SUPPLEMENTARY INFORMATION

Synthesis and cytotoxic evaluation of some substituted 5-pyrazolones and their urea derivatives

ALIYE GEDIZ ERTURK* and HILAL OMERUSTAOGLU

Department of Chemistry, Faculty of Science & Arts, Ordu University, 52200, Ordu, TURKEY *E-mail: aerturk@att.net

Table of contents

The FT-IR spectra of the synthesized compounds (Figures S1-S9)	2
The ¹ H NMR spectra of the synthesized compounds (Figures S10-S18	5
The FT-IR spectra of the synthesized compounds (Figures S1-S9)	2
The ¹³ C NMR spectra of the synthesized compounds (Figures S19-S27)	10
The LC-MS/MS spectra of the synthesized compounds (Figures S28-S36)	15
The Elemental analysis results of the synthesized compounds (Table S1)	20
Time dependent cell viability plots (Figures S37-S45)	21
Time and dose dependent cell viability plots (Figure S46)	23

FT-IR spectra

Figure S1. FTIR spectrum of 5-hydroxy-3-(4-nitrophenyl)-1-(p-tolyl)-1H-pyrazole 3e.

Figure S2. FTIR spectrum of 1-(4-bromophenyl)-3-(4-nitrophenyl)-1H-pyrazole-5(4H)-one 3f.

Figure S3. FTIR spectrum of 1-(4-chlorophenyl)-3-(4-nitrophenyl)-1H-pyrazole-5(4H)-one 3g.

Figure S4. FTIR spectrum of 1-(4-bromophenyl)-3-methyl-1*H*-pyrazole-5(4*H*)-one 3h.

Figure S5. FTIR spectrum of 5-hydroxy-3-(4-nitrophenyl)-1-phenyl-4-formyl-1*H*-pyrazole 4d.

Figure S6. FTIR spectrum of N-[(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazole-4-ylidene)methyl]urea **5a**.

Figure 7. FTIR spectrum of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(isopropyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5b**.

Figure 8. FTIR spectrum of N-[(1,5-dihydro-1,3-diphenyl-5-oxo-4*H*-pyrazole-4-ylidene)methyl]urea **5c**.

Figure 9. FTIR spectrum of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(4-nitrophenyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5d**.

¹H NMR spectra

Figure S10. ¹H NMR spectrum in DMSO-*d*⁶ of 5-hydroxy-3-(4-nitrophenyl)-1-(p-tolyl)-1*H*-pyrazole **3e**.

Figure S11. ¹H NMR spectrum in CDCl₃ of 1-(4-bromophenyl)-3-(4-nitrophenyl)-1*H*-pyrazole-5(4*H*)- one **3f**.

Figure S12. ¹H NMR spectrum in CDCl₃ of 1-(4-chlorophenyl)-3-(4-nitrophenyl)-1*H*-pyrazole-5(4*H*)- one **3g**.

Figure S13. ¹H NMR spectrum in CDCl₃ of 1-(4-bromophenyl)-3-methyl-1*H*-pyrazole-5(4*H*)-one **3h**.

Figure S14. ¹H NMR spectrum in CDCl₃ of 5-hydroxy-3-(4-nitrophenyl)-1-phenyl-4-formyl-1*H*-pyrazole **4d**.

Figure S15. ¹H NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazole-4-ylidene)methyl]urea **5a**.

Figure S16. ¹H NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(isopropyl)-4H-pyrazole-4-ylidene)methyl]urea **5b**.

Figure S17. ¹H NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-1,3-diphenyl-5-oxo-4*H*-pyrazole-4-ylidene)methyl]urea **5c**.

Figure S18. ¹H NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(4-nitrophenyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5d**.

Figure S20. ¹³C NMR spectrum in CDCl₃ of 1-(4-bromophenyl)-3-(4-nitrophenyl)-1*H*-pyrazole-5(4*H*)- one **3f**.

Figure S21. ¹³C NMR spectrum in CDCl₃ of 1-(4-chlorophenyl)-3-(4-nitrophenyl)-1*H*-pyrazole-5(4*H*)- one **3g**.

Figure S22. ¹³C NMR spectrum in CDCl₃ of 1-(4-bromophenyl)-3-methyl-1*H*-pyrazole-5(4*H*)-one 3h.

Figure S23. ¹³C NMR spectrum in CDCl₃ of 5-hydroxy-3-(4-nitrophenyl)-1-phenyl-4-formyl-1*H*-pyrazole **4d**.

Figure S24. ¹³C NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazole-4-ylidene)methyl]urea **5a**.

Figure S25. ¹³C NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(isopropyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5b**.

Figure S26. ¹³C NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-1,3-diphenyl-5-oxo-4*H*-pyrazole-4-ylidene)methyl]urea **5c**.

Figure S27. ¹³C NMR spectrum in DMSO-*d*⁶ of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(4-nitrophenyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5d**.

LC-MS/MS spectra

Figure S28. LC-MS/MS spectrum of 5-hydroxy-3-(4-nitrophenyl)-1-(p-tolyl)-1H-pyrazole 3e.

Figure S29. LC-MS/MS spectrum of 1-(4-bromophenyl)-3-(4-nitrophenyl)-1H-pyrazole-5(4H)-one 3f.

Figure S30. LC-MS/MS spectrum of 1-(4-chlorophenyl)-3-(4-nitrophenyl)-1H-pyrazole-5(4H)-one 3g.

Figure S31. LC-MS/MS spectrum of 1-(4-bromophenyl)-3-methyl-1*H*-pyrazole-5(4*H*)-one 3h.

Figure S32. LC-MS/MS spectrum of 5-hydroxy-3-(4-nitrophenyl)-1-phenyl-4-formyl-1H-pyrazole 4d.

Figure S33. LC-MS/MS spectrum of N-[(1,5-dihydro-3-methyl-5-oxo-1-phenyl-4*H*-pyrazole-4-ylidene)methyl]urea **5a**.

Figure S34. LC-MS/MS spectrum of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(isopropyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5b**.

Figure S35. LC-MS/MS spectrum of N-[(1,5-dihydro-1,3-diphenyl-5-oxo-4*H*-pyrazole-4-ylidene)methyl]urea **5c**.

Figure S36. LC-MS/MS spectrum of N-[(1,5-dihydro-1-phenyl-5-oxo-3-(4-nitrophenyl)-4*H*-pyrazole-4-ylidene)methyl]urea **5d**.

Elemental analysis results

No	Compounds	Formula	Results		
			Element	Calculated [%]	Found [%]
	O ₂ N		С	65.08	64.97
20		$C_{12}H_{12}N_{2}O_{2}$	Н	4.44	4.54
56		C16H131N3O3	Ν	14.23	14.17
	O ₂ N		С	50.02	49.86
3f		CarHaoB#NoOo	Н	2.80	2.83
	$\bigvee_{O}^{N} \bigvee_{N} - \bigcup_{Br}^{N} - Br$	C151 110D11N3O3	Ν	11.67	11.55
	O ₂ N		С	57.07	56.79
3g		C15H10ClN3O3	Н	3.19	3.29
			Ν	13.31	13.87
			С	47.46	47.54
3h	N Br	C10H9BrN2O	Н	3.58	3.54
	U O		Ν	11.07	11.14
			С	62.14	62.06
4d		$C_{16}H_{11}N_{3}O_{4}$	Н	3.59	3.50
			Ν	13.59	13.65
			С	59.01	58.93
5a		$C_{12}H_{12}N_4O_2$	Н	4.95	4.81
	n ö		Ν	22.94	23.07
			C	61.75	61.88
5b		$C_{14}H_{16}N_4O_2$	Н	5.92	5.86
			Ν	20.58	20.77
	$\langle \rangle$		С	66.66	66.9
5c		$C_{17}H_{14}N_4O_2$	Н	4.61	4.50
	H ₂ N ^N H ^N		Ν	18.29	18.50
	O ₂ N		С	58.12	58.26
	$\langle \rangle$	0.11.11.0	Н	3.73	3.70
5d	$H_2N \xrightarrow{C} N \xrightarrow{H} O$	C17H13N5O4	Ν	19.93	20.16

Table 1. Elemental analysis results of compounds.

Figure S37. Effects of **3e** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S38. Effects of **3f** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S39. Effects of **3g** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S41. Effects of **4d** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S42. Effects of **5a** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S43. Effects of **5b** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S44. Effects of **5c** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

Figure S45. Effects of **5d** on Cell Viability of Cancerous vs Non-Cancerous Cells at 24, 48, 72, and 96 Hours.

= 24h A431 = 24h HaCaT = 48h A431 = 48h HaCaT = 72h A431 = 72h HaCaT = 96h A431 = 96h HaCaT