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Abstract: Fucoidan exhibits several pharmacological activities and is characterized by high safety and
the absence of toxic side effects. However, the absorption of fucoidan is not well-characterized. In the
present study, fucoidan were labeled with fluorescein isothiocyanate (FITC) and their ability to traverse
a monolayer of Caco-2 cells was examined. The apparent permeability coefficients (Papp × 10−6)
of FITC-labeled fucoidan (FITC-fucoidan) were 26.23, 20.15, 17.93, 16.11 cm/sec, respectively, at the
concentration of 10 µg/mL at 0.5, 1, 1.5 and 2 h. The absorption of FITC-fucoidan was suppressed by
inhibitors of clathrin-mediated endocytosis, chlorpromazine, NH4Cl, and Dynasore; the inhibition
rates were 84.24%, 74.61%, and 63.94%, respectively. This finding suggested that clathrin-mediated
endocytosis was involved in fucoidan transport. Finally, tissue distribution of FITC-fucoidan was
studied in vivo after injection of 50 mg/kg body weight into the tail vein of mice. The results showed
that FITC-fucoidan targeted kidney and liver, reaching concentrations of 1092.31 and 284.27 µg/g
respectively after 0.5 h. In summary, the present work identified the mechanism of absorption
of fucoidan and documented its tissue distribution, providing a theoretical basis for the future
development of fucoidan applications.
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1. Introduction

Fucoidan is a water-soluble heteropolysaccharide, derived mostly from brown algae, such as Fucus
vesiculosus (Figure 1) [1] and certain echinoderms [2,3]. The structure of fucoidan varies among species,
whose skeleton mostly contains sulfate substituents and pyranose or other glycosyl unit, but the main
structural unit consists of sulfated L-fucose [4]. As a naturally occurring chemical, the distribution
of its relative molecular mass ranges from 1 to 1000 kDa [5]. The SO42− is the main functional group
responsible for the biological properties of polysaccharides, and its quantity and position are critical
determinants of the activity of these macromolecules. Recent studies have shown that fucoidan
can exert a wide range of pharmacological effects, including anti-inflammatory [6], antitumor [7],
antioxidative [8], antiviral, and antithrombotic activity, as well as improving immune response and
lipid metabolism [5,9–12]. However, only a small number of studies addressed the mechanism of
absorption and tissue distribution of this compound in vivo given their high molecular size [13–16].
Therefore, a detailed knowledge of its absorption mechanism is important for its biological activities.
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fucoidan lacks chromogenic groups, fluorescent reagents can bind to the hemiacetal aldehyde group 
at the end of the polysaccharide molecule and generate a fluorescent moiety capable of absorbing 
ultraviolet light under certain conditions. The objective of the current study was to optimize the 
method of fluorescent labeling of fucoidan by fluorescein isothiocyanate (FITC) [18] and elucidate 
the mechanism of fucoidan absorption utilizing the Caco-2 cell 7-day model. 

Although it is known that the tissue distribution of polysaccharides depends largely on their 
type and physicochemical properties [19–21], studies on this subject are limited. Therefore, the 
understanding of the mechanism of absorption and pharmacokinetics of fucoidan will not only 
promote the high-value development of kelp resources but will also provide the theoretical 
foundation for the application of fucoidan in healthcare products and pharmaceuticals. 

 

Figure 1. Fucoidan structure from Fucus vesiculosus. 
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The results of the photography under the gel imager showed that FITC-fucoidan had been 
marked successfully (Figure 2). Fucoidan had been successfully labeled. Specifically, the fucose 
content of fucoidan and FITC-fucoidan was 42.86% and 45.11%, respectively (Table 1), indicating that 
the method of FITC labeling did not affect the fucose content in fucoidan.  

 

Figure 2. Agarose electrophoresis of fluorescein isothiocyanate-fucoidan (FITC-fucoidan). 

Table 1. The fucose content and sulfate content of fucoidan before and after being labeled. 

Fucoidan 
Content% 

Before Labeled After Labeled 
Fucose content 42.86 ± 0.24 45.11 ± 0.88 

Figure 1. Fucoidan structure from Fucus vesiculosus.

Given the complex chemical structure of fucoidan, the difficulty of the mechanism of absorption
determination has impeded the development of research on intestinal absorption of this molecule.
Recently, techniques based on the detection of fluorescence have been employed in drug microanalysis
because of their specificity, sensitivity, and low detection threshold [17]. Although fucoidan lacks
chromogenic groups, fluorescent reagents can bind to the hemiacetal aldehyde group at the end of
the polysaccharide molecule and generate a fluorescent moiety capable of absorbing ultraviolet light
under certain conditions. The objective of the current study was to optimize the method of fluorescent
labeling of fucoidan by fluorescein isothiocyanate (FITC) [18] and elucidate the mechanism of fucoidan
absorption utilizing the Caco-2 cell 7-day model.

Although it is known that the tissue distribution of polysaccharides depends largely on their type
and physicochemical properties [19–21], studies on this subject are limited. Therefore, the understanding
of the mechanism of absorption and pharmacokinetics of fucoidan will not only promote the high-value
development of kelp resources but will also provide the theoretical foundation for the application of
fucoidan in healthcare products and pharmaceuticals.

2. Results

2.1. Fluorescence Labeling of Fucoidan

The results of the photography under the gel imager showed that FITC-fucoidan had been marked
successfully (Figure 2). Fucoidan had been successfully labeled. Specifically, the fucose content of
fucoidan and FITC-fucoidan was 42.86% and 45.11%, respectively (Table 1), indicating that the method
of FITC labeling did not affect the fucose content in fucoidan.

Table 1. The fucose content and sulfate content of fucoidan before and after being labeled.

Fucoidan
Content%

Before Labeled After Labeled

Fucose content 42.86 ± 0.24 45.11 ± 0.88
Sulfate content 25.37 ± 0.25 25.33 ± 0.34
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2.2. Establishment and Assessment of Seven-Day Absorption Model of Caco-2 Cells

The transmembrane resistance (TEER) values of the monolayer of Caco-2 cells at different plating
densities were tested (Figure 3A), showing that either too high or too low cell density was not conducive
to the formation of the cell monolayer. At the appropriate cell density, the formation of monolayers
can be accelerated in a short time by adding puromycin (PM). Therefore, Caco-2 cells were cultured in
Puromycin -Dulbecco’s modified Eagle’s medium (PM-DMEM) at a density of 10 × 104 cells/well for 7
days [22]. Together, the monolayers of Caco-2 cells cultured in PM-DMEM medium were compact and
intact for 7 days, which had no significant difference from the 21-day model and could be used for
drug absorption study (Figure 3B).
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2.4. The Mechanism of Fucoidan Absorption and Transport 

2.4.1. Absorption and Transport of Fucoidan 

FITC-fucoidan did not affect the proliferation of the cells at concentrations of up to 1000 μg/mL, 
indicating the absence of a toxic effect. The Papp and absorption rates of FITC-fucoidan showed a 

Figure 3. Establishment and assessment of seven-day absorption model of Caco-2 cells. (A) The
transmembrane resistance (TEER) comparison at different concentration of Caco-2 cell density which were
cultured in Puromycin -Dulbecco’s modified Eagle’s medium (PM-DMEM) medium. (B) The Papp of the
markers of paracellular transport was expressed as the means± SD (n = 3). (C) The Papp of FITC-transferrin
at different time and concentration was expressed as the means ± SD (n = 3). (D) The absorptivity of
FITC-transferrin at different time and concentration was expressed as the means ± SD (n = 3).

2.3. Verification of the Absorption and Transport Function of Caco-2 Monolayer Cell Model

FITC-Transferrin is often used to test the function of Caco-2 monolayer cell model and it was
transported from upper chamber to the lower chamber, which can be concluded that the 7-day
absorption model of Caco-2 cells had been successfully established and exhibited adequate absorption
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and transport characteristics. At different concentration and time, the Papp and absorptivity of
FITC-Transferrin with 10 µg /mL were higher than those of FITC-Transferrin with 50 µg /mL, and the
lower the concentration, the easier it was to be absorbed (Figure 3C,D). So, it was speculated that the
absorption and transport of transferrin was saturated.

2.4. The Mechanism of Fucoidan Absorption and Transport

2.4.1. Absorption and Transport of Fucoidan

FITC-fucoidan did not affect the proliferation of the cells at concentrations of up to 1000 µg/mL,
indicating the absence of a toxic effect. The Papp and absorption rates of FITC-fucoidan showed a trend
consistent with the values obtained for FITC-transferrin, they decreased with increasing concentration
(Figure 4A,B). These findings suggested that the transport of fucoidan may be carrier-dependent since
transferrin is often used as a marker for clathrin-mediated endocytosis [23,24].
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Figure 4. The absorption of FITC-fucoidan and the effect of inhibitors on it. (A) The Papp of
FITC-fucoidan at different time and concentration was expressed as the means ± SD (n = 3). (B) The
absorptivity of FITC-fucoidan at different time and concentration was expressed as the means ± SD
(n = 3). (C) The absorptivity of FITC-transferrin and FITC-fucoidan by adding clathrin inhibitors
CPZ, Dynasore and NH4CL was expressed as the means ± SD (n = 3). (D) The inhibition rate of
FITC-Transferrin and FITC-fucoidan by adding clathrin inhibitors CPZ, Dynasore and NH4CL was
expressed as the means ± SD (n = 3).

2.4.2. Effect of Inhibition of Clathrin-Mediated Endocytosis on the Absorption and Transport of Fucoidan

Similar to FITC-Transferrin, Chlorpromazine (CPZ), Dynasore and NH4CL can inhibit FITC-fucoidan
absorption. Compared with the control group, Papp values of Dynasore group, NH4CL group and CPZ
group were 8.07, 5.68 and 3.53 cm/sec respectively, the absorption rate were 4.88%, 2.08%, and 2.13%,
respectively (Figure 4C,D). CPZ, Dynasore and NH4CL are inhibitors of clathrin, thus, inhibitors of
clathrin-mediated endocytosis reduced the absorption of FITC-fucoidan, demonstrating the involvement
of the clathrin endocytic pathway in the absorption and transport of fucoidan.
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2.5. Tissue Distribution of Fucoidan in Mice

2.5.1. Toxicity of Fucoidan in Mice

During the observation period, the mice’s eating, drinking and excretion activities were normal,
and the mice’s weight gain had no significant difference. The doses of FITC-fucoidan ranging from 10
to 2500 mg/kg body weight did not cause any mortality, and all mice survived the observation period,
indicating the safety of FITC-fucoidan. Post-mortem examination showed that the morphology and
color of all organs were normal, and no other pathological changes were found, providing additional
documentation of FITC-fucoidan safety.

2.5.2. Tissue Distribution of Fucoidan

It has been confirmed that free FITC did not affect the detection of FITC-fucoidan in biological
samples. The standard curve of FITC-fucoidan in various tissues was tested (Table 2). The concentrations
of FITC-fucoidan in various tissue samples at different times (Figure 5A–E) and the main pharmacokinetic
parameters of FITC-fucoidan (50 mg/kg) after tail vein injection in mice were tested (Table 3). These results
documented that FITC-fucoidan was rapidly eliminated from the blood after intravenous administration;
the blood concentration of FITC-fucoidan reached 66.37 µg/g after 30 min and decreased afterward;
FITC-fucoidan was not detected in the blood after 4 h. The presence of FITC-fucoidan was identified in
the liver, spleen, lung, and kidney, with the latter always exhibiting the highest concentration. The level of
FITC-fucoidan in the kidney tissue reached 1092.31 µg/g after 4 h, followed by a decrease in concentration,
indicating that the kidney has a strong ability to uptake FITC-fucoidan. The concentration of FITC-fucoidan
in the liver reached a maximum of 284.27 µg/g at 0.5 h, and in the lung a maximum of 110.92 µg/g at
4 h. FITC-fucoidan was always detected in the spleen, and the concentration reached a maximum of
77.79 µg/g at 6 h. The molecule was not detected in the brain and the heart.
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Figure 5. Tissue distribution of FITC-fucoidan in mice. (A) Concentrations of FITC-fucoidan in blood
(µg/g) was expressed as the means ± SD (n = 5). (B) Concentrations of FITC-fucoidan in liver (µg/g)
was expressed as the means ± SD (n = 5). (C) Concentrations of FITC-fucoidan in spleen (µg/g) was
expressed as the means ± SD (n = 5). (D) Concentrations of FITC-fucoidan in lung (µg/g) was expressed
as the means ± SD (n = 5). (E) Concentrations of FITC-fucoidan in kidney (µg/g) was expressed as the
means ± SD (n = 5).
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Table 2. The standard curve of FITC-fucoidan in tissues.

Tissue Standard Curve R2

Blood Y = 1028.62 X + 48217.63 0.999
Heart Y = 1595.96 X + 153165.43 0.994
Liver Y = 3217.36 X + 164583.03 0.998

Spleen Y = 2902.54 X + 26586.43 0.998
Pulmonary Y = 3194.69 X + 35547.02 0.995

Renal Y = 1791.22 X + 215822.65 0.99
Brain Y = 2427.88 X + 48044.49 0.998

Table 3. Main pharmacokinetic parameters of FITC-fucoidan in mice tissues by intravenous
administration (50 mg/kg).

Parameter Unit
Tissue

Blood Liver Spleen Lung Kidney

Kel 1/h 0.25 ± 0.10 0.07 ± 0.01 0.003 ± 0.02 0.18 ± 0.05 0.03 ± 0.04
T1/2 h 2.77 ± 0.82 10.67 ± 3.73 209.22 ± 6.94 3.79 ± 0.97 22.27 ± 1.75
Tmax h 0.5 0.5 ± 0.29 6 ± 1.15 4 ± 1 0.5
Cmax µg/g 66.37 ± 25.56 284.27 ± 211.88 77.79 ± 30.05 110.92 ± 81.897 1092.31 ± 297.66

C0 µg/g 135.28 ± 59.91 495.25 ± 159.14 47.61 ± 17.28 188.58 ± 48.32 1949.94 ± 1448.45
AUC 0-t µg/g×h 138.71 ± 20.64 1653.86 ± 567.04 1597.28 ± 394.38 1694.21 ± 580.70 7520.11 ± 2110.44
AUC 0-∞ µg/g×h 198.11 ± 41.10 2947.506 ± 992.52 22886.97 ± 1301.13 1709.85 ± 588.22 12834.30 ± 5247.13
MRT 0-∞ h 3.23 ± 1.30 14.66 ± 5.94 303.96 ± 13.44 6.88 ± 0.37 28.14 ± 12.324

CL (mg)/(µg/g)/h 0.25 ± 0.04 0.02 ± 0.001 0.002 ± 0.01 0.03 ± 0.004 0.004 ± 0.003

3. Materials and Methods

3.1. Materials

Fucoidan from F. vesiculosus was purchased from Sigma-Aldrich, USA (≥95%, CAS:9072-19-9), its
monosaccharide composition has been detected (fucose:138.7 ± 5.5; rhamnose: 2.0 ± 0.6; galactose:
27.9 ± 1.4; glucose: 2.5 ± 1.8; xylose: 12.8 ± 1, 6; mannose: 0.2 ± 0.4: glucuronic acid: 18.5 ± 1.9) [25,26];
Caco-2 cell was purchased from Kunming Institute of Zoology, Chinese Academy of Sciences Kunming
Cell Bank; Trypsin was purchased from Invitrogen, US; Penicillin and Streptomycin was purchased
from Invitrogen, USA; Chromatographic column (G4000PWXL) was purchased from Agilent, USA;
Methylthiazolyldiphenyl-tetrazolium bromide (MTT) was purchased from Beyotime Biotechnology,
China; DMSO was purchased from Sigma-Aldrich, USA; puromycin was purchased from Aladdin,
China; fluorescent yellow was purchased from Aladdin, China; chlorpromazine hydrochloride
was purchased from Aladdin, China; Dynasore was purchased from Aladdin, China; Ammonium
chloride was purchased from Shanghai Sinopharm Group, China; FITC labeled human transferrin
(Chromatographic grade) was purchased from Jackson, USA; Fluorescein isothiocyanate (FITC) was
purchased from Aladdin, China; Sodium cyanoborohydride was purchased from Aladdin, China;
Fucose was purchased from L-Fucose, Aladdin, China; Transwell Chamber (0.4 µm) was purchased
from Millipore, USA.

3.2. Fluorescent Labeling of Fucoidan

After dissolving 1 g of fucoidan in phosphate buffer solution (pH 7.4), tyramine (2g) was added
and the reaction was carried out at 37 ◦C for 24 h. Subsequently, NaBH3CN (1g) was added, the sample
was placed in a shaker at 37 ◦C for 96 h, and then centrifuged to obtain a supernatant. The FITC-labeled
fucoidan (FITC-fucoidan) solution was obtained by reacting the supernatant with 25 mg FITC at 37 ◦C
for 36 h. The resulting solution was centrifuged, and the supernatant was subjected to ultrafiltration
using a tangential flow membrane filtration system (Spectrum Laboratories, Inc, USA). Small molecules
were removed by Superdex 30 (Thermo Fisher Scientific) and the preparation was freeze-dried to
obtain pure FITC-fucoidan [25].
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3.3. Effect of FITC Labeling on the Content of Fucose and Sulfate

Using fucoidan and FITC-fucoidan as samples to be tested, the changes of fucose content and sulfate
content in fucoidan were determined by cysteine hydrochloride method and barium chloride-gelatin
method respectively [27,28].

3.4. MTT Assay for Cell Viability

The cytotoxicity of FITC-fucoidan to Caco-2 cells was determined using the MTT assay.
Precultured cells (5 × 104 cells/well) in DMEM medium were plated on a 96-well microplate for
24 h. Subsequently, the medium was removed and replaced with medium containing different
concentrations of FITC-fucoidan(0, 10, 100, 1000 µg/mL). After incubation for 48 h, 10 µL of 5 mg/mL
MTT solution was added to each well, and the cells were incubated for an additional 4 h. The medium
was aspirated, 100 µL of DMSO was added to each well, and the plates were shaken for 3 min using a
vortex instrument until thoroughly mixed. The absorbance of each well was measured at a wavelength
of 490 nm by a microplate reader [28].

3.5. Caco-2 Cell Culture and Establishment of Caco-2 Monolayer Cell Model

Caco-2 cells were cultured in DMEM containing 20% (v/v) FBS, penicillin and streptomycin
(100 U/mL), and the cells were cultured in a 25 cm2 cassette culture flask and placed in a CO2 incubator
(Thermo Electron Corporation, USA). When the cell density reached 80–90% confluence, it was digested
with 0.25% trypsin-0.02% Ethylene Diamine Tetraacetic Acid (EDTA) and passaged at a ratio of 1:3.
Cells in the logarithmic phase of growth were suspended at concentrations of 25 × 104, 50 × 104,
and 100 × 104 cells/mL in DMEM containing 0.4 µg/mL puromycin (PM). The cells in PM-DMEM were
cultured for 7 days, and the cells in normal-DMEM for 21 days. Add 1.0 mL of medium to the lower
chamber of Transwell. The liquid was changed every other day [29].

After the cells were cultured for 21 days in normal-DMEM and 7 days in PM-DMEM, a Caco-2
cell monolayer model was formed by using a Millicell-ERS voltammeter (Millipore Company, USA)
to monitor the transmembrane resistance (TEER) of the Caco-2 cell monolayer film in real time to
evaluate the quality of the monolayer cell membrane. The TEER value of the Caco-2 cell monolayers
exceeding >500 Ω × cm2 was considered to be qualified for subsequent transmembrane transport
experiments. After modeling, 250 µg/mL fluorescent yellow solution was added to the apical side to
detect the transmittance of basal side fluorescent yellow at different times. The fluorescence intensity
of the medium was measured by a microplate reader at 490 nm and at 520 nm.

3.6. Verification of the Absorption and Transport Function of Caco-2 Monolayer Cell Model

After a seven-day absorption model of Caco-2 cells was established, 300 µL of FITC-labeled
transferrin (FITC-transferrin) solution (10 or 50 µg/mL) was added to the upper chamber, and 800 µL
of DMEM medium was added to the lower chamber. The chambers were incubated at 37 ◦C, and the
medium from the lower chamber was collected at 30, 60, 90, 120, and 150 min. The fluorescence
intensity of the medium was measured by a microplate reader at 490 nm and at 520 nm [29].

3.7. The Mechanism of Fucoidan Absorption and Transport

After establishing a 7-day absorption model of Caco-2 cells in a transwell chamber, 300 µL of
FITC-fucoidan solution, at concentrations of 2, 10, and 50 µg/mL, was added to the upper chamber, and
800 µL of DMEM medium was added to the lower chamber. The chambers were incubated at 37 ◦C,
and the medium from the lower chamber was collected at 30, 60, 90, 120, and 150 min. The intensity of
fluorescence was measured by a microplate reader at 490 nm and 520 nm.

The cell monolayers were incubated with solution containing different inhibitors (CPZ, Dynasore,
and NH4Cl in DMEM medium at concentrations of 10, 20, and 50 µg/mL). The experiments
included two groups, the first group is as follows: blank group, FITC-fucoidan group, CPZ +
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FITC-fucoidan group, NH4Cl + FITC-fucoidan group, Dynasore+FITC-fucoidan group; the second
group is as follows: FITC-transferrin group, CPZ + FITC-transferrin group, NH4Cl + FITC-transferrin
group, Dynasore+FITC-transferrin group. Inhibitors were added to the upper chamber respectively,
and DMEM medium was added to the lower chamber. After 30 min, the medium in the upper chamber
was aspirated, and 10 µg/mL of FITC-fucoidan or FITC-transferrin solutions were added to the upper
chamber. DMEM medium was added to the lower chamber and the culture was incubated at 37 ◦C for
120 min. Finally the medium from the lower chamber was collected at 30, 60, and 120 min. The intensity
of fluorescence was measured by a microplate reader at 490 nm and 520 nm.

3.8. Tissue distribution of Fucoidan in Mice

Twenty Kunming mice were kept under a 12-h light–dark cycle at 22 ± 2 ◦C and humidity of
60 ± 10%; water and food were available ad libitum. Mice were fasted overnight before the experiment.
The mice were weighed and randomly divided into 4 groups, the blank group was injected with normal
saline, and the three remaining groups were injected into the tail vein with 10, 500, and 2500 mg/kg
FITC-fucoidan for 7 days, respectively. The weight was measured again at the end of the experiment to
determine the toxicity of fucoidan on mice.

The untreated mice were sacrificed, a standard curve was established as the following method.
Blood was quickly collected from the heart, centrifuged in a tube containing 0.2 mL of 4% trisodium
citrate, and the supernatant plasma was aspirated and frozen. Heart, liver, spleen, lung, kidney,
and brain tissue were collected and homogenized. Tissue homogenate and plasma were added with 0,
0.2, 0.4, 0.8, 1, 2, 4, 6, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 80 and 100 µL of FITC solutions respectively
to obtain FITC-tissue homogenate mixture. The fluorescence intensity was measured at 490 nm and
520 nm using a microplate reader.

The treated mice was injected into the tail vein with a solution of FITC-fucoidanl (50 mg/kg).
The blank group received an injection of normal saline. Mice were sacrificed at 0.5, 1, 2, 4, 6, 12, and
24 h after administration of FITC-fucoidan. All tissues and organs were collected and homogenized
according to the same method as above. The intensity of fluorescence was measured at 490 nm and
520 nm using a microplate reader. PK Solver 2.0 and non-atrioventricular model were used to analyze
the pharmacokinetic parameters of the experiment [30,31].

3.9. Statistical Analysis

All data in graphs were presented as the mean value ± standard deviation from three independent
measurements. The statistical analysis was used in statistical software (SPSS 21.0.0.0, Chicago, Ill, USA)
and GraphPad Prism 7.00 (GraphPad Software, California, USA). P < 0.05 was considered significant.

4. Conclusions

In recent years, much has been learned about the biological activities of fucoidan.
However, previous studies on the mechanism of polysaccharide transport in the intestine have focused
on oligosaccharide and high molecular weight polysaccharides was less successful. The molecular
mechanisms that allow high molecular weight polysaccharides to cross the intestinal epithelial cell
monolayers are critical for its clinical application. In this study, we found that absorption of fucoidan
was negatively correlated with its concentration before reaching dynamic equilibrium. It is speculated
that the absorption and transport of fucoidan need carriers and the endocytosis pathway of reticulin is
involved in their absorption. With the further development of the experiment, the tissue distribution
of fucoidan in mice was explored. The experimental results showed that fucoidan rapidly distributed
from blood to tissues, and accumulated preferentially to kidney and liver, but it was not detected in
the heart and brain tissues in this experiment, which can provide a theoretical basis for the future
development of fucoidan applications.
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In order to explain the absorption mechanism of fucoidan more clearly, more in-depth studies
on gene and protein levels are needed in the future to lay a deeper theoretical foundation for the
development of fucoidan.
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