound, a logBB > 0.3, or logPS > −1 is considered to readily cross the BBB, while a
logBB < −1 or logPS < −2 are poorly distributed to the brain. A total of 49 PPARγ agonists used in
clinical trials or marketed were collected and compared with ELB00824. These PPARγ agonists were
ranked according to the predicted equilibrium blood–brain solute distribution (logBB) value in Table 1.
See Supplementary Materials and Table S1 for more details.

Table 1 shows that the logBB and logPS value of ELB00824 is highest (0.747 and−0.79, respectively),
indicating that ELB00824 is the PPARγ agonist with the best BBB permeability, followed by Sodelglitazar
(whose Phase 2 studies were terminated prior to completion due to safety). Note that pioglitazone, the
most widely used PPARγ agonist in neurology clinical studies, has predicted poor BBB permeability
(BB = 10−0.561, since logBB = −0.561). This is only 1/20 that of ELB00824, with its BB = 10ˆ[0.747 −
(−0.561)] = 20.

Differences of BBB permeability make a significant difference in clinical trials. Some doctors and
pharmacists formerly have given high doses of drugs to patients thinking the PPARγ agonists with
less BBB permeability could be used to treat neurological disease as long as they increased the dose
<10-fold. However, unfortunately, numerous clinical trials have then failed. Why? Although the
reasons were generally not reported, the most logical reason is that current PPARγ drugs have limited
therapeutic windows in neurological disease treatment, i.e., a range of doses at which a medication is
effective without unacceptable adverse events.
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Table 1. Currently available PPARγ agonists and their Blood–Brain Permeability (BBB).

Developer Compound Name MW LogD7.4* pKa of
Acid Group*

TP
SA*

N + O
BBB Permeability

Log
BB**

Log
PS*** Conclusion

Elixiria ELB00824 290 5.94 N/A 17.1 1 0.747 −0.79 Excellent

GlaxoSmithKline Sodelglitazar 500 3.67 3.58 59.4 4 0.408 −1.76 Good

Emerald Health VCE-004.8 434 6.20 N/A 66.4 4 0.208 −1.16

Fair
CymaBay Arhalofenate 416 3.88 N/A 64.6 5 0.178 −1.75

Many companies Astaxanthin 597 8.05 N/A 74.6 4 0.036 −0.75
Mitsubishi Tanabe Netoglitazone 381 3.82 6.40A 55.4 4 0.030 −1.69

Zydus Cadila Saroglitazar 440 2.23 3.73 60.7 5 −0.030 −2.15

Poor perme-
ability

PPM Services GED-0507-34-levo 195 −2.04 3.90 72.6 4 −0.074 −3.38
Badische Tetradecylthioacetic acid 288 3.32 4.58 37.3 2 −0.148 −1.66
BioPhytis Norbixin. Macuneos 380 0.42 4.71, 5.31 74.6 4 −0.177 −2.75

Many companies Daidzein 254 1.77 6.48 66.8 4 −0.182 −2.33
Chipscreen Chiglitazar 573 5.03 3.57 80.6 6 −0.223 −1.60
Merck Sante Oxeglitazar 314 0.72 4.30 55.8 4 −0.287 −2.50

Glaxosmithkline Farglitazar 547 4.03 3.76 101.7 7 −0.289 −2.05
GlaxoSmithKline GSK-376501 532 2.97 3.35 79.2 7 −0.343 −2.12

Dainippon Sumitom DSP-8658 417 2.68 3.96 68.5 5 −0.429 −2.10
Kyorin MK-0767 422 2.22 6.40A 93.7 7 −0.430 −2.45

Lilly Etalocib 545 5.18 3.60 85.2 6 −0.516 −1.60
Aestus FK-614, ATx08-001 468 3.84 3.94 81.1 6 −0.542 −1.91

Omeros, Takada OMS-403, Pioglitazone 342 2.17 6.40A 68.3 5 −0.561 −2.24
Complexa 10-nitrooleic acid 327 3.59 4.99 80.4 5 −0.564 −1.97

Daiichi Sankyo Troglitazone 442 5.29 6.40, 10.8A 84.9 6 −0.567 −1.57
Daiichi Sankyo Rivoglitazone 397 2.12 6.40B 82.5 7 −0.573 −2.38

Bristol-Myers Squibb Peliglitazar 531 1.77 3.26 111.3 9 −0.582 −2.73
Takeda Imiglitazar 471 2.20 4.15 94.2 7 −0.604 −2.46

Daiichi Sankyo Efatutazone 503 3.97 6.40A 108.5 8 −0.672 −2.13
Many companies Mesalazine 153 -1.72 2.02 83.6 4 −0.689 −3.39

Minoryx MN-102 358 0.87 6.40A 88.5 6 −0.714 −2.76
T3D T3D-959 421 1.77 4.20 81.8 6 −0.718 −2.46
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Table 1. Cont.

Developer Compound Name MW LogD7.4* pKa of
Acid Group*

TP
SA*

N + O
BBB Permeability

Log
BB**

Log
PS*** Conclusion

Novo Nordisk Ragaglitazar 419 1.73 3.73 68.2 6 −0.718 −2.35
Pfizer Darglitazone 420 3.00 6.40 A 89.3 6 −0.722 −2.21

Glaxosmithkline Rosiglitazone 357 2.83 6.10, 6.80 C 71.5 6 −0.727 −2.09
Japan Tbacc Reglitazar 392 3.40 6.40 A 90.7 7 −0.751 −2.12

Bristol-Myers Squibb Muraglitazar 517 1.34 3.18 111.3 9 −0.778 −2.84
Lilly Naveglitazar 422 1.55 3.64 74.2 6 −0.833 −2.45

Roche Edaglitazone 465 4.05 6.40 A 81.4 6 −0.872 −1.86
Lilly LY-510929 464 2.45 3.63 81.8 6 −0.877 −2.28

Dr Reddy’s Balaglitazone 395 1.67 6.40 A 88.1 7 −0.906 −2.55
Roche Aleglitazar 438 1.79 4.30 81.8 6 −0.958 −2.46

Pfizer Indeglitazar 389 −0.60 3.53 94.8 7 −1.018 −3.20

Very poor
perme-
ability

Eisai E-3030 436 1.65 3.99 88.8 6 −1.089 −2.56
Daiichi Sankyo DS-6930 389 1.26 3.85 97.3 7 −1.128 −2.74

AstraZeneca Tesaglitazar 408 −0.15 3.73 99.1 7 −1.136 −3.12
Coherus, InteKrin CHS 131 514 6.15 7.11 68.3 5 −1.167 −1.19

Takeda Sipoglitazar 464 2.10 3.87 86.5 7 −1.230 −2.42
Abbvie Lanifbranor 435 0.75 3.76 89.3 6 −1.327 −2.80

Theracos CLX-0921 520 4.52 6.40 A 100.2 8 −1.331 −1.91
Merck MK-0533 527 3.29 3.82 87.0 7 −1.362 −2.11

Chong Kun Dang Lobeglitazone 490 3.48 6.40 A 102.9 9 −1.466 −2.20
Novartis Cevoglitazar 559 1.62 2.86 109.9 8 −1.592 −2.75

*Data were predicted by MarvinSketch software (version 6.1.4, Chemaxon, Boston, MA, USA), unless specified otherwise. **calculated by software pkcsm [51]. ***calculated by the model:
logPS = −2.19 + 0.262 × logD7.4 + 0.0583 × vsa_base − 0.009 × TPSA [52], vsa_base is 0 for all molecules and TPSA is the topological polar surface area. (N + O): the sum of the nitrogen and
oxygen. A: the pKa is estimated from the thiazolidinedione group of pioglitazone, at [53]. B: the pKa is from [54]. C: the pKa is from [55].
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Using pioglitazone as an example, the minimal effective dose (MED) with efficacy in acute
trigeminal neuropathic pain is 1000 mg/kg in mouse studies [27], equivalent to 4880 mg/kg in
human [56]. The latter is 65-fold that of the maximum tolerated dose (MTD, i.e., 75 mg/kg [57]), thus
MED >> MTD. Obviously, such a high dose of pioglitazone can not be used to treat pain without serious
side effects, including upper respiratory tract infection, edema, and hypoglycemia, cardiac failure,
bone fracture, headache, and pharyngitis [58]. One the contrary, the MED of ELB00824 for trigeminal
neuropathic pain in mouse and rat is only 3–10 mg/kg, equivalent to 15–49 mg/kg in human. This is
lower than the MTD of ELB00824 (75 mg/kg). Assuming that the MTD of pioglitazone is the same as
the MTD of ELB00824, MED < MTD. It is much easier to find the therapeutic window for ELB00824.
For example, the 45 mg/kg dose of ELB00824 is effective without unacceptable adverse events.

In conclusion, the excellent BBB permeability of ELB00824 provides a reasonable therapeutic
window for neurological diseases, while other PPARγ agonists likely do not.

8. Efficacy of ELB00824 for the Reduction of Chronic Neuropathic Pain

ELB00824 reduces mechanical allodynia after persisting distal infraorbital nerve injury (dIoN) in
rats of both sexes [27]. With either i.p. or p.o. dosing, the minimally effective dose of ELB00824 in the
CCI pain model is 10 mg/kg, while an equivalent dose of pioglitazone was 1000 mg/kg. Topical cream
application is highly efficacious (5 mg in 70 mg cream). A combination of ELB00824 (3 mg/kg) with
low dose gabapentin (0.3 mg/kg) further reduces allodynia to baseline.

In comparisons to the clinical anti-anxiety therapy carbamazepine, ELB00824 was highly effective
in the reduction of mechanical hypersensitivity tested in the TIC mouse chronic trigeminal nerve injury
model (Figure 3) [27]. Effectiveness was demonstrated with testing on both the ipsi- and contralateral
whiskerpads. The TIC model induction method here used an intraoral approach and was recently
renamed “FRICT-ION” [28].

Figure 3. Efficacy of ELB00824 and carbamazepine was tested after injection (i.p.) on day 21 post
Trigeminal Inflammatory Compression (TIC) nerve injury in male mice. The mechanical threshold was
determined 0, 0.5, 1, 2, 3, 4, and 5 hours after drug injection (n = 4) testing on both ipsi- and contralateral
whiskerpads. The data are presented as a mean ± SEM. Two-way ANOVA with Dunnett’s multiple
comparisons test. For all graphs, asterisks (***) indicate p < 0.001 and (****) p < 0.0001 compared to
vehicle. [27].

9. Effects of ELB00824 on Anxiety Measures

Anxiety-like behaviors were also assessed using the zero maze and light/dark preference tests
in mice with persisting allodynia in week six post model induction. ELB00824 was more effective in
the light/dark place preference test (Figure 4) [27]. In two of four anxiety measures, treatment with
ELB00824 was as effective as carbamazepine in restoring the zone transition number and reducing
the latency to enter the lighted area of the test chamber. In the zero maze, little effect was noted for
treatment with ELB00824 with the small sample size tested (Figure 5) [27].
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Figure 4. Anxiety develops in rodent neuropathic pain models persisting longer than 6 weeks. ELB00824
(10 mg/kg) significantly attenuated anxiety in the mice with chronic TIC at six weeks, in two of the
light/dark place preference test measures. Measures included zone transitions, entry latency into the
lighted chamber, the total occupancy time in the lighted chamber, and the total time in the dark chamber.
The decrease in anxiety was equivalent to a reduction by carbamazepine (30 mg/kg) for at least two of
the measures. The asterisks (*) indicate p < 0.05 and double asterisks (**) indicate p < 0.01 compared
to TIC with vehicle (n = 4) [27].

Figure 5. Efficacy of ELB0824 was less than that of carbamazepine with zero maze anxiety testing.
The testing of ELB00824 was done in mice with TIC chronic neuropathic pain persisting 6 weeks.
The asterisks (*) indicate p < 0.05 compared to TIC with vehicle (n = 4) [27].

10. Role of ELB00824 in Mitochondrial Bioenergetics in Neuropathic Pain

Improvement in the mitochondrial signaling pathway and antioxidant capacity has been shown
with pioglitazone treatment. An age-induced decrease in free radical reducing activity was reversed
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by pioglitazone (3 mg/kg, 4 weeks), which provided the enhancement of antioxidant molecule
gene and protein expression levels in an atrial fibrillation model induced by 30 s burst pacing [59].
The demonstration of the improvement in the antioxidant capacity and inhibition of mitochondrial
apoptotic signaling pathway was shown by dosing pioglitazone (10 mg/kg) 2 h prior to 45 min renal
artery clamp and 24 h reperfusion [60].

Neuronal mitochondrial dysfunction and the associated nitro-oxidative stress are also crucial
final common pathways of neuropathic pain [44,61,62]. There are many reactive oxygen species
(ROS) production sites in cells, and most of them are inside mitochondria. See the red stars in the
Figure 6. In the state of rest, most ROS are generated from two different sites in complex I, one site
in complex II, complex III, and ETF (ETF:Q oxidoreductase). Under some circumstances, GPDH
(Glycerol 3-phosphate dehydrogenase) or OGDH (Oxoglutarate Dehydrogenase) will also produce
ROS [39]. Through catalyzation by an enzyme called nitric-oxide synthase or NOS, ROS are able to
form peroxynitrite (ONOO−), which is a type of reactive nitrogen species (RNS). Since our preliminary
study found ELB00824 and pioglitazone inhibit ROS and RNS production (unpublished data), it was
proposed that they may interact directly with mitochondrial targets.

Figure 6. Major mitochondrial sites of reactive oxygen species (ROS) production as potential targets
of ELB00824 and antioxidants. The red stars are major ROS production sites. It is hypothesized that
ELB00824 targets mitochondrial proteins, such as complex I of the mitochondrial respiratory chain,
mitoNEET, or MPC (mitochondrial pyruvate carrier), and leads to a reduction in ROS generation, while
antioxidants target ROS directly.

Some mitochondrial targets have been identified (Figure 6), such as complex I of the respiratory
chain [63], MitoNEET (an iron transport protein), or MPC (mitochondrial pyruvate carrier) [64].
The respiratory control rate (RCR) is the best general measure of mitochondrial function. A high
RCR implies that the mitochondria have a high capacity for substrate oxidation and ATP turnover, a
low proton leak, and low ROS generation. We found that the RCR was compromised in the cortex
of mice with the persisting TIC nerve injury [44]. Combined low doses of pioglitazone (100 mg/kg)
and D-cycloserine (80 mg/kg), an antibiotic used to treat tuberculosis, given daily for 7 days improved
mitochondrial bioenergetics.

Other analgesics only provide symptomatic treatments, since they only target certain downstream
effectors in transduction (e.g., ion channels) after their upregulation, or the latter steps in the pain
process after the release of ROS [61]. Antioxidants interact directly with ROS to remove it. This removal
may be too late in the processes that lead to chronic pain. Compared with antioxidants, PPARγ agonists,
e.g., pioglitazone, do not directly scavenge ROS [13]. This indicates that ELB00824 may also target
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upstream effectors (e.g., by dissembling complex I) to prevent ROS generation, rather than direct ROS
removal. However, the mitochondrial targets of ELB00824 are not yet identified and will be part of our
on-going projects.

The preclinical testing of the non-opioid, ELB00824, has revealed the following advantages:

(1) Extraordinarily efficient and efficacious. ELB00824 has the highest CNS penetration among
existing PPARγ agonists. Our animal studies indicate that the analgesic effect of our ELB00824
is more highly efficient than other PPARγ agonists (100 times than Pioglitazone, over 30 times
than PEA), and some clinically used non-opioid analgesics (over 10 times than Carbamazepine).
Effectiveness was rapid and sustained longer than pioglitazone.

(2) Highly safe. ELB00824 is one of few non-opioid analgesics with excellent skin permeability, and
thus topical ELB00824 provides excellent anti-allodynic effects with far better benefit/risk ratios
than other non-topical agents. In addition, our animal study demonstrated that it is completely
safe, even at the dose of 45 times of the effective dose. Furthermore, it may be non-addictive,
since there is no record of addiction in the long history of the usage of any PPARγ agonist drug or
supplements (e.g., PEA).

(3) Provides both etiological and symptomatic treatment. ELB00824 can provide comprehensive
neuroprotection through its target protein PPARγ, a master gatekeeper in nerve injury and
repair. These neuroprotection actions include improvement in the aggravated oxidative stress
and inflammation condition, both of which are root causes of neuropathic pain. On the contrary,
opioids and other non-opioid analgesics do not protect nerves.

Testing of potential PPARγ therapeutics in suitable models persisting for longer durations to better
mimic clinical syndromes is essential to development of analgesics that will provide effective pain relief.
An added advantage of these models is the ability to test the relief of pain-related anxiety and depression.
Further development of the non-opioid ELB00824 analgesic with brain and nerve penetrability capable
of effectively restoring neuronal function and improving mitochondrial bioenergetics is a critical need.

Supplementary Materials: The following are available online, Supplementary Materials: Building and Testing
PPARγ Therapeutic ELB00824 with an Improved Therapeutic Window for Neuropathic Pain, Table S1: Structures
of the PPARγ agonists listed in Table 1.
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