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Abstract: Urbanization, emergence, and prominence of diseases and ailments have led to conscious
and deliberate consumption of health beneficial foods. Whole grain (WG) cereals are one type of
food with an array of nutritionally important and healthy constituents, including carotenoids, inulin,
β-glucan, lignans, vitamin E-related compounds, tocols, phytosterols, and phenolic compounds,
which are beneficial for human consumption. They not only provide nutrition, but also confer health
promoting effects in food, such as anti-carcinogenic, anti-microbial, and antioxidant properties.
Fermentation is a viable processing technique to transform whole grains in edible foods since
it is an affordable, less complicated technique, which not only transforms whole grains but also
increases nutrient bioavailability and positively alters the levels of health-promoting components
(particularly antioxidants) in derived whole grain products. This review addresses the impact of
fermentation on phenolic compounds and antioxidant activities with most available studies indicating
an increase in these health beneficial constituents. Such increases are mostly due to breakdown
of the cereal cell wall and subsequent activities of enzymes that lead to the liberation of bound
phenolic compounds, which increase antioxidant activities. In addition to the improvement of these
valuable constituents, increasing the consumption of fermented whole grain cereals would be vital
for the world’s ever-growing population. Concerted efforts and adequate strategic synergy between
concerned stakeholders (researchers, food industry, and government/policy makers) are still required
in this regard to encourage consumption and dispel negative presumptions about whole grain foods.

Keywords: fermentation; fermented foods; whole grains; health benefits; phenolic compounds;
antioxidant activity

1. Introduction

Foods in the past were known to conventionally provide nutrients necessary for basic physiological
functions. This assumption has changed with available knowledge at the disposal of consumers,
changes in food regulations, and an ever-growing health-conscious population, which are factors
resulting in an increasing desire for foods with additional physiological benefits. The 2500-year-old
concept of “Let food be thy medicine and medicine be thy food” by Hippocrates is now being embraced
better than ever as consumers are gradually becoming aware of the importance of diet in health
promotion and disease prevention. Such a concept of food as medicine could have led to the trend of
what is now known as “functional foods,” which is a concept first created in Japan in the 1980s [1].

Supporting this perspective of food as medicine are several studies on whole grains (WGs) and
WG-diets having positive effects on disease markers such as blood pressure, diabetes, and obesity [2–11].
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WGs are essentially made up of the germ, bran, and endosperm and contains all the important parts
of the entire grain seed in their original proportions. A more detailed and approved definition by
the American Association of Cereal Chemists (AACC) says “WGs shall consist of the intact, ground,
cracked, or flaked caryopsis, whose principal anatomical components—the starchy endosperm, germ,
and bran—are present in the same relative proportions as they exist in the intact caryopsis” [12]. On the
contrary, refined grains (RGs) are products obtained after the refining process involving the removal of
the most potent protective components of the grains found in the bran and germ. This consequently
leaves only the starchy-rich endosperm. The retained protective components in WGs make them better
constituents of beneficial components as compared to their refined counterparts.

Health beneficial constituents of WGs include phytochemicals, bioactive carbohydrate fractions,
peptides, and other phytonutrients [11,13–16]. WGs contain high amounts of phytochemicals, which are
plant secondary metabolites that have shown biological activity and have been broadly investigated as
health beneficial groups of compounds in food [17–19]. Particularly important are phenolic constituents,
which are major forms of these phytochemicals and vital with reference to their unique contribution to
the health benefits of WGs. The major sources of these phytochemicals are phenolic compounds (PCs)
due to the high concentrations of bioactive constituents in the bran and germ layer [17,20,21] and the
fact that they are largely one of the most important dietary sources of energy intake worldwide.

2. Phenolic Compounds in WG Foods

The overall benefit derived from three major components of WG (germ, bran, and endosperm)
altogether is higher than any of the individual fractions [22,23]. A combination of these components
makes WG contain physiologically important components including vitamins, fatty acids, phytosterols,
PCs, fatty acids, dietary fiber, carotenoids, lignans, and sphingolipids (Figure 1), which can promote
health either singly or in synergy with each other [18,24]. A series of meta analyses and multiple scientific
studies have equally reported an association between increasing intake of WG-foods and reduced risk
of non-communicable diseases such as cardiovascular diseases, coronary heart diseases, stroke [24–26],
metabolic syndrome [27], and cancers [28,29] as well as a positive effect on gut microbiota [30]. Phenolic
compounds are subsequently discussed in this review as it is of vital importance in WG-cereals [16]
and the fact that they are the most studied phytochemicals [31]. Usually, WGs may be consumed as
food after it has been incorporated as an ingredient into other food products or as food itself after
processing. One type of such a food processing technique adopted for the transformation of WGs into
diets is fermentation, which is a process that yields products that are not only shelf stable, but also
better in sensorial qualities and health beneficial constituents [32–36]. The cereal bran is a major source
of these PCs and this paper seeks to review available scientific literature on fermented WG-products to
understand the influence and role of fermentation on PCs and antioxidant activity (AA) thereof.

Phenolic compounds (also called phenolics) are derived from several biosynthetic precursors
including pyruvate, acetate, some amino acids (phenylalanine and tyrosine), malonyl CoA, acetyl
CoA through the action of pentose phosphate, shikimate, and phenylpropanoid metabolism
pathways [37–39]. The term ‘phenolic acids’ refers to phenolic compounds having one carboxylic
acid group and are mainly divided into two subgroups, i.e., hydroxybenzoic acids (such as gallic,
p-hydroxybenzoic, protocatechuic, syringic, and vanillic acids) and hydroxycinnamic acids (caffeic,
ferulic, p-coumaric, and sinapic acids) (Figure 2). Flavonoids are an equally well-known class of
frequently occurring phenolics in WGs. Major phenolics found in WGs are phenolic acids (PAs),
flavonoids, and tannins. These plant-derived constituents are bioactive and involved in potentiating
the redox defense of the body, prevention, and counteracting oxidative stress and reducing free
radical-related cellular damage.
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weights of between 500–3000 g/mol, containing sufficient hydroxyls and other groups including 
carboxyl [41–43]. Tannins can be broadly classified into two, which include hydrolysable tannins 
[esters of ellagic acid (ellagitannins) or gallic acid (gallotannins)] and condensed tannins [(called 
polymeric proanthocyanidins) and known to be composed of flavonoid units) [41,44]. A plethora of 
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Figure 1. Whole grain phytochemicals.

As stated by Singh et al. [40], flavonoids are the largest group of phenolics and account for
the half of known PCs in plants. These compounds are equally low molecular weight compounds
consisting of two aromatic rings (A and B) joined by a three-carbon bridge (C6–C3–C6 structure) [40].
Tannins, on the other hand, are high molecular weight polymeric phenolic compounds known to
contribute to the pericarp (seed coat) color of cereals. These polyphenolic compounds have molecular
weights of between 500–3000 g/mol, containing sufficient hydroxyls and other groups including
carboxyl [41–43]. Tannins can be broadly classified into two, which include hydrolysable tannins
[esters of ellagic acid (ellagitannins) or gallic acid (gallotannins)] and condensed tannins [(called
polymeric proanthocyanidins) and known to be composed of flavonoid units) [41,44]. A plethora
of excellent reviews and scientific literature are available in the literature on detailed classifications,
forms, occurrences, and formation/generation of these compounds [15,16,40,41,45–50].
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3. Fermentation of WG Foods

Food processing is essential for the transformation of food crops into edible forms. Fermentation
is an old food processing technique that has been adopted for centuries around the world, especially
in developing nations. It involves an intentional conversion/modification of a substrate through
activities of microorganisms to get a desired product. This is usually completed through microbial
actions, which positively alter the appearance, flavor, functionalities, nutritional composition, color,
and texture. The fermentation process itself yields beneficial effects through direct microbial action
and production of metabolites and other complex compounds [51–53]. Conventional techniques of
fermentation include (i) natural (also called spontaneous) occurrences through the actions of endogenous
microorganisms, (ii) back slopping involves utilizing plenty of successful previous fermentation
batches) and (iii) controlled fermentation, which entails the inoculation of starter cultures/specific
strains. Subsequent fermented products are not only shelf stable through the preservative effect of this
process, but fermentation also improves bioavailability and palatability, confers desirable organoleptic
characteristics that impact aroma, texture, and flavor and improves the health beneficial components
in food [32–36]. Irrespective of the food substrate (cereal, legume, vegetable, fruit, RG, or WG),
fermentation results in the modification of inherent constituents, secondary metabolites, detoxification
of toxic components/residues, and improvement in the functionality of the food product [35,36,53–55].

The incorporation of WG into diet which, is influenced by cultural beliefs, disadvantages of longer
cooking time, the presence of phytates, tannins, and a limited variety of products made from them [56].
Additionally, some of their components may adversely affect the functional characteristics, taste, texture,
and sensory appeal of subsequent formulations. Viable options for addressing this and incorporating
WGs into diet would be completed through appropriate transformation into various other beneficial
food forms, which would ensure the possibility of obtaining various value-added products. Although
RGs are mostly used in fermented foods, the use of WGs as staple foods equally has a long history
of human consumption [23]. Findings from epidemiological studies and discoveries, therefore, have
triggered renewed interest among governmental bodies of different nations that WG should form part
of cereal servings [24,57,58]. Table 1 summarizes common fermented WG products obtained through
both solid-state fermentation (SSF) and liquid/submerged fermentation (SmF). While the former occurs
in the absence or near-absence of free water, the latter occurs in the presence of free flowing water (more
fluids compared to SSF). Subsequent fermented products are relatively few in contrast to numerous
other studies reporting the use of RGs for similar food products, which necessitates further intensified
research on the development of WG-fermented food products.

Table 1. Some reported fermented food products from whole grains.

Whole Grain(s) Food Type of Fermentation Reference

Barley and oat Tempe SSF Eklund-Jonsson et al. [59]

Maize Akamu/Ogi SSF Oyarekua [60],
Obinna-Echem et al. [61]

Millet Koji SSF Salar et al. [62]

Millet Probiotic drink SmF Di Stefano et al. [63]

Millet Fermented milk SmF Sheela et al. [64]

Millet Sourdough bread SSF Wang et al. [65]

Oat Fermented oat SSF Wu et al. [66]

Oat, wheat Bread SSF Gamel et al. [67]

Quinoa Yoghurt SmF Zannini et al. [68]
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Table 1. Cont.

Whole Grain(s) Food Type of Fermentation Reference

Quinoa, wheat Fermented product SSF Ayyash et al. [69]

Rye, oat, wheat Bread SSF Buddrick et al. [70]

Rye, wheat Sourdough bread SSF Koistinen et al. [71]

Rye Bread SSF Johansson et al. [72],
Raninen et al. [73]

Rye Porridge SSF Lee et al. [74]

Rye Sourdough bread SSF Beckmann et al. [75],
Zamaratskaia et al. [76]

Sorghum Burukutu SmF Ikediobi et al. [77]

Sorghum Fermented balls SSF Ragaee and Abdel-Aal [78]

Sorghum Fermented porridge SSF Dlamini et al. [79]

Sorghum Injera SSF Taylor and Taylor [80]

Sorghum Ogi SmF Akingbala et al. [81]

Sorghum Omuramba SmF Mukuru et al. [82]

Sorghum Ting SSF Kruger et al. [83],
Adebo et al. [84,85]

Sorghum Uji SmF Taylor and Taylor [80]

Tef Injera SSF Tamene et al. [86]

Wheat Boza SmF Gotcheva et al. [87]

Wheat Bread SSF Mustafa and Adem [88],
Struyf et al. [89]

Wheat Sourdough bread SSF García-Mantrana et al. [90]

Wheat Tempe SSF Dey and Kuhad [91],
Starzyńska-Janiszewska et al. [92]

SSF—solid-state fermentation. SmF—submerged/liquid fermentation.

Due to the protective pericarp/seed coat, the fermentation process might be slightly hindered.
Such has been reported in the literature and attributed to some of the antimicrobials and bioactive
constituents in the seed coat that might mitigate the activity of fermenting microorganisms [55,90,93,94].
The protective pericarp layer of cereal tends to alter the diffusion of nutrients such as amino acids and
sugars necessary for the growth of fermenting microorganisms. While this might result in a slightly
higher pH and likely longer fermentation periods (in the absence of a starter culture), fermentation still
modifies the phenolic constituents in WGs.

4. Impact of Fermentation on Phenolic Compounds in WGs

The fermentation process can have multiple effects on WG phenolics leading to modifications in
inherent levels and/or formation of subsequent monomers or polymers. Adebo et al. [84] reported
higher bioactive compounds (catechin, gallic acid, and quercetin) after fermentation in a study on ting
from fermented WG-sorghum with a concurrent decrease in total flavonoid content (TFC), total tannin
content (TNC), and total phenolic content (TPC). Reported decreases in levels of TPC, TFC, and TNC
were attributed to degradation and hydrolysis of the phenolic compounds, while a corresponding
increase in catechin, gallic acid, and quercetin was attributed to a release of these bioactive compounds
after fermentation with Lactobacillus strains.

Through fungal fermentation of WG-wheat into tempe, an increase in the sum of PAs was observed
with up to a 382% increase in ferulic acid recorded after fermentation [92]. A similar trend of increase
in investigated PCs and TPC during the fermentation of WG-tempe with Rhizopus oryzae RCK2012 had
been reported earlier [91]. Salar et al. [62] equally reported an increase in TPC of the WG-millet-koji and
attributed this to mobilization of PCs from their bound form to a free state through enzymes produced
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during fermentation. Similar authors earlier reported an increase in TPC during the fermentation of
WG-maize [95], reportedly through the activities of β-glucosidase, which is capable of hydrolyzing
phenolic phucosides to release free phenolics. Increased extractability of PCs, synthesis of new bioactive
compounds, and consequent liberation of PCs due to structural breakdown of cereal cell walls have all
been attributed to such increases in WG-PCs after fermentation (Table 2). Through metabolic activities
of microbes, fermentation also induces structural breakdown of the cell wall, which leads to synthesis
of various bioactive compounds [65]. Equally important are the roles of proteases, amylases, xylanases
derived from fermenting microorganisms, and the cereal grain that contributes to modification of the
grain and distorting of chemical bonds, which, consequently, releases bound phenolics (Figure 3).

Table 2. Documented studies on the effect of fermentation on phenolics of whole grains.

Whole
Grain

Fermented
Product

Phenolics
Investigated

Analytical
Method Findings References

Barley and
oat groat

Fermented
product

Free and bound
PAs

Colorimetric;
HPLC

Increase in total content of bound PAs
in flours from WG-barley related to

increased content of bound
p-coumaric acid, ferulic acid, and

dimers of ferulic acid (5,5′- diferulic,
8-o-4-diferulic, and
8,5′-diferulic acids).

Hole et al.
[96]

Maize Fermented
product TPC Colorimetric

Increase in TPC after fermentation
attributed to the activities of

β-glucosidase, capable of hydrolyzing
phenolic phucosides to release free

phenolics

Salar et al.
[95]

Millet Koji TPC Colorimetric

Increase in TPC of fermented product
due to mobilization of PCs from their

bound form to a free state through
enzymes produced during

fermentation

Salar et al.
[62]

Millet Sourdough
bread TPC Colorimetric

Increase and decrease in soluble and
bound phenolic content. Slight

decrease in TPC observed. Increment
of soluble phenolic content may be
due to acidification, production of

hydrolytic enzymes by LAB, and/or
activation of indigenous cereal

enzymes, which broke down the bran
cell wall structure

Wang et al.
[65]

Quinoa,
wheat

Fermented
product TPC Colorimetric

Increase in TPC may be attributed to
hydrolytic activities (e.g., esterases) of

Bifidobacteria strains that released
more PCs via the hydrolysis of
complexed forms, possibly the

synthesis of new bioactive
compounds detected as PCs

Ayyash et al.
[69]

Rye Baked
sourdough TPC, PAs Colorimetric,

HPLC

Fermentation phase more than
doubled the levels of easily

extractable PCs

Liukkonen et
al. [97]

Rye Sourdough TPC, PAs Colorimetric,
HPLC

Increased level of total PCs due to
increases in methanol-extractable PCs.

Modification in levels of bioactive
compounds during fermentation by
the metabolic activity of microbes.
Fermentation-induced structural

breakdown of cereal cell walls might
have also occurred and led to

liberation and/or synthesis of various
bioactive compounds

Katina et al.
[98]
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Table 2. Cont.

Whole
Grain

Fermented
Product

Phenolics
Investigated

Analytical
Method Findings References

Rye, wheat Whole meal
bread PAs HPLC

Increase in PAs due to activities of
phenolic acid esterases during the

fermentation stage

Skrajda-Brdak
et al. [99]

Sorghum Fermented
porridge TPC, TNC Colorimetric

Reduction in TNC and TPC.
Reduction in TNC could be due to

binding of tannins with protein and
other components, which reduces

their extractability and tannin
degradation by microbial enzymes

Dlamini et al.
[79]

Sorghum Fermented
product TPC, TNC Colorimetric Increase in TPC, decrease in TNC Mohapatra et

al. [100]

Sorghum Ting Flavonoids, PA,
TFC, TNC, TPC

Colorimetric,
LC-MS/MS

Decrease in TFC, TNC, and TPC
attributed to possible degradation of

PCs and hydrolysis of bioactive
compounds. Breakdown of

tannin-related compounds to lower
molecular weight compounds, which
affected extractability. Increase in PA

and flavonoids could be due to
decarboxylation, hydrolysis,

microbial oxidation, and reduction as
well as esterification reactions that

occurred during fermentation

Adebo et al.
[84,85]

Wheat Fermented
product TPC Colorimetric

Increase in TPC through modification
in levels of bioactive compounds

during fermentation by the metabolic
activity of microbes

Ðordevic et
al. [101]

Wheat Sourdough PAs LC-MS/MS,
UPLC

Degradation, reduction of some PAs
and content of some remain

unchanged. Release of PAs from
bound fraction, metabolism of PA by
LAB strains and action of enzymes

(decarboxylases, esterases, and
reductases)

Ripari et al.
[102]

Wheat Tempe TPC, PCs Colorimetric,
TLC, UPLC

Increase in TPC after fermentation,
possibly due to release of bound

compounds from the wheat matrix

Dey and
Kuhad [91]

Wheat Tempe Free and
condensed PAs HPLC

Increase in the sum of PA could be
linked to an increase in their

extractability after fermentation

Starzyńska-
Janiszewska

et al. [92]

Wheat,
brown rice,
maize, oat

Fermented
product TPC, PAs Colorimetric,

HPLC

TPC of all fermented samples
increased except for Rhizopus

oligosporus fermented maize. Increase
as well as decrease in PA levels.

Decreases was attributed to
strain/specie specificity and/or grain
composition. General increases were
alluded to enhanced bioavailability of

cereal phenolics.

Dey and
Kuhad [103]

HPLC—high performance liquid chromatography. LAB—lactic acid bacteria. LC-MS/MS – liquid chromatography
tandem mass spectrometry. PA—phenolic acid. PC—phenolic compound. TFC—total flavonoid content. TLC—thin
layer chromatography. TNC—total tannin content. TPC—total phenolic content. UPLC—ultra high-performance
liquid chromatography.
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Figure 3. A summary of ways by which whole grain phenolic compounds are modified
during fermentation.

During fermentation, PCs are metabolized and modified by fermenting organisms into other
conjugates, glucosides, and/or related forms. Such a metabolism of PCs during fermentation have
been reported to increase their bioavailability [104,105] and lead to generation of compounds that
impact flavor [106,107]. Fermentation of sorghum into sourdough using LAB strains [singly and in
two binary combinations (L. plantarum and L. casei or L. fermentum and L. reuteri)] was reported to
have resulted in the metabolism of PAs, PA-esters, and flavonoid glucosides [108]. Most PCs in this
study were metabolized and most notable were the transformation of caffeic acid→ dihydrocaffeic
acid, ethylcatechol, vinylcathechol, ferulic acid→ dihydroferulic acid and naringenin-7-O-glucoside→
naringenin, reportedly an indication of the presence of esterase (tannase), glucosidase, PA decarboxylase,
and PA reductase [108]. The authors also suggested that the strains might have used different pathways
for PA and flavonoid metabolism. Fermentation of WG-sorghum have also been reported to have led
to the modification of PCs (catechin, gallic acid, and quercetin) into structurally related compounds,
which were not identified [85]. The authors suggested that the observed modification could be
attributed to decarboxylation, hydrolysis, and esterification reactions that might have occurred during
fermentation [85]. In a study on the metabolism of PAs in whole wheat and rye malt sourdoughs,
L. plantarum was observed to have metabolized free ferulic acid in wheat and rye malt sourdoughs,
while a strain of L. hammesii (DSM 16381) metabolized syringic and vanillic acids and reduced
levels of bound ferulic acid in wheat sourdoughs [102]. Co-fermentation of the LAB strains was also
noted to have aided the conversion of resultant-free ferulic acid to dihydroferulic acid and volatile
metabolites (vinyl-guaiacol and ethyl-guaiacol), which suggests that PA metabolism in sourdoughs
is more enhanced by co-fermentation due to complementary metabolic activities [102]. Carboxylase,
decarboxylase, esterase, and reductase activities in the LABs were reportedly responsible for PA
metabolism in this study [102]. It should, however, be noted that such metabolism could lead to an
increase in antimicrobial activities of resulting metabolic products [109], a decrease in antimicrobial
activities [104,110], or no alteration in antimicrobial activity levels [108].

According to Gänzle [104], metabolism of PCs may involve the removal of noxious compounds
as well as the release of hexosides as a source of metabolic energy. This metabolism could, however,
be influenced by composition and intrinsic factors of the matrices/substrate and can, thus, influence
the metabolic pathway, i.e., enzymatic activities can shift from decarboxylase action to reductase to
glucosidase activity [111]. Glycosyl hydrolases have also been implicated as a group of enzymes
responsible for such metabolism of PCs [104]. For example, L. hammesii was reported to have
metabolized hydroxybenzoic acids in wheat but not in rye malt sourdoughs, which possibly reflects
that the fermentation substrate influences the expression of enzymes active on PAs [111]. Likewise, in
a study on sorghum sourdough, the accumulation of dihydrocaffeic acid by only L. fermentum indicates
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that decarboxylase and reductase enzymes of the other strains (L. fermentum and L. plantarum) have
different substrate specificities [108]. The study of Gaur et al. [112] also suggests that availability of
genes necessary for the metabolism of these PCs is also of importance and a significant contributor to
the metabolic potential of fermenting microorganisms.

5. Impact of Fermentation on Antioxidant Activity in WGs

Antioxidants are endogenous or exogenous molecules that mitigate any form of
oxidative/nitrosative stress or its consequences [113]. According to Slavin [114], the primary protective
role of antioxidants in the body is through their reaction with free radicals. Antioxidants function as free
radical scavengers, quenchers of singlet oxygen formation, and reducing agents [115,116] through their
inhibitory activity of prooxidant enzymes. A potential mechanism by which PCs confer AA involves
the induction of detoxification mechanisms through phase II conjugation reactions, which prevents the
formation of carcinogens from precursors as well as by blocking the reaction of carcinogens with critical
cellular macromolecules [117,118]. Phenolic compounds also modify some cellular signaling processes
and donate an electron/transfer hydrogen atom to free radicals, activate endogenous antioxidant
mechanisms, which increases the levels of antioxidant enzymes, and act as chelators of trace metals
involved in free radical protection [116,119,120].

As evident in Table 3, most available studies in the literature investigating the influence of
fermentation on phenolic compounds have majorly focused on AAs as its health benefit. This might be
unsurprising as PCs, particularly PAs, have been reported as one of the most abundant metabolites
of cereal crops with AAs [121–123]. While the role of other bioactive constituents in WGs cannot be
disregarded, PCs equally play a huge role in the antioxidant properties it confers to WG-foods.

Table 3. Documented studies on the effect of fermentation on antioxidant activity of whole grains.

Whole
Grain

Fermented
Product Assay Mechanism(s) Reported References

Maize Fermented product ABTS, DPPH

Increase in ABTS and DPPH due to the
role of the hydrolytic enzyme that

released/mobilized bound polyphenolic
compounds, which enhanced AAs.

Salar et al. [95]

Millet Koji ABTS, DPPH

Koji showed increased scavenging of
ABTS and DPPH radicals due to the

release of a bound form of
phytochemicals present and high levels of

TPC modulated during fermentation.

Salar et al. [62]

Millet Sourdough bread DPPH

Increase in DPPH radical inhibition after
sourdough fermentation. The conversion

of bound to soluble PCs improved the
health-related functionality of the final

products.

Wang et al. [65]

Quinoa,
wheat Fermented product ABTS, DPPH

An increase in ABTS and DPPH values
was attributed to the soluble

phytochemicals released during
fermentation and to bioactive peptides

formed as a result of proteolytic activity.

Ayyash et al.
[69]

Rye Baked sourdough DPPH
The fermentation stage increased AA

likely due to an increased level of
extractable PCs.

Liukkonen et al.
[97]
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Table 3. Cont.

Whole
Grain

Fermented
Product Assay Mechanism(s) Reported References

Sorghum Fermented
porridge ABTS, DPPH

Reduction in antioxidant levels after
fermentation attributed to changes
during processing that affected the

extraction of total phenols and tannins.
Such changes were hypothesized to have
likely involved associations between the

tannins, phenols, proteins, and other
compounds in the grain.

Dlamini et al.
[79]

Sorghum Fermented product CUPRAC, DPPH Increase in AAs investigated. Mohapatra et al.
[100]

Sorghum Ting ABTS

Increase in AA due to regenerated and
released bioactive compounds (including

non-phenolic components after
fermentation with the L. fermentum

strains), which might have contributed to
the radical scavenging properties of the

product.

Adebo et al.
[85]

Wheat Fermented product DPPH, FRAP, TBA Increase in the investigated AAs. Ðordevic et al.
[101]

Wheat Tempe
ABTS, DPPH, FRAP,
HP-scavenging and

OH-scavenging assays

Increase in antioxidant properties
investigated attributed to the composition

of PCs, unidentified compounds, and
other water-soluble bioactive compounds

like small peptides and
xylo-oligosaccharides produced during

fermentation.

Dey and Kuhad
[91]

Wheat Tempe ABTS, OH-scavenging
and FCRS-RP assays

Increase in soluble antioxidant potential
as fermentation increased extractable

antiradical activity scavenging potential,
which might be due to the release of

peptides and other compounds during
fermentation.

Starzyńska-
Janiszewska et

al. [92]

Wheat,
brown rice,
maize, oat

Fermented product ABTS, DPPH

Both ABTS and DPPH scavenging
properties were enhanced after

fermentation of the WG-cereals by all the
four micro-organisms (except R.

oligosporus-fermented maize). Increases
related to release of more soluble

bioactive compounds, such as peptides
and oligosaccharides.

Dey and Kuhad
[103]

ABTS-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid). CUPRAC—cupric reducing antioxidant capacity.
DPPH—2,2-diphenyl-1-picrylhydrazyl. FCRS-RP—Folin-Ciocalteu reacting substances-reducing power.
FRAP—ferric reducing antioxidant property. HP—hydrogen peroxide. HPLC—high performance liquid
chromatography. OH—hydroxyl.

Although the majority of the studies reviewed herein reported increases in PCs, this is not
always the case, as decreases in these health beneficial constituents have also been reported (Table 2).
Studies on fermented WG-sorghum reported a decrease in TNC and TPC with this attributed to the
ability of tannins to bind with proteins and other components, which reduces extractability as well
as tannin degradation [79,85]. Investigations into the metabolism of sourdough by Ripari et al. [102]
also suggested that reduction in some investigated PAs might be due to metabolism of PAs by lactic
acid bacteria (LAB) and the activities of decarboxylases, esterases, and reductases. In the study of
Dey and Kuhad [103] on fermentation of different WGs, both an increase and a decrease in TPC
was observed. While increases alluded to enhanced bioavailability of cereal phenolics, a decrease
observed in maize was associated with the specificity of the microbial strain to act on the PCs as well
as the grain composition. The effect of the microbial activity on the levels of individual phenolics
can differ, depending on the microbial strain. The genome of certain microorganisms might encode
genes responsible for the metabolism and/or degradation of phenolic compounds while some do
not [92,96,102]. This might, however, be difficult to ascertain or distinguish in spontaneous fermentation
processes or back-slopping that is characterized by a wide range of fermenting microorganisms.
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During the estimation of AA of food products, using more than one analytical method is
better because food contains a myriad of constituents [92]. The frequently used techniques are
spectrophotometric assays and the 2, 2′-Azino-bis (3-ethylbenzothiazoline-6-sulfate) (ABTS) (also
called ABTS-radical cation depolarization) assay as well as the cupric-reducing antioxidant capacity
(CUPRAC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and ferric-reducing antioxidant power (FRAP)
assay. Less frequently used techniques found in the course of this review are the lipid peroxidation
technique adopting the thiobarbituric acid (TBA) assay, which was used to determine the TBA reactive
substance from lipid peroxidation [101], as well as OH- and H2O2-scavenging assays. These are
both concerning due to their role in causing tissue damage and cell death, and could combine with
nucleotides to cause carcinogenesis [124].

Considering the general trend of increase in WG-PCs after fermentation and associated
mechanisms, it could, thus, be hypothesized that this should be tantamount to an increase in AAs.
While such increases were reported, some studies noted decreases in AAs of WG-fermented products.
As documented by Ðordevic et al. [101] and Sun and Ho [125], possible explanations for this ambiguous
relationship between AA and PCs are that: (i) quantified TPC values do not include other components
that can equally confer AAs, (ii) synergy in a mixture makes AA not only dependent on antioxidant
concentration but also on the structure and interactions among antioxidants, and (iii) different methods
used for measuring AA based on different mechanisms may lead to different observations. Such an
observation has also been buttressed by other authors suggesting that directly linking AAs in food and
a responsible component might be somewhat difficult, as methods of extraction, identification, and/or
quantification of AAs vary [126,127], which makes comparisons and, subsequently, extrapolating
conclusions quite tricky.

General increases in AA of fermented foods have been attributed to a release of bound PC due
to activities of hydrolytic enzymes and contents modulated during fermentation of a maize-based
product and koji from millet [62,95]. A likely conversion of bound PCs into health-related components,
a release of soluble phytochemicals and other non-PCs as well as increased extractability of AA-related
PCs have equally been implicated to have led to an increase in AA during the fermentation of WGs
into tempe, ting, and sourdough (from millet and rye) [65,69,85,92,97]. An addition to these could be
that the fermentation process facilitated cleavage/dissociation of the bonds between PCs and other
constituents leading to a release of PC-monomers, which yield AAs. Equally important and implicated
in other studies are products of protein hydrolysis through proteolytic actions through fermentation,
which could have led to components that contribute to increased PC and consequent antioxidant
potential of fermented WGs. Available enzymes during fermentation and/or produced by fermenting
microorganisms could also break down ester bonds, hydrolyse β-glucosidic bonds, and distort the
hydroxyl groups in phenolic structures liberating free PCs and other antioxidant-related compounds.
On the contrary, a decrease in AA after fermentation was attributed to modifications that influenced
the extractability of compounds that confer AAs, especially the association between tannins, phenols,
proteins, and other compounds in the grain [79].

Although in vitro studies reflect potential AAs of WG-fermented cereals, these in vitro techniques
could underestimate physiological antioxidants, which necessitates in vivo studies. The use of in vivo
models in investigating the influence of fermentation on AA is largely desirable. According to
Benedetti et al. [128] and Alam et al. [129], in vivo protocols involve the administration of antioxidants
to testing animals for a specified period of time, after which the animals are sacrificed, and blood or
tissues are analyzed. Subsequently done are assays such as lipid peroxidation (LPO), thioredoxin
reductase activities, and glutathione peroxidase (GSHPx) in human patients [128,130]. Although such
in vivo studies are largely desirable, challenges related to ethical approvals, high costs, and daunting
logistics have led to the adoption of in vitro techniques. Few studies are available on in vivo assays
on fermented WG-cereal products with such studies focusing on AAs of the product. Breads made
from WG-Kamut Khorasan wheat and WG-durum wheat were both reported to protect rat liver from
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oxidative stress [128]. An earlier study by similar authors reported a lower oxidative state in rats fed
with experimental diets of sourdough bread for seven weeks [131].

Phenolic compounds usually occur in an esterified form linked to the cell wall matrix in the
cereal bran and, as such, not readily available. Fermentation is considered a possible strategy to
not only increase AAs but also to release the insoluble bound phenolic acids and, thus, to improve
the poor bioavailability of grain phenolics [132]. This is particularly important as the antioxidant
potential of WGs could be restricted by low availability of compounds during digestion. Not
only does fermentation increases PCs and AA of WG-fermented products (Tables 2 and 3), it also
positively influences bioavailability, bio-accessibility, and PAs as demonstrated in a study on flours
from WG-barley fermented with probiotic strains [96].

6. Future Perspective

Fermentation positively alters food quality, confers organoleptic characteristics, and improves
phenolic constituents and antioxidant activity of WGs. Could this then translate to consumption
of more whole grains? Possibly not, considering the grittiness and associated sensory challenges
associated with whole grain foods. This might also contribute to fewer whole grain fermented foods
as compared to those from refined grains. This is in tandem with a study on the consumption of
WGs foods from brewers’ spent grain, which indicates that hereditary consumers of whole grain
foods will be more receptive to its consumption as compared to their refined foods counterpart [133].
Some studies have also indicated barriers for consuming WG foods such as the lack of knowledge about
its health benefits, challenges with cooking/preparation time, negative sensory perception, perceived
cost, and the lack of availability of whole grains [134–136].

7. Conclusions

Increasing whole grain consumption should, therefore, be a target for health organizations with
recommendations for intake proposed in many countries. As such, new strategies and partnerships
between researchers, industry, and relevant agencies are further needed to promote whole grain
consumption. Future studies are necessary in the area of phenolic compounds in fermented whole
grains along with effective techniques such as whole genome sequencing to investigate genes responsible
for the conversion of phenolic constituents and improvements in AAs. Such would largely assist in
choosing starter cultures that would further improve the quality of fermented WG foods. Deeper
investigation into the mechanisms of different forms of fermentation (solid state and liquid) on
single/pure phenolic compounds (in isolation) and antioxidant activities should equally be explored.
Additionally, studies are needed into the absorption and bioavailability of these phenolics in the gut,
preferably through in vivo models.
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