Supplementary Materials

Table S1. Yields and purity of dihalogenated nucleosides. Yields were determined after each step in the synthesis and purification process. Purity was determined by analytical HPLC. Base concentrations of 5 mM and sugar donor concentrations of 22 to 62.5 mM (Supplementary table 3) were applied in a reaction volume of 50 mL.

Product	Product quantity/ conversion	Product quantity/ loss of product per step		Total recovery***	Purity
	Enzymatic reaction*	Protein removal + HPLC*	Purified product**		
3a	58 mg/ 83%	47 mg/ 18%	34 mg/28%	49%	98%
3b	74 mg/ 92%	51 mg/ 31%	36 mg/ 30%	45%	99%
3c	60 mg/ 90%	47 mg/ 21%	32 mg/ 32%	53%	96%
3d	59 mg/ 92%	47 mg/ 20%	32 mg/ 32%	54%	99%

* Product quantities were calculated from analytical HPLC data and volumes of the respective solutions ** Weight product. *** Total recovery of the product based on the starting quantity of purine base.

|--|

J					
Product	3a	3b	3c	3d	
Sugar donor	22.5/45 mM	30.5/62.5 mM	22/44 mM	27/55 mM	
90%/95% product yield	1a	1b	1a	1b	
Base	5 mM 2a	5 mM 2a	5 mM 2b	5 mM 2b	
Enzymes/ final	п	1			
enzyme conc.	ľ	<u>_</u>			

Table S3. Conditions used for the synthesis of dihalogenated purine nucleosides with a product yield of 90% or 95%. Reaction temperature was 40°C.

Target	Injected sample	HPLC gradient
compound	volume [mL]	
3a, 3c	4	Initial 3% ACN; linear gradient to 22% ACN in 12.5 min;
		the initial condition (3% ACN) was restored within
		0.5 min and kept for 1 min
3b	2	Initial 3% ACN; linear gradient to 25% ACN in 15 min; the
		initial condition (3% ACN) was restored within 1 min and
		kept for 2 min
3d	5	Initial 3% ACN; linear gradient to 25% ACN in 10 min; the
		initial condition (3% ACN) was restored within 1 min and
		kept for 1.5 min

Table S4. HPLC methods applied for the purification of the dihalogenated nucleoside analogues. A flow rate 21.24 ml min⁻¹ was employed. Acetonitrile (ACN) and water were applied as solvents.

Figure S1. NMR spectra for DCP-R (A, C) and DCP-dR (B, D). A, B: ¹H NMR (500 MHz, DMSO-d₆), C, D: ¹³C{¹H} NMR (126 MHz, DMSO-d₆)

