Supporting Information

Stereoselective bioreduction of α -diazo- β -keto esters

Sergio González-Granda ¹, Taíssa A. Costin ², Marcus M. Sá ^{2,*} and Vicente Gotor-

Fernández 1,*

- ¹ Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8, Oviedo 33006, Spain; <u>sergioglezgranda@gmail.com</u> (S.G.-G.); <u>vicgotfer@uniovi.es</u> (V.G.-F.)
- ² Chemistry Department, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil; <u>marcus.sa@ufsc.br</u> (M.M.S.)

Corresponding authors: marcus.sa@ufsc.br (M.M.S.); vicgotfer@uniovi.es (V.G.-F.)

Table of Contents (Page 1 of 47 pages)

I. Compounds synthesized in this contribution	S2
II. Analytical data	S3
II.1. Calibration curves for conversion value determination	S4
II.1.1. Ethyl 4-azido-2-diazo-3-oxobutanoate (2a) and ethyl 4-azido-2-diazo-3-hydroxybutanoate (3a)	S4
II.1.2. Ethyl 4-chloro-2-diazo-3-oxobutanoate (2b) and ethyl 4-chloro-2-diazo-3-hydroxybutanoate (3b)	S5
II.1.3. Methyl 4-chloro-2-diazo-3-oxobutanoate (2c) and methyl 4-chloro-2-diazo3-hydroxybutanoate (3c)	S6
II.1.4. Methyl 2-diazo-3-oxobutanoate (2d) and methyl 2-diazo-3-hydroxybutanoate (3d)	S7
II.1.5. Methyl 2-diazo-4-methoxy-3-oxobutanoate (2e) and methyl 2-diazo-3-hydroxy-4-methoxybutanoate (3e)	S8
II.1.6. Ethyl 2-diazo-3-oxo-3-phenylpropanoate (2f) and ethyl 2-diazo-3-hydroxy-3-phenylpropanoate (3f)	S9
II.1.7. Benzyl 2-diazo-3-oxobutanoate (2g) and benzyl 2-diazo-3-hydroxybutanoate (3g)	S10
II.1.8. Ethyl 4-bromo-2-diazo-3-oxobutanoate (2h) and ethyl 4-bromo-2-diazo-3-hydroxybutanoate (3h)	S11
II.1.9. Ethyl 2-diazo-3-oxo-4-thiocyanatobutanoate (2i) and ethyl 2-diazo-3-hydroxy-4-thiocyanatobutanoate (3i)	S12
II.2. Analytical data for the determination of enantiomeric excess values	S13
III. Enzymatic screening in bioreduction experiments	S22
IV. ¹ H and ¹³ C NMR spectra	S30

I. Compounds synthesized in this contribution

Figure S1. Structures of α -diazo- β -keto esters **2a-i** and the corresponding hydroxy esters **3a-i** described in this contribution.

II. Analytical data

First, calibration curves were carried out in a HP 1100 HPLC chromatograph equipped with a UV-VIS detector. The correction factor was calculated as the ratio of ketone slope to alcohol slope, and all the data are shown in section II.1.

Later, bioreduction experiments were performed using the same analytical conditions, which are described in Table S1, and the purity of standards and selected successful bioreduction experiments are shown in section II.2.

Compound	Column	Eluent (<i>n</i> -hexane/2-propanol)	Retention time (min)
2a	OJ-H	92:8	18.8
3a	OJ-H	92:8	10.7 and 11.2
2b	OJ-H	92:8	20.3
3b	OJ-H	92:8	11.5 and 13.9
2c	OJ-H	95:5	32.6
3c	OJ-H	95:5	20.5 and 22.2
2d	OJ-H	92:8	14.6
3d	OJ-H	92:8	8.8 and 9.6
2e	OJ-H	92:8	23.3
3e	OJ-H	92:8	11.2 and 11.8
2f	AD-H	95:5	9.9
3f	AD-H	95:5	13.6 and 15.7
2g	OJ-H	95:5	26.6
3g	OJ-H	95:5	18.9 and 19.7
2h	OJ-H	95:5	16.6
3h	OJ-H	95:5	10.3 and 11.3
2i	OJ-H	92:8	17.3
3i	OJ-H	92:8	10.4 and 11.3

Table S1. Retention times for α -diazo- β -keto esters 2a-i and their corresponding alcohols 3a-i.^a

^a All the analyses were carried out with a 0.8 mL/min flow and 210 nm wavelength without controlling the HPLC column temperature.

II.1. Calibration curves for conversion value determinations

II.1.1 Ethyl 4-azido-2-diazo-3-oxobutanoate (2a) and ethyl 4-azido-2-diazo-3-hydroxybutanoate (3a)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	40099.2	
20	25	19274.8	822 55
Zđ	15	9460.1	832.33
	5	3333.6	
3a	50	33049.1	E(2 77
	25	20334.7	
	15	14225.3	505.77
	5	7347.5	

Table S2. Calibrate curves for compounds 2a and 3a.

II.1.2. Ethyl 4-chloro-2-diazo-3-oxobutanoate (2b) and ethyl 4-chloro-2-diazo-3-hydroxybutanoate (3b)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	111423	
2 h	25	48345	2366 1
20	15	24130,2	2300,1
	5	6776,9	
3b	50	78865,2	1626.0
	25	40946,2	
	15	22016,1	1020,9
	5	5797,5	

Table S3. Calibrate curves for compounds 2b and 3b.

II.1.3. Methyl 4-chloro-2-diazo-3-oxobutanoate (2c) and methyl 4-chloro-2-diazo-3-hydroxybutanoate (3c)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	140090	
2	25	70628,2	2802 4
20	15	36249,2	2093,4
	5	11278,9	
3с	50	81865,2	1624 7
	25	43941,2	
	15	25075,1	1024,7
	5	8896,5	

Table S4. Calibrate curves for compounds 2c and 3c.

II.1.4. Methyl 2-diazo-3-oxobutanoate (2d) and methyl 2-diazo-3-hydroxybutanoate (3d)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	108340	
24	25	51494,3	2224.8
20	15	26486,8	2234,0
	5	9402,7	
3d	50	46102.8	080.2
	25	23461,3	
	15	10836,5	200,5
	5	2624,3	

Table S5. Calibrate curves for compounds 2d and 3d.

II.1.5. Methyl 2-diazo-4-methoxy-3-oxobutanoate (2e) and methyl 2-diazo-3-hydroxy-4methoxybutanoate (3e)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	128295	
90	25	56343,2	2701.6
20	15	29432,9	2701,0
	5	8438,7	
Зе	50	55884,3	1177 0
	25	25195,2	
	15	12833,6	11/7,2
	5	3686,4	

Table S6. Calibrate curves for compounds 2e and 3e.

II.1.6. Ethyl 2-diazo-3-oxo-3-phenylpropanoate (2f) and ethyl 2-diazo-3-hydroxy-3-phenylpropanoate (3f)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	72292,6	
2f	25	37474,7	1488.6
21	15	19287,3	1400,0
	5	5885,5	
3f	50	98547,7	2020 8
	25	48055,3	
	15	25560,6	2039,8
	5	7574,8	

Table S7. Calibrate curves for compounds 2f and 3f.

II.1.7. Benzyl 2-diazo-3-oxobutanoate (2g) and benzyl 2-diazo-3-hydroxybutanoate (3g)

Compound	Concentration (mM)	Area (pA·s)	Slope
.	50	160724	
	25	69995,6	2212 1
28	15	40686,6	5542.4
	5	11265,9	
3g	50	145885,8	2755.0
	25	82667,5	
	15	54742,2	2733,9
	5	19767,6	

Table S8. Calibrate curves for compounds 2g and 3g.

II.1.8. Ethyl 4-bromo-2-diazo-3-oxobutanoate (2h) and ethyl 4-bromo-2-diazo-3-hydroxybutanoate (3h)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	103942	
2 h	25	55535.2	2003 7
211	15	31672.5	2093.7
	5	9517.3	
3h	50	72629,7	1466
	25	36173,3	
	15	20996,7	1400
	5	6821,3	

Table S9. Calibrate curves for compounds 2h and 3h.

II.1.9. Ethyl 2-diazo-3-oxo-4-thiocyanobutanoate (2i) and ethyl 2-diazo-3-hydroxy-4-thiocyanobutanoate (3i)

Compound	Concentration (mM)	Area (pA·s)	Slope
	50	45380.3	
1;	25	19977.8	2002.8
11	15	10616.4	2095,8
	5	3103.5	
2i	50	104430	
	25	52259,4	947
	15	32150,6	247
	5	9753,2	

Table S10. Calibrate curves for compounds 2i and 3i.

II.2. Analytical data for the determination of enantiomeric excess values

Analytical data for the compounds 2a and 3a

Flow: 0.8 mL/min

Eluent: *n*-hexane/2-propanol 92:8

он о

 \ddot{N}_2

3a

Column: Chiracel OJ-H

Retention time ketone 2a: 18.8 min

Bioreduction using KRED-P2-D12 for the production of (S)-alcohol 3a in 98% ee

Analytical data for the compounds 2b and 3b

Flow: 0.8 mL/min

Column: Chiracel OJ-H

Eluent: n-hexane/2-propanol 92:8

Retention time ketone 2b: 20.3 min

HPLC separation for both enantiomers of 3b

Bioreduction using KRED-P2-D11 for the production of (R)-alcohol 3b in 99% ee

Analytical data for the compounds 2c and 3c

Flow: 0.8 mL/min

Eluent: *n*-hexane/2-propanol 95:5

```
Column: Chiracel OJ-H
```

Retention time ketone 2c: 32.6 min

HPLC separation for both enantiomers of 3c

Analytical data for the compounds 2d and 3d

Flow: 0.8 mL/min

Eluent: n-hexane/2-propanol 92:8

Column: Chiracel OJ-H

Retention time ketone 2d: 14.6 min

HPLC separation for both enantiomers of 3d

Bioreduction using KRED-P1-C01 for the production of (S)-alcohol 3d in 85% ee

Analytical data for the compounds 2e and 3e

Flow: 0.8 mL/min

Eluent: *n*-hexane/2-propanol 92:8

Column: Chiracel OJ-H

Retention time ketone 2e: 23.3 min

HPLC analyses for 2e

Analytical data for the compounds 2f and 3f

Flow: 0.8 mL/min

Column: Chiracel AD-H

Eluent: *n*-hexane/2-propanol 95:5 Retention time ketone **2f**: 9.9 min

HPLC separation for both enantiomers of 3f

Bioreduction using KRED-P1-B02 for the production of (S)-alcohol 3f in 98% ee

Analytical data for the compounds 2g and 3g

Flow: 0.8 mL/min

Eluent: *n*-hexane/2-propanol 95:5 Retention time ketone **2g**: 26.6 min

Flow: 0.8 mL/min

Column: Chiracel OJ-H

Eluent: *n*-hexane/2-propanol 95:5

Retention time alcohol 3g: 18.9 min and 19.7 min

Analytical data for the compounds 2h and 3h

Flow: 0.8 mL/min

Column: Chiracel OJ-H

Eluent: n-hexane/2-propanol 95:5

Retention time ketone 2h: 16.6 min

Bioreduction using KRED-P2-D11 for the production of (R)-alcohol 3h in 98% ee

Analytical data for the compounds 2i and 3i

Flow: 0.8 mL/min

0

8

10

12

Column: Chiracel OJ-H

Eluent: n-hexane/2-propanol 92:8

Retention time ketone 2i: 17.3 min

14

16

18

20

min

III. Enzymatic screening in bioreduction experiments

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3b ee (%) ^b
1	Ras-ADH	C	-
2	LB-ADH	71	99 (R)
3	Sy-ADH	<5	-
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	5	12 (S)
7	evo-1.1.200	79	99 (R)
8	KRED-P1-A04	88	99 (R)
9	KRED-P1-A12	99	93 (R)
10	KRED-P1-B02	99	95 (R)
11	KRED-P1-B05	67	88 (R)
12	KRED-P1-B10	95	98 (R)
13	KRED-P1-B12	>99	93 (R)
14	KRED-P1-C01	>99	93 (R)
15	KRED-P1-H08	99	45 (<i>R</i>)
16	KRED-P2-B02	99	44 (R)
17	KRED-P2-C02	99	57 (R)
18	KRED-P2-D03	>99	96 (R)
19	KRED-P2-D11	99	99 (R)
20	KRED-P2-D12	>99	98 (R)
21	KRED-P2-G03	99	98 (R)
22	KRED-P2-H07	67	99 (R)
23	KRED-P3-B03	7	99 (S)
24	KRED-P3-G09	<5	-

Table S11. Bioreduction of ethyl 4-chloro-2-diazo-3-oxobutanoate (2b).

^a Conversion measured by HPLC with the correct factor 1.45.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3c ee (%) ^b
1	LB-ADH	71	98 (R)
2	evo-1.1.200	99	97 (R)
3	KRED-P1-A04	87	97 (R)
4	KRED-P1-A12	>99	>99 (R)
5	KRED-P1-B02	97	87 (R)
6	KRED-P1-B10	83	32 (R)
7	KRED-P1-B12	95	81 (<i>R</i>)
8	KRED-P1-C01	99	96 (R)
9	KRED-P2-D03	99	64 (<i>R</i>)
10	KRED-P2-D11	99	96 (R)
11	KRED-P2-D12	99	99 (R)
12	KRED-P2-G03	99	98 (R)

Table S12. Bioreduction of methyl 4-chloro-2-diazo-3-oxobutanoate (2c).

^a Conversion measured by HPLC with the correct factor 1.48.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3d ee (%) ^b
1	Ras-ADH	C	-
2	LB-ADH	<5	-
3	Sy-ADH	<5	-
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	<5	-
7	evo-1.1.200	<5	-
8	KRED-P1-A04	<5	-
9	KRED-P1-A12	5	95 (<i>S</i>)
10	KRED-P1-B02	13	68 (<i>S</i>)
11	KRED-P1-B05	<5	-
12	KRED-P1-B10	<5	-
13	KRED-P1-B12	<5	-
14	KRED-P1-C01	60	85 (<i>S</i>)
15	KRED-P1-H08	49	17 (S)
16	KRED-P2-B02	50	67 (S)
17	KRED-P2-C02	23	72 (<i>S</i>)
18	KRED-P2-D03	21	85 (S)
19	KRED-P2-D11	<5	-
20	KRED-P2-D12	13	88 (S)
21	KRED-P2-G03	<5	-
22	KRED-P2-H07	<5	-
23	KRED-P3-B03	5	26 (R)
24	KRED-P3-G09	5	68 (R)

 Table S13. Bioreduction of methyl 2-diazo-3-oxobutanoate (2d).

^a Conversion measured by HPLC with the correct factor 2.28.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3e ee (%) ^b
1	Ras-ADH	c	-
2	LB-ADH	<5	-
3	Sy-ADH	5	69 (<i>S</i>)
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	<5	-
7	evo-1.1.200	<5	-
8	KRED-P1-A04	<5	-
9	KRED-P1-A12	<5	-
10	KRED-P1-B02	17	80 (R)
11	KRED-P1-B05	<5	-
12	KRED-P1-B10	34	93 (R)
13	KRED-P1-B12	49	98 (R)
14	KRED-P1-C01	82	99 (R)
15	KRED-P1-H08	48	32 (<i>R</i>)
16	KRED-P2-B02	98	81 (<i>R</i>)
17	KRED-P2-C02	86	46 (R)
18	KRED-P2-D03	<5	-
19	KRED-P2-D11	45	82 (<i>R</i>)
20	KRED-P2-D12	<5	-
21	KRED-P2-G03	<5	-
22	KRED-P2-H07	<5	-
23	KRED-P3-B03	<5	-
24	KRED-P3-G09	<5	-

Table S14. Bioreduction of methyl 2-diazo-4-methoxy-3-oxobutanoate (2e).

^a Conversion measured by HPLC with the correct factor 2.29.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3f ee (%) ^b
1	Ras-ADH	C	-
2	LB-ADH	<5	-
3	Sy-ADH	<5	-
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	<5	-
7	evo-1.1.200	<5	-
8	KRED-P1-A04	<5	-
9	KRED-P1-A12	<5	-
10	KRED-P1-B02	93	99 (S)
11	KRED-P1-B05	84	98 (S)
12	KRED-P1-B10	24	98 (S)
13	KRED-P1-B12	24	99 (S)
14	KRED-P1-C01	28	97 (S)
15	KRED-P1-H08	21	88 (S)
16	KRED-P2-B02	94	30 (<i>S</i>)
17	KRED-P2-C02	93	53 (S)
18	KRED-P2-D03	20	92 (S)
19	KRED-P2-D11	67	97 (S)
20	KRED-P2-D12	<5	-
21	KRED-P2-G03	73	59 (R)
22	KRED-P2-H07	<5	-
23	KRED-P3-B03	<5	-
24	KRED-P3-G09	<5	-

Table S15. Bioreduction of ethyl 2-diazo-3-oxo-3-phenylpropanoate (2f).

^a Conversion measured by HPLC with the correct factor 1.37.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3g ee (%) ^b
1	Ras-ADH	c	-
2	LB-ADH	<5	-
3	Sy-ADH	5	87
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	6	97
7	evo-1.1.200	<5	-
8	KRED-P1-A04	<5	-
9	KRED-P1-A12	<5	-
10	KRED-P1-B02	58	84 (S)
11	KRED-P1-B05	6	88 (S)
12	KRED-P1-B10	<5	-
13	KRED-P1-B12	<5	-
14	KRED-P1-C01	40	96 (S)
15	KRED-P1-H08	<5	-
16	KRED-P2-B02	60	95 (S)
17	KRED-P2-C02	50	96 (<i>S</i>)
18	KRED-P2-D03	33	95 (S)
19	KRED-P2-D11	<5	-
20	KRED-P2-D12	25	96 (<i>S</i>)
21	KRED-P2-G03	<5	-
22	KRED-P2-H07	15	98 (S)
23	KRED-P3-B03	9	97 (R)
24	KRED-P3-G09	<5	-

Table S16. Bioreduction of benzyl 2-diazo-3-oxobutanoate (2g).

^a Conversion measured by HPLC with the correct factor 1.21.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3h ee (%) ^b
1	Ras-ADH	c	-
2	LB-ADH	11	>99 (R)
3	Sy-ADH	<5	-
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	6	78 (S)
7	evo-1.1.200	60	94 (R)
8	KRED-P1-A04	89	93 (R)
9	KRED-P1-A12	99	92 (R)
10	KRED-P1-B02	98	92 (R)
11	KRED-P1-B05	47	86 (R)
12	KRED-P1-B10	65	90 (R)
13	KRED-P1-B12	94	92 (R)
14	KRED-P1-C01	99	92 (R)
15	KRED-P1-H08	97	38 (R)
16	KRED-P2-B02	99	62 (R)
17	KRED-P2-C02	99	46 (R)
18	KRED-P2-D03	99	87 (R)
19	KRED-P2-D11	98	98 (R)
20	KRED-P2-D12	99	91 (R)
21	KRED-P2-G03	99	90 (R)
22	KRED-P2-H07	42	96 (R)
23	KRED-P3-B03	<5	-
24	KRED-P3-G09	<5	-

Table S17. Bioreduction of ethyl 4-bromo-2-diazo-3-oxobutanoate (2h).

^a Conversion measured by HPLC with the correct factor 1.43.

^b Enantiomeric excess values measured by HPLC.

Entry	ADH/KRED	Conversion (%) ^a	Alcohol 3i ee (%) ^b
1	Ras-ADH	c	-
2	LB-ADH	26	99 (R)
3	Sy-ADH	-	-
4	Tes-ADH	<5	-
5	ADH-T	<5	-
6	ADH-A	6	72 (S)
7	evo-1.1.200	50	95 (R)
8	KRED-P1-A04	53	94 (R)
9	KRED-P1-A12	95	98 (R)
10	KRED-P1-B02	89	88 (R)
11	KRED-P1-B05	28	84 (R)
12	KRED-P1-B10	62	88 (R)
13	KRED-P1-B12	86	93 (R)
14	KRED-P1-C01	99	86 (R)
15	KRED-P1-H08	92	55 (R)
16	KRED-P2-B02	99	82 (R)
17	KRED-P2-C02	99	62 (R)
18	KRED-P2-D03	99	94 (R)
19	KRED-P2-D11	92	97 (R)
20	KRED-P2-D12	99	98 (R)
21	KRED-P2-G03	99	97 (R)
22	KRED-P2-H07	40	97 (R)
23	KRED-P3-B03	<5	-
24	KRED-P3-G09	<5	-

 $Table \ S18. \ {\rm Bioreduction} \ of \ ethyl \ 2-diazo-3-oxo-4-thiocyanobutanoate \ (2i).$

^a Conversion measured by HPLC with the correct factor 2.22.

^b Enantiomeric excess values measured by HPLC.

IV. NMR spectra

S41

S44

