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Abstract: A Tepary bean lectin fraction (TBLF) has been studied because it exhibits differential
cytotoxic and anticancer effects on colon cancer. The present work focuses on the evaluation of the
apoptotic mechanism of action on colon cancer cells. Initially, lethal concentrations (LC50) were
obtained for the three studied cell lines (HT-29, RKO and SW-480). HT-29 showed the highest LC50,
10 and 100 times higher than that of RKO and SW-480 cells, respectively. Apoptosis was evaluated by
flow cytometry, where HT-29 cells showed the highest levels of early and total apoptosis, caspases
activity was confirmed and necrosis was discarded. The effect on cell cycle arrest was shown in the
G0/G1 phase. Specific apoptosis-related gene expression was determined, where an increase in p53
and a decrease in Bcl-2 were observed. Expression of p53 gene showed the maximum level at 8 h with
an important decrease at 12 and 24 h, also the phosphorylated p53(ser46) increased at 8 h. Our results
show that TBLF induces apoptosis in colon cancer cells by p-p53(ser46) involvement. Further studies
will focus on studying the specific signal transduction pathway.
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1. Introduction

The development of new therapies against colon cancer is gaining great importance in the research
of natural products. Among plant compounds that have been studied because of their anticancer
effects, lectins are being strongly considered. They are glycoproteins with the ability to recognize
specific cell membrane carbohydrates [1,2]. Some plant lectins have shown differential cytotoxic
effects on cancer cell lines given the specific changes in cell membrane glycosylation patterns [3,4].
The cytotoxic effects of plant lectins on cancer cell lines are related to their high specificity to cell
membrane carbohydrates [5].

The specificity on different tumor cell lines could reflect different progression stages [6].
Some lectins can be internalized, causing cell death through ribosomal inactivation, or they can
initiate signaling cascades that lead to apoptosis [5,7]. The most recognized mechanisms of action
are the following: (1) At a physiological level, lectin-lymphocyte binding has been observed as well
as release of blood cytokines, activation and release of spleen lymphocytes, activation of NK cells
and macrophages, production of antiangiogenic factors, combination of intestinal hyperplasia and
antiangiogenic effects reducing nutrient availability and cytotoxic effects on tumor cells [8,9]. (2) At
the biochemical and molecular level, different mechanisms of action are proposed. One mechanism
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describes the binding of lectins to surface adhesion molecules that participate in a wide variety of
transduction signals important for cell regulation. A second mechanism suggests that lectins affect
the fundamental cellular process for cell division [10,11]. (3) A third level explains that lectin induces
apoptosis in several ways: dependent on the intracellular activation of caspase-8/FLICE, the activation
of caspase-3 and Poly (ADP-ribose) Polymerases (PARP) cleavage, the activation of Bax (pro-apoptotic
protein) and the inhibition of both Bcl-2 (apoptosis suppressor) and telomerase [5,11–14]. It is important
to note that it is not an indispensable requirement for lectin to be internalized, since apoptotic effects
can be caused by the interaction of lectin with cell membrane receptors.

Some lectins have been studied against colon cancer because of their effects on cell growth and
promotion of cell death in different cell lines [13,15,16], such as lectins of Arisaema helleborifolium (AHL),
Arisaema tortuosum (ATL), Arachis hypogaea (PNA), Viscum album (VAL, VAA, VAA-1), Sauromatum
venosum (SVA), Phaseolus vulgaris L. (PVA) and Vicia faba (VFA) [4–6,8,14,15,17]. A Tepary bean (Phaseolus
acutifolius) lectin fraction (TBLF) has shown differential cytotoxic effects on breast, cervix and colon
cancer cell lines as well as on non-malignant cells from the intestinal tract [15,18]. Similar effects were
observed with other Tepary bean lectin fractions on different colon cancer cell lines [19,20]. In vivo
studies have reported that TBLF (50 mg/kg by intragastric administration for six weeks every third
day) exhibits low toxicity, good tolerability and activates the immune system [21,22]. Between the
observed adverse effects are loss of body weight, small intestinal villus and colonic crypt atrophy and
exocrine pancreas hypertrophy, without systemic adverse effects. Negative effects could be reversible
after a recovery period [8]. When TBLF was tested against colon cancer (chemically induced using
dimethylhydrazine (DMH) or azoxymethane (AOM) in rats), early tumorigenesis inhibition was linked
with modulation of apoptotic pathways [23]. The present work focuses on the evaluation of the
apoptotic effect of TBLF on colon cancer cells, mainly by studying molecular mechanisms.

2. Results

2.1. Concentration-Response Study and LC50 Determination

Concentration-response curves were obtained for each cell line, the TBLF-LC50 values were
402 µg/mL for HT-29 cells, 49.2 µg/mL for RKO cells and 4.7 µg/mL for SW-480 cells (Figure 1).
Our results suggest that TBLF is able to recognize cancer cells in a differential manner, provoking
specific cytotoxic effects, even in cells derived from the same pathology. This differential effect was
previously demonstrated for TBLF [15,24]. These results show that HT-29 cells were almost 10 times
and 100 times more resistant than RKO and SW-480 cells, respectively. One of the relevant differences
between the cell lines was the expression of EGFR for SW-480 cells, which was the most sensitive cell
line to TBLF effects [5,6,13,14].
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Figure 1. Concentration–response curves for HT-29, RKO and SW-480 cells. Cells were treated with
different concentrations of Tepary bean lectin fraction (TBLF) for 24 h. (A) HT-29 cells (1, 10, 100, 500,
1000 and 1500 µg/mL). (B) RKO cells (1, 5, 10, 20, 40, 80, 200, 280, 320 and 400 µg/mL). (C) SW-480 cells
(1, 5, 10, 20, 100 and 200 µg/mL). A linear regression of log10 of the TBLF concentration vs. cell survival
(%) was calculated in each case.
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2.2. Effects on Cell Death and Cell Cycle Arrest

Apoptosis induction by TBLF was confirmed by annexin V determination (p ≤ 0.05) using the
LC50 for each cell line (Figure 2). A decrease in cell viability was determined in the three cell lines with
respect to control cells (p ≤ 0.05). Early apoptosis was observed with a 21.7% increase in HT-29 cells,
15% in SW-480 cells and 3% in RKO cells after 8 h treatment; late apoptosis had a 1% increase in HT-29
cells, 7% in SW-480 cells and 25% in RKO cells. Total apoptosis (subtracting baseline apoptosis in
control cells) was 22.77% for HT-29 cells, 23.3% for RKO cells and 18.31% for SW-480 cells. Differential
effects were observed again and the apoptosis mechanism was determined in HT-29 cells because this
cell line showed the highest level of early and total apoptosis.
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Figure 2. TBLF effect on apoptosis induction. Cells were treated for 8 h with the lethal concentration
(LC50). (A) Live cells, (B) early apoptosis, (C) late apoptosis, (D) total apoptosis. Camptothecin (5 µM)
was used as a positive control and 0.5% bovine serum albumin (BSA) as a negative control. (E) Flow
cytometry representative dot plots are shown. (*) Statistically significant difference (Student t test,
p ≤ 0.05).
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The cytotoxic effect of TBLF was tested (Figure 3), where no necrotic effect after treatment with
TBLF-LC50 for 8 h was observed. Several studies have shown that induction of apoptosis by the
activation of multiple caspases is a common mechanism of various lectins [25]. Caspase-3, an apoptosis
effector protein, is currently considered a marker of this process [26]. In the present work, increases of
30% of caspase-3 activity and 50% of total caspases activity were observed with respect to control cells
(p ≤ 0.05) after 8 h treatment with TBLF-LC50. Cell cycle arrest showed an increase of 27.4% in the
G0/G1 phase with respect to the negative control (p ≤ 0.05) (Figure 4), but no effect was observed in S
and in G2/M phases.
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Figure 3. Effect of TBLF on necrosis and activation of caspases in HT-29 colon cancer cells. Cells were
treated with the TBLF-LC50 for 8 h. (A) Cell viability (live cells), (B) lactate dehydrogenase release as
necrosis marker, (C) caspase-3 activity, (D) total caspases activity. Camptothecin (5 µM) was used as a
positive control and 0.5% BSA as a negative control. (*) Statistically significant difference (Student t test,
p < 0.05).
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Figure 4. Effect of TBLF on cell cycle arrest on HT-29 colon cancer cells. Cells were treated with the
TBLF-LC50 for 8 h. (A) Representative results of the cell cycle analysis; control group (BSA 0.5%),
TBLF-LC50 and positive control camptothecin (5 µM). (B) Graphic results obtained in the cell cycle
analysis. One-way ANOVA was performed for each cell cycle phase. Small letters indicate significant
differences (Tukey p ≤ 0.05). (*) Indicates significant difference (Dunnett p ≤ 0.05) with respect to the
negative control group.
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2.3. Apoptotic-Related Gene Expression and Phosphorylation of P53 in Ser46

Significant changes in apoptotic gene expression were observed after TBLF-LC50 treatment
(Figure 5). A decrease in the expression of Bcl2 and an increase in p53 were determined, suggesting
that TBLF mainly affected the anti-apoptotic pathways. Changes in p53 expression from 0 to 24 h
showed and increase between 4 to 8 h with a significant decrease at 12 to 24 h. Phosphorylation of
p-p53(ser46) showed an increase, particularly during the first 8 h and subsequently was maintained.
These results suggest that the specific activation effect of p53(ser46) is related to an increase of p53
gene expression, where the apoptotic signal is carried out.
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Figure 5. Effect of TBLF-LC50 on apoptosis and cancer-signaling pathway gene expression in HT-29
colon cancer cells. (A) Cells were treated with the LC50 of TBLF for 8 h. Relative gene expression for
DCC, P53, APC, BCTNN, GSK-3, KRAS, PTEN, AKT, CAS9, BAD and BCL-2 with respect to B-actin.
(B) Cells were treated with the TBLF-LC50 for 0, 4, 8, 12 and 24 h. RT-qPCR evaluation for total p-53
gene respect to B-actin. (C) Western blot for total p53 and p-p53(ser46), graphic results are presented as
p-p53(ser46)/total p-53. Student t test significant difference: (*) p ≤ 0.05 and (***) p ≤ 0.001.

3. Discussion

Previous studies have shown that TBLF exhibits differential cytotoxic effects on cancer cell lines [15].
In an in vivo study, this lectin fraction inhibited early malignant lesions in the colon when rats were
treated with AOM as a cancer inductor and apoptosis was associated with a decrease in phosphorilated
form of Akt (p-Akt) [23]. In order to know the apoptotic mechanism of action, TBLF was tested in
three different colon cancer cell lines. LC50 values were calculated and the results showed that HT-29
adenocarcinoma cells exhibited the most resistant phenotype, with an LC50 almost 10 and 100 times
higher than that of RKO and SW-480 cells, respectively. HT-29 and RKO cells express a urokinase
receptor, while SW-480 cells are positive for the epidermal growth factor receptor (EGFR). As SW-480
cells exhibited the lowest LC50, suggesting that they were the most sensitive cells and the fact that in
the in vivo study a decrease in p-Akt was observed, it is probably that the EGFR may be involved in
lectin-cell interactions [23]. The mechanisms reported for cytotoxic effects of plant lectins have been
described in a wide range of cellular or physiological events such as activation of the immune system,
induction of apoptosis by blocking membrane receptors, provoking mitochondrial imbalance and
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effects on some signal transduction pathways [1,4,27]. HT-29 cells showed the highest level of early
and total apoptosis, while SW-480 cells exhibited the higher level of late apoptosis; this result agrees
with the fact of the sensitiveness of SW-480 cells.

As HT-29 cells showed the highest levels of early and total apoptosis, the mechanism of action was
evaluated using this cell line. Necrosis was discarded and this result agrees with the observed effects
for other lectins, such as Phaseolus coccineus lectins, where it was determined that it achieves only an
11% LDH increase after 24 h on L-929 fibroblasts [28]. In the same way, Clematis montana lectins were
tested on L929 cells and gave very similar results to those reported for Phaseolus coccineus lectins [29].
Apoptosis was determined by total caspases and caspase-3 activities, where TBLF increased both
parameters by 50% and 30%, respectively.

Apoptosis has been observed for other lectins such as Morus alba L., mulberry leaf lectins (MLL),
where caspase-3 activity was increased in breast (MCF-7) and colon (HCT-15) cells in a similar way to
cisplatin [11]. In the same way, mistletoe (Viscum album L.) lectins (VLL) induced caspase-3 activation
in all leukemia cells [12] and similar effects were observed for lectins of the Chinese medicinal plant
Astragalus membranaceus on K562 leukemia cells. Concanavalin A (Con A) and Sophora flavescens lectins
(SFL) induced caspase-mediated cell death and caspase-3 activity in MCF-7 breast cancer cells in a
concentration-dependent manner [13]. In the same way, the induction of apoptosis may have been
orchestrated by mediating proteins such as NF-κB, p73, Akt and p53, as well as by the processes of
autophagy and oxidative stress [25].

Cell cycle showed arrest in the G0/G1 phase after TBLF treatment for 8 h in HT-29 cells. Such a result
agrees with several studies that have shown the effect of lectins on cell cycle. An aqueous extract
of Viscum articulatum Burm. F. (VAQE) stopped the cell cycle in G2/M in human leukemia cells
and a Moringa oleifera seed lectin (MOSL) inhibited cell growth by arresting cell cycle in G2/M in
Ehrlich–Lettre ascites carcinoma (EAC) cells [30]. Specifically, in the metastatic SW-620 colon cancer cell
line, arrest was found in the S phase and was time-dependent. Arrest was also induced by Rhizoctonia
bataticola lectin (RBL) on cells with chromosomic structural loss [31]. Pea lectins provoke differential
cell cycle arrest, dependent on the cell line, causing G2/M arrest in SW-48 and G0/G1 arrest in SW-480
cells, both from human colon cancer [32].

Shi et al., 2014 observed a dose-dependent effect of Con A lectin on the apoptotic promoter genes’
Bid and Bax expression, proteins from the same family as Bad. However, it was observed that the
expression of Bad did not show differences with respect to the control. Bad protein can be induced by
Akt dephosphorylation, which has been observed to be affected by lectins of mistletoe VCL, in turn
inducing apoptosis [17,33]. In the present work, a decrease in Bcl2 expression and an increase in p53
was determined. In the previous in vivo studies using TBLF, premalignant lesions in the colon were
induced with AOM [23], but, in that moment, it was not possible to determine the effect of TBLF
on p53 because AOM induction causes apoptosis-induced proliferation (AiP) that increases the p53
level [34,35].

Multiple signaling pathways having different activators and deactivators, as well as changes in its
own pathway regulation, can affect the activity of p53. The participation of p53 as a transcription factor
and as a tumor suppressor is very important in making decisions for the fate of a damaged cell, although
the mechanisms by which it can be induced are not fully known [36,37]. Specific phosphorylation has
been observed in various events of death and cell survival that trigger the specific activation of genes or
regulate the permeability of the mitochondrial membrane. It has been observed that phosphorylation
of p53 in ser15 and ser20 occur during slight damage to DNA, while phosphorylation in ser46 is
involved with cell death [37–39]. Phosphorylation of p53 in ser46 is related to genotoxic stress and
occurs after several hours of cell damage when the cell death process could be considered irreversible,
which leads to cell cycle arrest and activation of control points [39,40]. It has been seen that some
natural compounds promote the phosphorylation of p53 in ser46; such is the case of the induction
of cell death by an extract of Zelkova serrata, which arrests the cell cycle in S-phase, activation of
caspase-8 and an increase in the amount of p-p53(ser46) in oral cancer cells in contrast to non-cancerous
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fibroblasts [41]. It has been observed that there is a genotoxic effect dependent on the activity of
p-p53(ser46) induced by treatment with quercetin and curcumin [42].

In this sense, when p53 is phosphorylated in serine 46, it induces signaling pathways triggering
apoptosis by stopping the cell cycle [37,43,44]. Our results suggest that p53 mutations in HT-29 cells
do not affect the phosphorylation in ser46 and TBLF treatment increases the p-p53(ser46) level at
8 h. Similar results have been observed in various studies for lectin-mediated cell death induction
pathways [27,45–48]. Some other lectins affect the p53-mediated apoptosis pathway [28,49,50].

4. Materials and Methods

4.1. Obtaining TBLF

Tepary bean (Phaseolus acutifolius) seeds were obtained from a local market in Hermosillo, Sonora,
Mexico. A sample of Tepary bean was deposited and identified in the herbarium of Dr. Jerzy Rzedowski
of the Natural Sciences Faculty, Querétaro Autonomous University, Santiago de Querétaro, México.
The TBLF was obtained as described previously [51] with modifications [15,52]. Briefly, bean seeds
were ground and degreased using a methanol/chloroform 2:1 solution, subsequently an aqueous
extract was obtained using Tris buffer pH 6.8, precipitated with ammonium sulphate (40 to 70%
saturation), centrifuged, dialyzed and separated by size-exclusion chromatography (Sephadex G75
column). Protein quantification was obtained by the Bradford method [53] and agglutination was
tested [54] using glutaraldehyde-treated erythrocytes [55].

4.2. Cell Culture and Concentration–Response Assay

Colon cancer cells HT-29, RKO and SW-480 were obtained from the American Type Culture
Collection (ATCC®) (Table 1) [56,57]. Cells were seeded in 60 mm diameter dishes with Dulbecco’s
modified Eagle’s medium, DMEM, (GIBCO, New York, NY, USA), supplemented with 10% fetal
bovine serum (FBS, Biowest, Nuaillé, France) at 37 ◦C under a 5% CO2 saturated water atmosphere,
with medium changes every two days until confluence.

Table 1. Studied colon cancer cell lines.

Cell Line Characteristics

HT-29 (ATCC®HTB-38™) Colorectal adenocarcinoma cells. Positive for c-myc, K-ras, H-ras, N-ras, Myb,
sis and fos oncogenes expression, N-myc oncogene expression was not

detected. p53 protein is overproduced with a G-A mutation in codon 273
resulting in an Arg-His substitution. Express human adrenergic alpha2A

receptor, urokinase receptor (u-PAR) and moderate expression of vitamin D
receptor

RKO (ATCC®CRL-2577™) Colon carcinoma cells. Wild-type p53 with high expression, positive for
urokinase receptor (u-PAR), but lack endogenous human thyroid receptor

nuclear receptor (h-TRbeta1).

SW-480 (ATCC®CCL-228™) Colorectal adenocarcinoma cells. Positive for the expression of c-myc, K-ras,
H-ras, N-ras, myb, sis and fos oncogenes, negative for N-myc oncogene

expression and for Matrilysin (a metalloproteinase associated with tumor
invasiveness), express high levels of p53 protein with a G-A mutation in
codon 273 of the p53 gene resulting in an Arg-His substitution and a C-T

mutation in codon 309 resulting in a Pro-Ser substitution. Positive for
epidermal growth factor receptor (EGFR).

Cytotoxic effects were determined by seeding 3 × 104 cells per well in 24-well dishes in DMEM
medium with 10% FBS for 48 h. Then they were synchronized with DMEM at 2% FBS for 24 h and
different concentrations of TBLF were added (HT-29 cells: 1, 10, 100, 500, 1000 and 1500 µg/mL;
RKO cells: 1, 5, 10, 20, 40, 80, 200, 280, 320 and 400 µg/mL; and SW-480 cells: 1, 5, 10, 20, 100 and
200 µg/mL) in DMEM/0.5% FBS for 24 h. The cells were collected after a 5 min incubation in
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trypsin/EDTA (0.15 Mm/0.5 M)/ and a direct count was performed with a Newbauer chamber (Merk
(BRAND®), Darmstadt, Germany). Cell number was determined following the formula (1) and the
lethal concentrations (LC50) were obtained by simple linear regression using the concentration log10 vs.
survival percent.

Total cells =
(Number o f cells counted)

(Number o f f ields)
× 10, 000×mL Suspension (1)

4.3. Evaluation of Apoptosis by Flow Cytometry

Cell death evaluation was performed using the Muse® Annexin V and Dead Cell Assay Kit
(Milipore cal. No: MCH 100105, Darmstadt, Germany) for the three cell lines. Briefly, cultures were
maintained under the previous described conditions until they reached 70% confluence. Three groups
were formed: negative control, incubated with 0.5% bovine serum albumin (BSA) in DMEM; treated
group, incubated with the TBLF LC50 (HT-29, 402 µg/mL; RKO, 49 µg/mL; SW-480, 4.7 µg/mL) in
0.5% BSA DMEM; and a positive control, treated with camptothecin 5 µM in DMEM 0.5% BSA for
8 h. Camptothecin is an antineoplastic alkaloid extracted from the Chinese tree Camptotheca acuminate.
Its mechanism of action is recognized for cell cycle arrest in the S phase, for promoting disruptions in the
double strand of DNA and for stabilizing the topoisomerase I-DNA complex promoting apoptosis [57].
Cells were collected by trypsinization and concentrated by centrifugation (6000× g for 5 min), then they
were washed with 1 Mm PBS to disaggregate the clustered cells. Cells in each group were adjusted
to 1 × 106 cells per mL in the culture medium and determinations were done following the supplier
indications. The experiments were performed in triplicate in at least two independent experiments.

4.4. Necrosis Determination by Lactate Dehydrogenase Assay

Lactate dehydrogenase (LDH) is used as a marker of cell necrosis. HT-29 cells were cultured as
previously described in 24-well plates and divided into three groups by triplicate: negative control,
incubated with 0.5% BSA in DMEM for 8 h at 37 ◦C; TBLF treated group, incubated with the LC50

(402 µg/mL) in 0.5% BSA-DMEM for 8 h at 37 ◦C; and a positive control, treated with 1% Triton
100X (JT Baker, cat No. X198-07, Madrid, Spain) in 0.5% BSA-DMEM and incubated at 37 ◦C for
30 min. The conditioned media were obtained and the LDH-Cytotoxicity Assay kit (Biovision, cat No.
K311-400, Milpitas, CA, USA) was used to evaluate the necrotic effect according to the manufacturer’s
instructions. Samples were read at 492 nm and the cytotoxicity percentage was calculated based on the
enzymatic activity of LDH, according to the following formula (2):

% Cytotoxicit = Treatment−Negative Control×
100

Positive Control
−Negative Control (2)

4.5. Caspase- 3 Activity by Colorimetric Assay and Flow Cytometry Multi-Caspase Assay

Caspase-3 activity was determined using the Caspase-3/CPP32 Colorimetric assay kit (BioVision,
Milpitas, CA, USA) according to the manufacturer’s protocol. HT-29 cells were cultured in 30 mm plates
(3 × 104 cells/plate) for 8 h and then LC50 of TBLF (402 µg/mL) was added to each well. After incubation
for 8 h, cells were harvested, washed with phosphate-buffered saline (PBS) and suspended in cold lysis
buffer. The cells were placed on ice for 20 min and lysed cells were centrifuged at 14,000× g for 15 min.
For the caspase assay, samples in assay buffer were mixed with caspase substrate (Ac-DEVD-pNA) in
a 96-well plate. After overnight incubation at 37 ◦C, the absorbance of released p-nitroaniline was
measured at 405 nm using a microplate reader (Spectra MAX 250, Molecular Devices). Caspase-3
activity was determined as follows (3):

Caspase− 3 activity =
Absorbance

µg of total Protain
/

cells number
µg of total Protain

(3)
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The flow cytometry multi-Caspases assay (for caspases −1, −3, −4, −5, −6, −7, −8 and −9)
was performed according the apoptosis assay by annexin V determination, as described previously,
using the Muse® MultiCaspase- Kit (Cat. No. MCH100109, Merk Millipore Inc, Darmstadt, Germany).
Briefly, HT-29 cells were incubated with LC50 for 8 h, harvested and incubated with 5 µL of Muse
multi-caspase reagent working solution at 37 ◦C for 30 min. After the incubation, 150 µL of Muse
Caspase 7-AAD working solution was added to each sample. The activities of caspases were determined
with the Muse™ Cell Analyzer (Merck Millipore, Darmstadt, Germany).

4.6. Cell Cycle Analysis

Flow cytometry was performed by seeding 3× 105 cells in 60 mm culture dishes in 10% FBS-DMEM
and incubating them at 37 ◦C as previously described. When cultures reached 70% confluence, they were
divided into three groups per triplicate: negative control, which was incubated in 0.5% BSA-DMEM;
TBLF treated cells, added with TBLF LC50 in 0.5% BSA-DMEM; and a positive control, using 5 µM
Camptothecin in 0.5% BSA-DMEM. All groups were incubated for 8 h and cells were collected by
trypsinization and centrifugation (6000× g for 5 min). Cells were washed with 1x PBS/1 mM EDTA to
disaggregate cells and then fixed in 70% ethanol for 4 h at −20 ◦C following the instructions (Muse®

Cell Cycle Assay Kit, Merk Millipore. Cat. No. MCH1006, Darmstadt, Germany). All assays were
made in triplicate and with at least two independent experiments.

4.7. Gene Expression Evaluation

Treated cells were cultured as previously indicated for the flow cytometry assay. RNA extraction
and purification was carried out by adding 400 µL of Trizol (Invitrogen ™, Carlsbad, CA, USA) to
cells in 60 mm plates, homogenizing and kit instructions were followed (Direct-zol™ RNA MiniPrep
RNA extraction kit was used, Zymo Research, Cat. No. R2052, Irvine, CA, USA). Samples were
resuspended in nuclease-free water, total RNA was quantified and purity was determined by
spectrophotometry using a NanoDrop™ 2000/2000c spectrophotometer (Thermo Scientific, Waltham,
MA, USA). cDNA synthesis was achieved for each 2 µg of RNA added in 200 µL microtubes and
following the supplier’s instructions for the kit (Maxima H Minus First Strand cDNA Synthesis,
Thermo Scientific. Cat. No. K1652, Waltham, MA, USA) for a reaction volume of 40 µL and a cycle of
25 ◦C for 5 min, 65 ◦C for 30 min and 85 ◦C for 15 min.

Primers were designed selecting genes related to the colorectal carcinogenesis signaling pathway.
Genetic sequences were analyzed by the UCSC Genome Browser of the University of California [58]
and primers were made by using the Primer3 page [59], seeking a TM of 60 ± 2 ◦C (for 20 ± 2 bp),
a product size of 100–250 bp and CG ≥ 50%. Sequences were synthesized by Sigma Laboratories
(Aldrich, Mexico) (Table 2). The q-PCR reaction was performed in 96-well PCR plates using 3.4 µL of
nuclease-free water, 5 µL of SYBR® Select Master Mix for CFX (Applied Biosystems, Cat. No. 4472942,
Foster City, CA, USA) and 1 µL of cDNA template for each reaction. A BioRad thermocycler (CFX96
model C1000, Bio-Rad Laboratories, Inc, Hercules, CA, USA) was used with the following conditions:
95 ◦C for 10 min (15 s at 95 ◦C, 30 s at 60 ◦C, 30 s at 72 ◦C) for 35 cycles and then held at 16 ◦C until
determination was done.
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Table 2. Primer sequences for Real-Time Polymerase Chain Reaction (qPCR).

Gen Target Forward Reverse

B-CTNN TGGACTTGATATTGGTGCCCA GCCACCCATCTCATGTTCCA

DCC CCCCTGAAGTGTCTGAGGAG AGCTGCTTCATGAGTCCTTCC

PI3K TGGAGCTGACCCAAATCCAT TTCAAAGGCAGGGTTACTCC

GSK3 CTCCATCCAACCGTCTCTCA GGTAGGTGTGGCATCGGTC

CAS9 CAAGAGTGGCTCCTGGTACG TCCCTTTCACCGAAACAGCA

BAD TTCGGAGGATGAGTGACGAG CAAGTTCCGATCCCACCAGG

PTEN GCCGTCAAATCCAGAGGCTA GGATCAGAGTCAGTGGTGTCA

AKT CCTTCAAGCCCCAGGTCAC CGCTCGCTGTCCACACAC

TP53 CCAACAACACCAGCTCCTCT TCAGGAAGTAACACCATCGTAAG

BCL-2 GACTGAGTACCTGAACCGGC GGCCAAACTGAGCAGAGTCT

KRAS TGTGATTTGCCTTCTAGAACAGT ACACCCTGTCTTGTCTTTGCT

4.8. Protein Determination by Western Blot

Total protein was extracted from a pellet of approximately 5 × 106 HT-29 cells per time period (2, 4,
8 and 12 h) from the two groups: negative control (0.5% BSA-DMEM) and TBLF LC50 (0.0402 mg/mL).
Cells were lysed using the CelLytic™ MT Cell Lysis Reagent (Sigma Aldrich, Cat. No. C3228,
St. Louis, MO, USA) and total protein was determined [53]. Protein concentration was adjusted to
5 µg/µL. The samples were boiled for 5 min, separated on a 12% acrylamide (30%)/bis-acrylamide (1%)
SDS-PAGE gel [60] and transferred to a 0.2 µm pore nitrocellulose membrane (Bio-Rad Laboratories, Inc
Hercules, California, CA, USA). Membranes were subsequently blocked with Blotting-Grade Blocker
(Cat. No. 1706404, Bio-Rad Laboratories, Inc, Hercules, California, CA, USA) for 2 h, incubated for 12 h
with the primary rabbit antibody p53 (Cat. No. sc-98) or p-p53 (ser46) (Cat. No. sc-101764, Santa Cruz
antibodies). The membrane was then washed (1X TBS/1% Tween 20), incubated with the secondary
antibody (Goat anti-rabbit IgG, Cat. No. PI-1000, Vector Laboratories) for 4 h and finally revealed
using Amersham ECL Detection Reagents (Cat. No. RPN2105, General Electric, Boston, MA, USA).
The images obtained after development were analyzed with the ImageJ® program. All assays were
made in triplicate and with at least two independent experiments.

4.9. Statistics

Results were analyzed using the SPSS v.26 program. For comparison for two groups a Student t
test and ANOVA one-way for three or more groups were used (p ≤ 0.05). Data were plotted using
Prism Graph v.6 (La Jolla, CA, USA) comparing the means of each group ± standard deviation. Western
blot images were analyzed with the ImageJ program to de-merge the density of the bands.

5. Conclusions

The results indicate that TBLF induces death in colon cancer cell lines in a dose- and cell
line-dependent manner. In HT-29 cells, TBLF induced G0/G1 arrest and apoptosis induction was
determined by activation of caspases, particularly caspase-3 and by flow cytometry. An increase in
phosphorylation of p53 in serine 46, which is highly involved to the apoptotic process, was observed.
Further works will focus on studying the effects of the signal transduction pathway, especially in the
relationship between EGFR-Akt pathway and induction of apoptosis.
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