
molecules

Article

2-Butyl-2-tert-butyl-5,5-diethylpyrrolidine-1-oxyls:
Synthesis and Properties

Irina F. Zhurko 1, Sergey Dobrynin 1 , Artem A. Gorodetskii 1, Yuri I. Glazachev 2,
Tatyana V. Rybalova 1 , Elena I. Chernyak 1 , Nargiz Asanbaeva 1,3, Elena G. Bagryanskaya 1,*
and Igor A. Kirilyuk 1,*

1 Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Academician
Lavrentiev Ave. 9, Novosibirsk 630090, Russia; zhurko@nioch.nsc.ru (I.F.Z.); s.a.dobrynin@gmail.com (S.D.);
gorodaa@nioch.nsc.ru (A.A.G.); rybalova@nioch.nsc.ru (T.V.R.); chernyak@nioch.nsc.ru (E.I.C.);
nargiz-asan@mail.ru (N.A.)

2 Institute of Chemical Kinetics & Combustion SB RAS, Institutskaya 3, Novosibirsk 630090, Russia;
glaza@ngs.ru

3 Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
* Correspondence: egbagryanskaya@nioch.nsc.ru (E.G.B.); kirilyuk@nioch.nsc.ru (I.A.K.);

Tel.: +7-(383)-330-8850 (E.G.B.)

Academic Editor: Francesca Marini
Received: 31 January 2020; Accepted: 13 February 2020; Published: 14 February 2020

����������
�������

Abstract: Nitroxides are broadly used as molecular probes and labels in biophysics, structural biology,
and biomedical research. Resistance of a nitroxide group bearing an unpaired electron to
chemical reduction with low-molecular-weight antioxidants and enzymatic systems is of critical
importance for these applications. The redox properties of nitroxides are known to depend on
the ring size (for cyclic nitroxides) and electronic and steric effects of the substituents. Here,
two highly strained nitroxides, 5-(tert-butyl)-5-butyl-2,2-diethyl-3-hydroxypyrrolidin-1-oxyl (4) and
2-(tert-butyl)-2-butyl-5,5-diethyl-3,4-bis(hydroxymethyl)pyrrolidin-1-oxyl (5), were prepared via a
reaction of the corresponding 2-tert-butyl-1-pyrroline 1-oxides with butyllithium. Thermal stability
and kinetics of reduction of the new nitroxides by ascorbic acid were studied. Nitroxide 5 showed the
highest resistance to reduction.

Keywords: nitroxides; nitrones; 1,3-dipolar cycloaddition reaction; organolithium compounds; EPR;
spin probes; reduction kinetics

1. Introduction

Nitroxides are broadly used as molecular probes and labels in biophysics, structural biology,
and biomedical research [1–6]. Modern trends in these research fields, such as in-cell electron
paramagnetic resonance (EPR)/pulsed electron-electron double resonance (PELDOR) experiments [7,8]
and in vivo NMR and EPR imaging [9,10], require stable paramagnetic agents that can retain the
radical center in live cells or tissues long enough for the measurements. Resistance of a nitroxide
group bearing an unpaired electron to chemical reduction with low-molecular-weight antioxidants
and enzymatic systems is crucial for these applications. The redox properties of nitroxides depend
on the ring size (for cyclic nitroxides) and electronic and steric effects of the substituents [11,12].
Five-membered-ring nitroxides of the pyrrolidine series show the highest resistance to reduction [13,14].
Introduction of bulkier alkyl substituents instead of methyls at the carbon atom adjacent to the
N–O· group can increase nitroxide stability in model systems and in biological samples [15–17].
2,2,5,5-Tetraethylpyrrolidine-1-oxyls 1 and 2 are the most resistant to reduction among all currently
known nitroxides (Chart 1) [18–20]. One can assume that a further increase in the steric demand of
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alkyls at positions 2 and 5 can make a nitroxide even more stable, but the synthesis of such strained
structures remains a challenge. We have previously published efficient synthesis of a spirocyclic
nitroxide of the 2,5-dihydroimidazole series, 3, with tert-butyl and n-butyl substituents at position 5 of
the imidazole ring via the reaction of corresponding cyclic α-tert-butylnitrone with n-butyllithium
(n-BuLi). Regretfully, this nitroxide appears to be thermally unstable, rapidly decomposing at
80 ◦C via tert-butyl radical abstraction [21]. Here we used the same strategy to synthesize highly
strained nitroxides of the pyrrolidine series. Two nitroxides, 4 and 5, were prepared via a reaction of
corresponding 2-tert-butyl-1-pyrroline-1-oxides with BuLi. Thermal stability and redox properties
of the new nitroxides were studied. The new nitroxides are very lipophilic compounds with poor
solubility in water; however, their hydroxyl groups may be employed for chemical binding to a delivery
vehicle. The utility of lipophilic nitroxides with large hydrophobic groups for the design of lipid
nanoparticles or micelles for MRI contrast and MRI-controlled drug delivery has been demonstrated
by various research groups [22–24].
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Reznikov et al. [25]. Using a procedure similar to the one described in the literature [26], 
1-hydroxy-5,5-diethyl-2,2,4-trimethyl-2,5-dihydroimidazole 7 [27] was treated with an excess of 
lithium diisopropylamide to produce dianion intermediate 8, which reacts with ethyl pivalate to 
form 9 (Scheme 2). Quenching of the reaction mixture in aerobic conditions leads to partial oxidation 
into the corresponding nitroxide; therefore, the mixture was treated with manganese dioxide to 
finalize the conversion. Nitroxide 10 was isolated as an orange paramagnetic crystalline solid with 
spectral parameters close to those of known 4-(2-oxoalkylidene)-imidazolidines: strong absorption 
at 298 nm in the UV spectrum indicated formation of an enaminoketone conjugated system, 
IR-spectra of 10 showed characteristic strong vibration bands of the enaminoketone moiety at 1635 
and 1561 cm−1 (cf. [26]). Hydrogenation of 10 on a palladium catalyst afforded hydroxylamine 9. The 
structure of 9 was confirmed by a 1H NMR spectrum: a methine proton signal at 5.01 ppm and a 
broad line of NH at 5.35 ppm indicate that 9 predominantly exists in 
4-(2-oxoalkylidene)-imidazolidine form in CDCl3. 

Treatment of enaminoketone 9 with conc. hydrochloric acid for 82 h resulted in hydrolysis of 
the heterocycle, and subsequent neutralization of the reaction mixture to pH 7–8 led to recyclization 
with the formation of 6 (Scheme 2). IR, UV, and NMR spectra of 6 are close to those provided in the 
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2. Results

2.1. Synthesis of Nitroxide 4

The new nitroxide, 4, was synthesized from 5-(tert-butyl)-2,2-diethyl-3-oxo-3,4-dihydro-2H-pyrrole
1-oxide (6) (Scheme 1).

Molecules 2020, 25, 845 2 of 17 

 

structures remains a challenge. We have previously published efficient synthesis of a spirocyclic 
nitroxide of the 2,5-dihydroimidazole series, 3, with tert-butyl and n-butyl substituents at position 5 
of the imidazole ring via the reaction of corresponding cyclic α-tert-butylnitrone with n-butyllithium 
(n-BuLi). Regretfully, this nitroxide appears to be thermally unstable, rapidly decomposing at 80 °C 
via tert-butyl radical abstraction [21]. Here we used the same strategy to synthesize highly strained 
nitroxides of the pyrrolidine series. Two nitroxides, 4 and 5, were prepared via a reaction of 
corresponding 2-tert-butyl-1-pyrroline-1-oxides with BuLi. Thermal stability and redox properties of 
the new nitroxides were studied. The new nitroxides are very lipophilic compounds with poor 
solubility in water; however, their hydroxyl groups may be employed for chemical binding to a 
delivery vehicle. The utility of lipophilic nitroxides with large hydrophobic groups for the design of 
lipid nanoparticles or micelles for MRI contrast and MRI-controlled drug delivery has been 
demonstrated by various research groups [22–24]. 

 

 

 

Chart 1. Structures of nitroxides 1–5. 

2. Results 

2.1. Synthesis of Nitroxide 4 

The new nitroxide, 4, was synthesized from 
5-(tert-butyl)-2,2-diethyl-3-oxo-3,4-dihydro-2H-pyrrole 1-oxide (6) (Scheme 1). 

 
 

Scheme 1. Synthetic strategy for nitroxide 4. 

The general procedure for the synthesis of similar 1-pyrroline 1-oxides has been developed by 
Reznikov et al. [25]. Using a procedure similar to the one described in the literature [26], 
1-hydroxy-5,5-diethyl-2,2,4-trimethyl-2,5-dihydroimidazole 7 [27] was treated with an excess of 
lithium diisopropylamide to produce dianion intermediate 8, which reacts with ethyl pivalate to 
form 9 (Scheme 2). Quenching of the reaction mixture in aerobic conditions leads to partial oxidation 
into the corresponding nitroxide; therefore, the mixture was treated with manganese dioxide to 
finalize the conversion. Nitroxide 10 was isolated as an orange paramagnetic crystalline solid with 
spectral parameters close to those of known 4-(2-oxoalkylidene)-imidazolidines: strong absorption 
at 298 nm in the UV spectrum indicated formation of an enaminoketone conjugated system, 
IR-spectra of 10 showed characteristic strong vibration bands of the enaminoketone moiety at 1635 
and 1561 cm−1 (cf. [26]). Hydrogenation of 10 on a palladium catalyst afforded hydroxylamine 9. The 
structure of 9 was confirmed by a 1H NMR spectrum: a methine proton signal at 5.01 ppm and a 
broad line of NH at 5.35 ppm indicate that 9 predominantly exists in 
4-(2-oxoalkylidene)-imidazolidine form in CDCl3. 

Treatment of enaminoketone 9 with conc. hydrochloric acid for 82 h resulted in hydrolysis of 
the heterocycle, and subsequent neutralization of the reaction mixture to pH 7–8 led to recyclization 
with the formation of 6 (Scheme 2). IR, UV, and NMR spectra of 6 are close to those provided in the 

Scheme 1. Synthetic strategy for nitroxide 4.

The general procedure for the synthesis of similar 1-pyrroline 1-oxides has been developed
by Reznikov et al. [25]. Using a procedure similar to the one described in the literature [26],
1-hydroxy-5,5-diethyl-2,2,4-trimethyl-2,5-dihydroimidazole 7 [27] was treated with an excess of lithium
diisopropylamide to produce dianion intermediate 8, which reacts with ethyl pivalate to form 9
(Scheme 2). Quenching of the reaction mixture in aerobic conditions leads to partial oxidation into
the corresponding nitroxide; therefore, the mixture was treated with manganese dioxide to finalize
the conversion. Nitroxide 10 was isolated as an orange paramagnetic crystalline solid with spectral
parameters close to those of known 4-(2-oxoalkylidene)-imidazolidines: strong absorption at 298 nm
in the UV spectrum indicated formation of an enaminoketone conjugated system, IR-spectra of 10
showed characteristic strong vibration bands of the enaminoketone moiety at 1635 and 1561 cm−1

(cf. [26]). Hydrogenation of 10 on a palladium catalyst afforded hydroxylamine 9. The structure of 9
was confirmed by a 1H NMR spectrum: a methine proton signal at 5.01 ppm and a broad line of NH at
5.35 ppm indicate that 9 predominantly exists in 4-(2-oxoalkylidene)-imidazolidine form in CDCl3.
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Treatment of enaminoketone 9 with conc. hydrochloric acid for 82 h resulted in hydrolysis of the
heterocycle, and subsequent neutralization of the reaction mixture to pH 7–8 led to recyclization with the
formation of 6 (Scheme 2). IR, UV, and NMR spectra of 6 are close to those provided in the literature for
similar compounds [25]. According to NMR data, 11 exists in CDCl3 as a mixture of tautomeric forms
(6A and 6B) in a 4:7 ratio (Scheme 2) (cf. [25]). The presence of the N-hydroxyenamine form 6B makes
3-oxo-3,4-dihydro-2H-pyrrole 1-oxides susceptible to oxidation to vinylnitroxide radicals, which in
turn are prone to dimerization [28]. Indeed, similarly to other known 3-oxo-3,4-dihydro-2H-pyrrole
1-oxides, 6 undergoes oxidation by air oxygen in solutions, thus yielding the emergence of deep violet
coloring due to ethylene-type dimer formation (Scheme 3). Complete conversion to dimer 12 can be
achieved via oxidation of 6 with manganese dioxide. The samples of similar dimers are known to
have quintet EPR spectra, initially attributed to a contribution of the biradical form [28]. It has been
demonstrated later that the signal belongs to paramagnetic impurities [29], presumably to radical ions
of the dinitrones [30]. Exchange with these radical ions may account for the strong broadening of some
signals in 13C NMR spectra of 12 (see Supplementary Materials). Single-crystal X-ray analysis of 12
uncovered a dihedral angle of 60◦ between nearly planar pyrrolinone rings (Figure 1; deviation within
±0.032 Å) (cf. [29]).

Of note, earlier processing of the reaction mixture in the hydrolysis of 9 leads to the formation
of byproducts and decreases the yield of 6. If the reaction mixture was processed, after 40 h,
another compound (13, yield 15%) was isolated along with 6 (Scheme 2). Obviously, enaminoketone
9 hydrolysis proceeds via the consecutive formation of acyclic enaminoketone 14 and β-diketone 15
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intermediates, both present in the reaction mixture, and formation of 13 is a result of cyclization of the
former. Formation of similar compounds has been previously observed in a recyclization reaction of
imidazolidine enaminoketones with an acceptor group at the exo-methylene carbon atom [31].
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According to NMR data, in CDCl3, 13 exists predominantly as tautomer 13A. Enaminonitrone
13 is unstable in aerobic conditions at ambient temperature and undergoes oxidation to
5-(tert-butyl)-2,2-diethyl-3-imino-4-oxo-3,4-dihydro-2H-pyrrole 1-oxide (16), which is then hydrolyzed
by air moisture into 5-(tert-butyl)-2,2-diethyl-3,4-dioxo-3,4-dihydro-2H-pyrrole 1-oxide (17) (Scheme 3).
Formation of similar α-diketones and their monoimines has been observed previously during studies
on the reactions of 4-chloro-2,2-dimethyl-3-oxo-5-phenyl-3,4-dihydro-2H-pyrrole 1-oxide [32,33].

It is known that treatment of 3-oxo-3,4-dihydro-2H-pyrrole 1-oxides with organometallic reagents
leads to the formation of enolate salts, which nevertheless remain capable of reacting with the second
equivalent of a Grignard reagent or an organolithium compound via nucleophilic addition onto a
nitrone carbon. A number of pyrrolidine nitroxides have been prepared via this reaction, including
5-(tert-butyl)-2,2-dimethyl-1-oxo-5-phenylpyrrolidin-1-oxyl [34]. It is noteworthy that the addition of
EtMgBr to 6 did not occur either at ambient temperature or upon heating. After heating to reflux in
THF with a large excess of EtMgBr for 15 h, the nitrone was almost quantitatively recovered from the
reaction mixture. In contrast, 6 readily reacted with BuLi within 1.5 h, and quenching of the reaction
mixture with water under aerobic conditions afforded nitroxide 18 with a 60% yield (Scheme 3).

Nitroxide 18 is unstable, slowly decomposing at room temperature or upon heating, with deep
crimson coloring typical for 3-oxo-3,4-dihydro-2H-pyrrole 1-oxide dimers. We already mentioned above
the thermal instability of nitroxide 3 [21]. Here, we followed a similar approach to investigate thermal
decomposition of 18: a mixture of 18 with a 10-fold excess of 2,2,6,6-tetramethylpiperidine-1-oxyl (19,
TEMPO) was heated to 80 ◦C under anaerobic conditions. The conversion was complete within 7 days,
affording alkoxyamine 20 and dimer 21 (Scheme 4). Obviously, TEMPO is acting both as a spin trap
for the tert-butyl radical and as an oxidant converting in situ–formed 3-oxo-3,4-dihydro-2H-pyrrole
1-oxide 22 into dimer 21.
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Reduction of 18 with sodium borohydride gave nitroxide 4 as a single diastereomer (racemic
mixture) according to HPLC (Figure SI67). Single-crystal X-ray analysis (Figure 1) revealed that the
hydroxyl group is at cis-position to the tert-butyl group, apparently indicating kinetic control of the
reduction reaction in which the reagent approaches the C=O bond from the less hindered side.

2.2. Synthesis of Nitroxide 5

This synthesis is based on a recently developed procedure for assembling sterically hindered
pyrrolidines via a three-component domino process [20]. A mixture of tert-leucine, dimethyl fumarate,
2-pentanone, and DMF in toluene was heated to reflux with a Dean–Stark apparatus, thereby affording
a diastereomeric mixture of pyrrolidine-3,4-diesters 23a,b. A portion of the mixture was subjected to
column chromatography to separate the isomers for structure confirmation. After exhaustive reduction
of the ester groups with LiAlH4, the mixture was oxidized with a H2O2/Na2WO4 system in aqueous
methanol to give single nitrone 24 (Scheme 5). Spectral parameters of 24 are close to those of its
2,5,5-triethyl analog [20].
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Addition of the nitrone to a solution of EtMgBr in THF leads to precipitation, presumably due
to magnesium bis-alkoxide formation. Subsequent stirring of the reaction mixture with an excess of
EtMgBr at room temperature or upon heating to reflux did not lead to Grignard reagent addition,
and nitrone 24 was almost quantitatively recovered after the processing of the reaction mixture.
To prevent precipitation of magnesium salts, the hydroxy groups were protected via treatment with
trimethylsilyl chloride and triethylamine in dry THF (Scheme 6). Silylated nitrone 25 also showed no
reactivity toward EtMgBr but reacted with n-BuLi. The reaction was complete after stirring at ambient
temperature for 72 h, affording a mixture of nitroxides (presumably, diastereomers) with major isomer
content exceeding 90%. The major isomer (racemate) was isolated via crystallization with the yield
65%, and the structure was determined by single-crystal X-ray analysis (Figure 1).Molecules 2020, 25, 845 6 of 17 
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Along with nitroxide 5, colorless oily compound 26 was isolated from the
reaction mixture using chromatography. Analysis of 1H and 13C NMR spectra
with 1H-1H and 1H-13C correlations (see Supplementary Materials) allowed us to
assign the 5-(tert-butyl)-2,2-diethyl-3-(hydroxymethyl)-4-pentyl-3,4-dihydro-2H-pyrrole structure to
this compound.

2.3. Properties of the New Nitroxides

EPR spectra of the synthesized nitroxides are presented in Figure 2. Parameters of the EPR
spectra of new nitroxides 4 and 5 are given in Table 1, and spectral parameters of 1 and 2 recorded
under the same conditions are provided for comparison. The spectra of both new nitroxides were
characterized by a triplet of doublets with hyperfine coupling (hfc) on nitrogen and hydrogen nuclei.
This behavior is typical for 3-substituted or 3,4-disubstituted pyrrolidine nitroxides with geminal ethyl
groups at position 2 or 5 [18,20]. The origin of this additional doublet splitting has been previously
investigated for imidazolidine nitroxides, which have similar geometry [35]. It was shown that a
repulsion with a substituent at a neighboring sp3-hybridized asymmetric center makes geminal ethyls
favor a conformation with high spin density at one of four methylene hydrogens. Replacement of the
ethyl with any other group or removal of the neighboring substituent may change conformational
behavior with disappearance of the large hfc.
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modulation amplitude, 0.05 mT; time constant, 50 ms; and conversion time, 5.12 ms. Simulations by
means of WinSim are indicated by the dotted curve.
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Table 1. Parameters of EPR spectra, octanol–water partition coefficients (Kp), and rate constants of
reduction with ascorbate for nitroxides 1, 2, 4, and 5 (for details, see the experimental part).

Parameters of EPR Spectra
Nitroxide Solvent aN, mT aH, mT Hp-p, mT

Kp (Octanol–H2O) kRed × 104, M−1c−1

1
H2O 1.56 0.2

0.125 -
12.5 ± 0.3

20 ± 10 [19]
H2O-MeOH 1:1 1.52 0.202 0.6 ± 0.2

2
H2O 1.527 0.225

0.12
3.8 ± 0.5

3.3 ± 0.8 [20]
H2O-MeOH 1:1 1.493 0.198 1.2 ± 0.1

4
H2O 1.605 0.214

0.124 1000 ± 250
-

H2O-MeOH 1:1 1.529 0.199 1.7 ± 0.1

5
H2O 1.586 0.251

0.117 850 ± 120
-

H2O-MeOH 1:1 1.498 0.248 0.012 ± 0.03

Unlike 18, nitroxides 4 and 5 showed remarkable thermal stability. Heating of the samples of 4
and 5 at 100 ◦C for 80 min didn’t lead to significant decay of the nitroxides EPR signal (See Figure SI78).
Nitroxides 4 and 5 are rather lipophilic (their octanol–water partition coefficients are 1000 and 850,
respectively). Their solubility allowed to register the EPR spectra, but the signal-to-noise ratio was
not sufficient to follow the kinetics of the reduction. Moreover, dissolving them in an ultrasonic
bath yielded unreproducible results, presumably due to the formation of unstable micellar solutions.
For this reason, redox properties of 4 and 5 were investigated in 50% methanol, where stable 0.1 mM
solutions can be prepared. The kinetics of nitroxide decay in the presence of 0.5 M ascorbate at
pH 7.4 are shown in Figure 3. Second-order reduction rate constants of the nitroxides are listed in
Table 1. The rate constants were obtained from the initial part of the kinetics when accumulation of
dehydroascorbate anion was negligible [36]. Reduction of 1 and 2 under the same conditions was
evaluated for comparison. Reduction of 1 and 2 proceeded much slower in 50% methanol than in
aqueous PBS solution, showing a decrease in the rate constant by the factor of 20.8 and 3.2, respectively.
It is known that a solvent can significantly affect the rate constant of chemical reactions [37]. The basic
mechanism is the influence of solvent polarity on the stabilization energy of initial compounds as well
as the energy level of a transition state. An increase in solvent polarity accelerates the rates of reactions
where a charge develops in the activated complex, starting from a neutral or slightly charged reactant.
The solvent effect is well known in the chemistry of reversible homolyses of alkoxyamines, where one
of the reaction partners is a nitroxide radical [38].Molecules 2020, 25, 845 8 of 17 
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The kinetics of reduction in 50% methanol were very similar among 1, 2, and 4, whereas in
water, the reduction of 1 proceeded significantly faster than that of 2 (see Figure SI77). Presumably,
this difference can be attributed to a difference in solvation of the nitroxide, ascorbate anion, and the
transition state. While the observed difference for 2 follows the pattern of an ion–dipole interaction,
the reaction of 1, which is in the anionic form at pH 7.4, with ascorbate anion is complicated by
Coulomb’s repulsion, which is more important in a solvent with lower polarity. The presented data
indicate that nitroxide 5 is the most resistant to reduction.

3. Materials and Methods

3.1. General Information

2,2,5,5-Tetraethyl-3,4-bis(hydroxymethyl)pyrrolidin-1-oxyl (2) was prepared according to a
published protocol [20]. 3-Carboxy-2,2,5,5-tetraethylpyrrolidin-1-oxyl (1) [18] was prepared as
described in the patent [39], and the IR spectrum of the nitroxide is given in Figure S18 (cf. [18]).
A 1H NMR spectrum of the corresponding hydroxylamine trifluoroacetate is depicted in Figure S60.
Commercially available reagents, such as n-butyllithium and lithium diisopropylamide solutions,
dimethyl fumarate, 2-amino-3,3-dimethylbutanoic acid and 2-pentanone were used as received from
Acros Organics B.V.B.A, Geel, Belgium. Solvents were dried by standard procedures (described in
the literature) prior to use. The IR spectra were recorded on a Bruker Vector 22 FT-IR spectrometer
(Bruker, Billerica, MA, USA) in KBr pellets (1:150 ratio) or in neat samples (for oily compounds).
UV spectra were acquired on a HP Agilent 8453 spectrometer (Agilent Technologies, Santa Clara, CA,
USA) in ethanol solutions (concentration ~10−4 M). 1H NMR spectra were recorded on a Bruker AV 300
(300.132 MHz), AM 400 (400.134 MHz), and AV 600 (600.300 MHz) spectrometers. 13C NMR spectra
were recorded on a Bruker AV 300 (75.467 MHz), AM 400 (100.614 MHz), and AV 600 (151 MHz)
spectrometers. All the NMR spectra were acquired for 5–10% solutions in CDCl3 or a CDCl3–CD3OD
1:4 mixture at 300 K using the signal of the solvent as a standard. To confirm the structure of stable
nitroxides, 1H NMR spectra were recorded of the solutions of corresponding hydroxylamines prepared
via reduction of the nitroxide samples (10–20 mg) with Zn powder in a CD3OD–CF3COOH 10:1
mixture, see subsection 3.2.12.

The structures of compounds 4, 5, and 12 were determined by single-crystal X-ray analysis
(Table S2). X-ray diffraction data were obtained on a Bruker P4 for 12 and on a Bruker Kappa
Apex II CCD diffractometer for 4 and 5 with Mo Kα radiation (λ = 0.71073 Å) and a graphite
monochromator. Absorption corrections were applied empirically using SADABS programs [40] for
4 and 5 and by the integration method for 12. The structures were solved by direct methods and
refined by the full-matrix least-squares method against all F2 in anisotropic approximation (besides
the H atoms) using the SHELXL2014/7 software suite (Dept. of Structural Chemistry, University of
Göttingen, Göttingen, Germany [41]). The H atoms’ positions were processed via the riding model,
except for the positions of hydroxyl groups in 5 (refined independently). There are two independent
molecules in the asymmetric unit of the cell for 4. Datasets CCDC 1972133–1972135 contain the
supplementary crystallographic data for this paper. These data can be obtained free of charge via
http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi or from the Cambridge Crystallographic Data Centre,
12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223 336 033; or e-mail: deposit@ccdc.cam.ac.uk.

HPLC analyses were performed with an Agilent 1100 liquid chromatography system (Agilent
Technologies, Santa Clara, CA, USA) equipped with a quaternary pump, online degasser, autosampler,
and diode array detector. Chromatographic separations were carried out on a ZORBAX SB-C18 column
(150 mm × 4.6 mm, 5.0 µm). The flow rate was 0.6 mL/min. Detection was performed at 238 nm.
Acetonitrile, methanol and water were used to prepare the mobile phase.

The reactions were monitored by thin layer chromatography (TLC) on Sorbfil UV-254 (Imid ltd,
Krasnodar, Russia) and DC-Alufolien (Merck KGaA, Darmstadt, Germany) plates with chloroform,
chloroform–hexane, diethyl ether–hexane, and ethyl acetate–hexane mixtures as eluents. Kieselgel 60

http://www.ccdc.cam.ac.uk/cgi-bin/catreq.cgi
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(Macherey-Nagel GmbH & Co. KG, Düren, Germany), and alumina were utilized as sorbents for the
column chromatography.

The EPR spectra in water were recorded on a Bruker ER-200D-SRC spectrometer in 100 µL
quartz capillary for 0.1 mM solutions degassed via bubbling with argon. Spectrometer settings:
frequency, 9.87 GHz; microwave power, 5.0 mW; modulation amplitude, 0.05 mT; time constant, 50 ms;
and conversion time, 5.12 ms. The EPR spectra in water–methanol solutions and in toluene were
recorded with an Elexsys E540 X-band spectrometer (Bruker, Billerica, MA, USA) in a 100 µL quartz
capillary for 0.1–0.3 mM solutions, with the following spectrometer settings: field center, 351.600 mT;
sweep range, 10 mT; modulation amplitude, 0.15 mT; microwave power, 2 mW; time constant, 10.24 ms;
and scan time, 41 ms. The EasySpin software (Version 5.2.28, easyspin.org, [42]) was employed
for simulation of spectra. For kinetic measurements, the EPR spectra were acquired at the same
instrument settings but with a greater modulation amplitude (0.2 mT) to optimize the signal-to-noise
ratio. Thermal stability of nitroxides 4 and 5 was studied in 1 mM solutions in toluene within a sealed
100 µL glass capillary using a double sample resonator (Bruker, ER 4105DR). One of the two samples
with the nitroxide was placed into a water bath (95–100 ◦C) for 80 min incubation, and nitroxide decay
was followed via comparison of intensities. Partition coefficients in a water–octanol mixture were
estimated from the amplitudes of the EPR spectra of a nitroxide in water after extensive shaking with
different portions of added octanol and separation.

For kinetic measurements in water, stock solutions of the nitroxide, ascorbic acid, and of glutathione
in phosphate buffer (1 mM, pH 7.4) were prepared, and pH was adjusted to 7.4 with NaHCO3. All the
solutions were deoxygenated with argon, carefully and quickly mixed in a small tube to attain final
concentrations (nitroxide, 0.1–0.3 mM; GSH, 2 mM; and ascorbate, 166.7 mM) and were placed into
an EPR capillary (50 µL). The capillary was sealed on both sides and placed into the EPR resonator.
Alternatively, all the reagents were dissolved in a MeOH–H2O mixture (1:1), pH of the stock solutions
was adjusted to 7.4 with NaHCO3, and the solutions were mixed in a similar manner to obtain final
concentrations: nitroxide, 0.1 mM; GSH, 2 mM; and ascorbate, 500 mM. The decay of amplitude
of the low-field component of the EPR spectrum was followed to obtain the kinetics. Initial part
of the decay curves (up to 200 min) was used for fitting. Kinetics of the decay was fitted to a
monoexponential function to calculate the first-order rate constants. Then, these constants were
divided by the concentration of ascorbic acid to calculate the second-order reaction constants.

3.2. Synthesis

3.2.1. 5,5-Diethyl-1-hydroxy-2,2,4-trimethyl-2,5-dihydro-1H-imidazole (7)

It was prepared from 3-hydroxyamino-3-ethylpentan-2-one hydrochloride [16] and acetone as
described previously [27].

3.2.2. (Z)-4-(3,3-Dimethyl-2-oxobutylidene)-5,5-diethyl-2,2-dimethylimidazolidin-1-oxyl (10)

A solution of 4.3 g (23.4 mmol) of imidazoline 6 in 30 mL of dry diethyl ether was added dropwise
to 35 mL of a 2 M solution of lithium diisopropylamide in an argon atmosphere. After 50 min of stirring,
ethyl pivalate (12 mL, 78.5 mmol) was added, and the reaction mixture was heated to reflux for 48 h.
Then, the mixture was cooled to 5 ◦C, and 100 mL of water was added carefully. The organic layer was
separated, and the aqueous layer was extracted with diethyl ether (30 mL × 3 times). The combined
extract was agitated with 10 g of manganese dioxide for 1 h and dried over magnesium sulfate.
The precipitate was filtered off, and the filtrate was evaporated under reduced pressure. The crude
product was purified by column chromatography on silica gel with gradient elution (from hexane
to a diethyl ether–hexane 1:4 mixture) to give 10 (5.5 g, 88% yield) as a yellow crystalline solid, m.p.
84–86 ◦C (hexane). Elemental analysis: found: C, 67.66; H, 10.18; N, 10.46; calcd. for C15H27N2O2: C,
67.38; H, 10.18; N, 10.48%; IR (KBr) νmax: 3274, 2978, 2952, 2869, 1636, 1561, 1494, 1461, 1444, 1377, 1362,
1328, 1217, 1181, 1163, 1121, 1018, 968, 947, 874, 815, 793, 748, cm−1; UV (EtOH) λmax (log ε): 298 (4.27).
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3.2.3. (Z)-1-(5,5-Diethyl-2,2-dimethyl-1-hydroxyimidazolidin-4-ylidene)-3,3-dimethylbutan-2-one (9)

Hydroxyamine 9 was prepared via hydrogenation of 10 on a Pd/C catalyst in methanol under
atmospheric pressure and ambient temperature. Yield 97%, colorless crystalline solid, m.p. 108–111 ◦C
(hexane). Elemental analysis: found: C, 68.03; H, 10.58; N, 9.79; calcd. for C15H28N2O2: C, 67.13; H,
10.52; N, 10.44%; IR (KBr) νmax: 3281 (br.), 2968, 2871, 1617, 1526, 1461, 1392, 1378, 1361, 1341, 1327,
1216, 1198, 1170, 1126, 1043, 1020, 988, 942, 910, 875, 812, 784, 752, 701, cm−1; UV (EtOH) λmax (log ε):
304 (4.28); 1H NMR(300 MHz; CDCl3, δ): 0.92 (t, J = 7.3 Hz, 6 H), 1.15 (s, 9H), 1.42 (s, 6H,), 1.69, 1.82
(ABq, Jq = 7.3 Hz, JAB = 14.5 Hz, both 2H), 5.01 (s, 1H), 5.35 (br. s, 1H), 10.12 (br. s, 1H); 13C{1H} NMR
(75 MHz; CDCl3, δ): 8.94, 27.57, 27.80, 27.83, 41.41, 74.03, 79.97, 83.91, 165.45, 204.83.

3.2.4. Enaminoketone 9 Acid Hydrolysis and Recyclization

Method A: Similarly to a previously described procedure, [25] a solution of 2.33 g (8.7 mmol)
of enaminoketone 9 in methanol (10 mL) was diluted with 35% hydrochloric acid (10 mL), and the
reaction mixture was kept for 84 h at ambient temperature. Then, methanol was removed under
reduced pressure, and the mixture was neutralized with a saturated aqueous solution of sodium
carbonate under argon and extracted with degassed chloroform (10 mL × 3 times). The combined
extract was dried over magnesium sulfate and evaporated under reduced pressure. The residue was
purified by recrystallization from hexane to isolate 6 in a 1.1 g (60%) yield.

Method B: Concentrated hydrochloric acid (40 mL) was added to a solution of 7.6 g (28.7 mmol) of
9 in 40 mL of methanol, and the reaction mixture was kept for 40 h at room temperature. Neutralization
of the reaction mixture resulted in precipitation of colorless oil, which was separated and dissolved
in chloroform, washed with brine and sodium carbonate, and dried over magnesium sulfate. Next,
chloroform was removed under reduced pressure, and the residue was triturated with hexane.
The formed precipitate was filtered off and recrystallized from hexane to obtain 13 (0.9 g, 15%).
The aqueous solution after neutralization was processed as described in method A to obtain 6 (2.9 g,
47%). Compound 13 totally decomposed in a few days under aerobic conditions at room temperature.
The mixture of decomposition products was separated by column chromatography on silica gel using
a chloroform–hexane 1:4 mixture as an eluent to isolate 16 and 17.

5-(tert-Butyl)-2,2-diethyl-3-oxo-3,4-dihydro-2H-pyrrole 1-oxide (6): A colorless crystalline solid, m.p.
138–143 ◦C (hexane). Elemental analysis: found: C, 67.83; H, 10.36; N, 6.32; calcd. for C12H21NO2: C,
68.21; H, 10.02; N, 6.63%; IR (KBr) νmax: 2964, 2924, 2877, 2580 (br.), 1594, 1534 (br.), 1495, 1427, 1392,
1361, 1323, 1273, 1253, 1217, 1135, 1122, 1066, 1028, 951, 868, 792, 764, cm−1; UV (EtOH) λmax (log ε):
332 (3.97); 1H NMR (300 MHz; CDCl3, δ): Form A: 0.67 (br. m, 6H), 1.35 (s, 9H), 1.67, 1.92 (br. ABq, Jq =

6.8 Hz, JAB = 13.6 Hz, both 2H), 3.17 (br. s, 2H); Form B: 0.66 (br. m, 6H,), 1.35 (s, 9H), 1.67, 1.81 (br.
ABq, Jq = 6.8 Hz, JAB = 13.6 Hz, both 2H), 4.96 (br. s, 1H), 10.22 (br. s, 1H); 13C{1H} NMR (75 MHz;
CDCl3, δ): Form A: 7.64, 25.64, 28.14, 33.89, 42.87, 85.06, 151.31, 209.84; Form B: 7.64, 27.92, 34.38, 79.50,
94.50, 185.96, 196.55.

3-Amino-5-(tert-butyl)-2,2-diethyl-2H-pyrrole 1-oxide (13): A yellow crystalline solid. IR (KBr) νmax:
3320, 3150 (br.), 2972, 2877, 2737, 1661, 1588, 1484, 1459, 1407, 1378, 1359, 1337, 1299, 1255, 1179, 1149,
1090, 1055, 951, 870, 788, 763, 706, 674, 621, cm−1; 1H NMR (300 MHz; CDCl3, δ): 0.55 (t, J = 7.2 Hz, 6H),
1.26 (s, 9H), 1.40, 1.92 (ABq, Jq = 7.2 Hz, JAB = 13.8 Hz, both 2H), 4.63 (br. s, 2H), 5.06 (s, 1H); 13C{1H}
NMR (75 MHz; CDCl3, δ): 7.21, 26.54, 28.70, 33.90, 77.01, 91.70, 153.59, 159.09.

5-(tert-Butyl)-2,2-diethyl-3-imino-4-oxo-3,4-dihydro-2H-pyrrole 1-oxide (16): Yellow oil. IR (neat) νmax:
3369, 3207, 2972, 2935, 2882, 2774, 1771, 1703, 1678, 1624, 1588, 1570, 1510, 1481, 1456, 1410, 1382, 1359,
1322, 1271, 1230, 1202, 1147, 1121, 1068, 1040, 1006, 964, 947, 864, 821, 791, 770, 753, 705, cm−1; M/z,
found: M 224, (M-CH3) 209; calcd. for C12H20N2O2: 224; 1H NMR (400 MHz; CDCl3, δ): 0.63 (t, J =

7.4 Hz, 6H), 1.39 (s, 9H), 1.93, 2.08 (ABq, Jq = 7.4 Hz, JAB = 14.4 Hz, both 2H); 13C{1H} NMR (100 MHz;
CDCl3, δ): 7.02, 25.71, 28.71, 33.94, 81.65, 153.93, 171.42, 178.29.

5-(tert-Butyl)-2,2-diethyl-3,4-dioxo-3,4-dihydro-2H-pyrrole 1-oxide (17): yellow crystalline solid, m.p.
31–31 ◦C (hexane). Elemental analysis: found: C, 64.29; H, 8.49; N, 6.49; calcd. for C12H19NO3: C,
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63.98; H, 8.50; N, 6.22%; m/z, Found: M 225, (M-CH3) 210; calcd. for C12H19NO3: M 225; IR (KBr) νmax:
2927, 2855, 2769, 1769, 1696 (br.), 1503, 1454, 1408, 1381, 1361, 1320, 1226, 1192, 1120, 1085, 1039, 931,
870, 805, 772, 722, 687, cm−1; UV (EtOH) λmax (log ε): 239 (3.83), 328 (3.96); 1H NMR (400 MHz; CDCl3,
δ): 0.69 (t, J = 7.4 Hz, 6H), 1.43 (s, 9H), 1.88, 2.00 (ABq, Jq = 7.4 Hz, JAB = 14.2 Hz, both 2H); 13C{1H}
NMR (100 MHz; CDCl3, δ): 7.28, 25.71, 27.25, 34.41, 81.70, 159.63, 178.56, 197.35.

3.2.5. 3,3’-Bis(2-tert-butyl-5,5-diethyl-4-oxopyrrolinylidene) 1,1’-dioxide (12)

Manganese dioxide 0.75 g (8.63 mmol) was added to a solution of 0.15 g (0.71 mmol) of 6 in
chloroform (3 mL), and the reaction mixture was stirred vigorously for 7 days. The precipitate was
filtered off, and the filtrate was evaporated under reduced pressure. The residue was recrystallized
from ethyl acetate to give 0.145 g (95%) of dimer 12 as a dark violet crystalline solid, m.p. 157–160 ◦C
(ethyl acetate). Elemental analysis: found: C, 68.91; H, 9.27; N, 6.71; calcd. for C24H38N2O4: C, 68.87;
H, 9.15; N, 6.69%; IR (KBr) νmax: 2972, 2928, 2850, 1701, 1505, 1489, 1459, 1422, 1379, 1359, 1298, 1219,
1118, 1050, 953, 879, 859, 778, 754, 717, 668, cm−1; UV (EtOH) λmax (log ε): 234 (3.83), 307 (3.93), 375
(3.70), 579 (4.03); 1H NMR (400 MHz; CDCl3, δ): 0.44, 0.63 (t, J = 7.35 Hz, both 6H), 1.39 (s, 18H), 1.66,
1.75 (ABq, Jq = 7.3 Hz, JAB = 14.0 Hz both 2H), 1.74, 1.89 (ABq, Jq = 7.4 Hz, JAB = 14.6 Hz, both 2H).
13C{1H} NMR (100 MHz; CDCl3, δ): 7.07, 7.39, 26.01, 27.72, 29.39, 36.03, 82.02, 198.35.

3.2.6. 5-(tert-Butyl)-5-butyl-2,2-diethyl-3-oxopyrrolidin-1-oxyl (18)

A warm solution of 0.5 g (2.37 mmol) of pyrroline 6 in dry benzene (30 mL) was added dropwise
to a 2.6 M toluene solution of BuLi (14 mL) in an argon atmosphere. The reaction mixture was heated
at 60 ◦C for 1 h and then kept at room temperature for 24 h. After that, the mixture was cooled to
0–5 ◦C and quenched with 30 mL of water. The organic layer was separated, and the aqueous layer
was extracted with benzene. The combined extract was dried over magnesium sulfate and evaporated
under reduced pressure. The residue was purified by column chromatography on silica gel with
gradient elution (from tetrachloromethane to a chloroform–tetrachloromethane 1:5 mixture) to isolate
18 (0.39 g, 61%) as a yellow crystalline solid, m.p. 42–43 ◦C (hexane). Elemental analysis: found: C,
71.90; H, 11.49; N, 4.96; calcd. for C16H30NO2: C, 71.59; H, 11.27; N, 5.22%; HRMS (EI/DFS) m/z [M]+

calcd for (C16H30NO2)+: 268.2271; found: 268.2276. IR (KBr) νmax: 2969, 2874, 1747, 1483, 1470, 1407,
1396, 1379, 1366, 1337, 1297, 1277, 1213, 1161, 1148, 1109, 927, 888, 839, 785, 733, cm−1. UV (EtOH) λmax

(log ε): 217 (3.22), 243 (3.19). HPLC UV 99.0355%.

3.2.7. Thermal Decomposition of Nitroxide 18 in the Presence of TEMPO

A mixture of 0.3 g (1.12 mmol) of nitroxide 18 and 1.6 g (10.3 mmol) of TEMPO was placed into a
Schlenk flask and heated at 70–80 ◦C in vacuum for 7 days. The mixture was separated by column
chromatography on silica gel with gradient elution (from hexane to a diethyl ether–hexane 1:2 mixture)
to give 20 (0.09 g, 38%) and 21 (0.2 g, 85%).

1-(tert-Butoxy)-2,2,6,6-tetramethylpiperidine (20): Colorless oil. NMR 1H and 13C spectra match the
literature data [43,44].

3,3’-Bis(2-butyl-5,5-diethyl-4-oxopyrrolinylidene) 1,1’-dioxide (21): A dark crimson crystalline solid,
m.p. 95–100 ◦C (hexane). Elemental analysis: found: C, 69.06; H, 8.98; N, 6.55; calcd. for C24H38N2O4:
C, 68.87; H, 9.15; N, 6.69%; IR (KBr) νmax: 2954, 2929, 2872, 1708, 1461, 1409, 1345, 1315, 1232, 1118,
1051, 935, 712, cm−1. UV (EtOH) λmax (log ε): 228 (3.89), 284 (3.71), 341 (3.81), 508 (4.19); 1H NMR
(300 MHz; CDCl3, δ): 0.65 (t, J = 7.4 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H), 0.91 (t, J = 7.4 Hz, 3H), 1.39 (sex,
J = 7.4 Hz, 2H), 1.60 (m, 2H,), 1.83, 1.94 (ABq, JAB = 14.3 Hz, Jq = 7.4 Hz, 4H), 2.95 (m, 2H); 13C{1H}
NMR (75 MHz; CDCl3, δ): 7.02, 13.65, 22.24, 25.97, 27.14, 27.65, 80.57, 122.45, 159.55, 199.05.

3.2.8. 5-(tert-Butyl)-5-butyl-2,2-diethyl-3-hydroxypyrrolidin-1-oxyl (4)

A 1.3-fold excess of sodium borohydride (0.037 g, 0.97 mmol) was added in portions to a solution
of nitroxide 18 (0.2 g, 0.75 mmol) in ethanol with stirring for 30 min. After that, ethanol was removed
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under reduced pressure, and the residue was diluted with an equal volume of water and extracted
with diethyl ether. The extract was dried over magnesium sulfate and then evaporated under reduced
pressure. The residue was recrystallized from hexane. Nitroxide 4 was isolated in a 0.197 g (98%)
yield as a pale yellow crystalline solid, m.p. 88–90 ◦C (hexane). Elemental analysis: found: C 70.76; H
11.80; N 5.09%; calcd. for C16H32NO2, C 71.06; H 11.93, N 5.18%. HRMS (EI/DFS) m/z [M]+ calcd for
(C16H32NO2)+: 270.2428; found: 270.2426. IR (KBr) νmax: 3392 (br.), 2963, 2936, 2877, 1461, 1405, 1383,
1367, 1311, 1282, 1221, 1144, 1122, 1095, 1056, 933, 829, 746, 671, cm−1. UV (EtOH) λmax (log ε): 236
(3.32). HPLC UV 96.2762%.

3.2.9. 5-(tert-Butyl)-3,4-bis(methoxycarbonyl)-2,2-diethylpyrrolidine (23a,b)

A mixture of 2-amino-3,3-dimethylbutanoic acid (1.33 g, 10 mmol), dimethyl fumarate (1.5 g,
10 mmol), diethylketone (10 mL, 100 mmol), DMF (10 mL), and toluene (10 mL) was placed into a
Dean–Stark apparatus and stirred under reflux for 3 days. The solvent was distilled off in vacuum,
and the residue was dissolved in ethyl acetate (30 mL). The solution was washed with aqueous sodium
bicarbonate (50 mL × 3 times) and extracted with 5% sulfuric acid (20 mL × 3 times). The acidic extracts
were basified with Na2CO3 to pH 7–8 and extracted with ethyl acetate (20 mL × 3 times). The extract
was dried with Na2CO3, and the solvent was removed under reduced pressure to give 2.2 g (73%) of a
crude diastereomeric mixture as yellow oil. The mixture was used in the next step without further
purification. To confirm the structure, the isomers were separated by column chromatography on silica
gel (eluent: hexane–ethyl acetate 50:1).

Isomer 23a: Yield 0.6 g (20%), colorless crystalline solid, m.p. 30.3–32.0 ◦C (hexane). Elemental
analysis: found: C, 64.00; H, 9.76; N, 4.60; calcd. for C16H29NO4: C, 64.18; H, 9.76; N, 4.68%; HRMS
(EI/ Agilent 7200 Accurate Mass Q-TOF GC/MS) m/z [M-CH3O]+ calcd. for C15H26NO3 268.1907,
found 268.1913.IR (KBr) νmax: 3444, 2953, 2879, 1724, 1620, 1460, 1435, 1385, 1369, 1323, 1277, 1259,
1194, 1169, 1128, 1065, 1039, 1016, 974, 935, 893, 858, 804, 779, cm−1. 1H NMR (500 MHz; CDCl3, δ):
0.77 (t, J = 7.3 Hz, 3H), 0.88 (s, 9H), 0.93 (t, J = 7.5 Hz, 3H), 1.12 (dq, Jd = 14.0 Hz, Jq = 7.3 Hz, 1H), 1.38
(dq, Jd = 14.0 Hz, Jq = 7.3 Hz, 1H), 1.64 (br, 1H), 1.66 (dq, Jd = 13.6 Hz, Jq = 7.5 Hz, 1H), 1.70 (dq, Jd =

13.6 Hz, Jq = 7.5 Hz, 1H), 2.98 (d, J = 6.3 Hz, 1H), 3.02 (d, J = 3.0 Hz, 1H), 3.29 (dd, J1 = 6.3 Hz, J2 =

3.0 Hz, 1H), 3.57 (s, 3H), 3.58 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3, δ): 8.3, 8.4, 24.8, 27.2, 29.8, 32.4,
50.1, 51.29, 51.33, 57.3, 67.9, 70.8, 173.4, 175.7.

Isomer 23b: Yield 1.36 g (46%), colorless oil. Elemental analysis: found: C, 64.17; H, 9.73; N, 4.68;
calcd. for C16H29NO4: C, 64.18; H, 9.76; N, 4.68%. HRMS (EI/ Agilent 7200 Accurate Mass Q-TOF
GC/MS) m/z [M-CH3O]+ calcd. for C15H26NO3 268.1907, found 268.1906. IR (neat) νmax: 2955, 2879,
1738, 1462, 1437, 1375, 1338, 1254, 1194, 1167, 1107, 1066, 1020, 982, 966, 820, 785, 744, cm−1. 1H NMR
(500 MHz; CDCl3, δ): 0.79 (t, J = 7.4 Hz, 3H), 0.85 (s, 9H), 0.87 (t, J = 7.3 Hz, 3H), 1.25 (dq, Jd = 13.9 Hz,
Jq = 7.4 Hz, 1H), 1.31 (dq, Jd = 13.9 Hz, Jq = 7.4, 1H), 1.36 (br, 1H), 1.56 (dq, Jd = 14.3 Hz, Jq = 7.3 Hz,
1H), 1.60 (dq, Jd = 14.3 Hz, Jq = 7.3 Hz, 1H), 3.04 (d, J = 8.8 Hz, 1H), 3.07 (dd, J1 = 8.8 Hz, J2 = 8.4 Hz,
1H), 3.19 (d, J = 8.4 Hz, 1H), 3.61 (s, 3H), 3.61 (s, 3H). 13C{1H} NMR (125 MHz, CDCl3, δ): 7.8, 7.9, 26.3,
28.6, 29.3, 33.2, 48.9, 51.3, 51.6, 57.3, 66.3, 70.1, 173.0, 175.3.

3.2.10. 5-(tert-Butyl)-2,2-diethyl-3,4-bis(hydroxymethyl)-3,4-dihydro-2H-pyrrole 1-oxide (24)

A solution of a crude mixture of amines 23a,b (6.38 g, 22 mmol) in dry diethyl ether (20 mL)
was added dropwise to a stirred solution of LiAlH4 (1.56 g, 41 mmol) in dry diethyl ether (100 mL).
The mixture was stirred at reflux for 1 h, then the flask was cooled in an ice bath and carefully
quenched with 5 mL of 5% aqueous sodium hydroxide and 15 mL of water. The organic layer was
separated via decantation, the wet precipitate was washed with diethyl ether (20 mL × 3 times), and the
combined extract was evaporated under reduced pressure. The residue was dissolved in methanol
(50 mL), mixed with a solution of sodium tungstate (0.7 g, 2.12 mmol) and EDTA disodium salt (0.71 g,
2.12 mmol) in water (30 mL), and hydrogen peroxide 30% (7 mL) was added. The solution was kept at
ambient temperature for 3 days, then a catalytic amount of manganese dioxide (0.1 g, 1.2 mmol) was
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carefully added for quenching of remaining H2O2. After oxygen evolution ceased, the solution was
evaporated in vacuum. The residue was triturated with chloroform, and the extract was dried with
sodium carbonate. The solution was filtered, and the solvent was distilled off in vacuum. The residue
was triturated with diethyl ether to give 4.16 g of crude 24 as a pinkish crystalline solid. The stock
solution was evaporated under reduced pressure and purified by column chromatography on silica
gel (eluent: methanol–ethyl acetate 1:100) to afford another portion of 24 (0.49 g).

24: Yield 4.65 g (85%), colorless crystals, m.p. 121.6–122.4 ◦C (ethyl acetate). Elemental analysis:
found: C, 65.61; H, 10.83; N, 5.46; calcd. for C14H27NO3: C, 65.33; H, 10.57; N, 5.44%. HRMS (EI/DFS)
m/z [M]+ calcd for (C14H27NO3)+ 257.1986, found 257.1985. IR (KBr) νmax: 3404, 3194, 2972, 2949, 2941,
2922, 2881, 2739, 1711, 1569,1487, 1454, 1396, 1373, 1331, 1292, 1242, 1157,1126, 1095, 1086, 1057, 1043,
1030, 1005, 943, 928, 901, 862, 796, 779, 739, 692, 669, 602, 575, 555, 486, 471, 444, 436, cm−1. UV (EtOH)
λmax (log ε): 239 (3.97). 1H NMR (400 MHz; CDCl3, δ): 0.70 (t, J = 7.3 Hz, 3H), 0.83 (t, J = 7.4 Hz, 3H),
1.29 (s, 9H), 1.48 (dq, Jd = 14.5 Hz, Jq = 7.3 Hz, 1H), 0.59 (dq, Jd = 14.5 Hz, Jq = 7.3 Hz, 1H), 1.67 (dq, Jd =

14.5 Hz, Jq = 7.4 Hz, 1H), 1.75 (dq, Jd = 14.5 Hz, Jq = 7.3 Hz, 1H), 2.29 (ddd, J1 = 5.9 Hz, J2 = 10.0 Hz, J3
= 4.7 Hz, 1H), 2.83 (ddd, J1 = 5.9 Hz, J2 = 8.9 Hz, J3 = 3.0, 1H), 3.33 (t, J = 9.1 Hz, 1H), 3.61 (t, J = 9.3 Hz,
1H), 3.69 (br, 1H), 4.10 (br, 1H), 5.14 (br, 1H), 5.24 (br, 1H). 13C{1H} NMR (100 MHz, CDCl3, δ): 7.4, 9.1,
26.2, 27.3, 31.4, 34.4, 44.5, 50.6, 61.3, 64.8, 80.8, 152.9.

3.2.11. 2-(tert-Butyl)-2-butyl-5,5-diethyl-3,4-bis(hydroxymethyl)pyrrolidin-1-oxyl (5)

A solution of trimethylsilyl chloride (1.54 g, 14.1 mmol) in dry THF (10 mL) was added dropwise
to a solution of nitrone 24 (1.65 g, 6.42 mmol) and triethylamine (1.3 g, 28.2 mmol) in dry THF (35 mL)
upon stirring in ice bath. Then, the solvent was evaporated under reduced pressure, the residue was
triturated with diethyl ether (10 mL× 5 times), and the precipitate was filtered off. The combined filtrate
was concentrated under reduced pressure and dissolved in dry benzene (20 mL). Next, a solution
of n-BuLi (1 M in hexane, 30 mL) was added in an argon atmosphere upon stirring in an ice bath.
The reaction mixture was kept at ambient temperature for 3 days. The reaction was controlled with TLC
on SiO2 (eluent: ethyl acetate–hexane 1:4), using H3[P(Mo3O10)4]·nH2O for staining. The mixture was
quenched carefully with water until formation of two phases. The organic layer was separated, and the
aqueous layer was extracted with ethyl acetate (15 mL× 2 times). The combined extract was evaporated
under reduced pressure, the residue was dissolved in methanol (20 mL), and an aqueous solution of
PPTS (0.05 g in 3 mL) was added to remove the protective groups. The mixture was kept in ambient air
for 3 days, and then methanol was removed under reduced pressure, and the residue was diluted with
water (10 mL) and extracted with ethyl acetate (10 mL × 4 times). The extract was evaporated under
reduced pressure, and the residue was separated by column chromatography on silica gel (eluent:
ethyl acetate–hexane 1:4) to give 5 (1.31 g, 65%) and 26 (0.36 g, 20%). For purification, nitroxide 5 was
recrystallized from a hexane–ethyl acetate (6:1) solution and then from an ethanol–water (2:1) solution.

2-(tert-Butyl)-2-butyl-5,5-diethyl-3,4-bis(hydroxymethyl)pyrrolidin-1-oxyl (5): A yellow crystalline
solid, m.p. 109.4–113.8 ◦C (hexane–ethyl acetate 6:1). Elemental analysis: found: C, 68.90; H, 11.55;
N, 4.58; calcd. for C18H36NO3: C, 68.75; H, 11.54; N, 4.45%. HRMS (EI/DFS) m/z [M]+ calcd. for
(C18H36NO3)+ 314.2690, found 314.2688. IR (KBr) νmax: 3333, 2962, 2875, 1485, 1460, 1425, 1392, 1379,
1367, 1346, 1298, 1288, 1201, 1163, 1138, 1063, 1051, 1012, 995, 949, 922, 839, 795, 754, 739, 710, 604, 586,
478 cm−1. UV (EtOH), λmax (log ε): 239 (3.23). HPLC UV 96.8533%.

5-(tert-Butyl)-2,2-diethyl-3-(hydroxymethyl)-4-pentyl-3,4-dihydro-2H-pyrrole (26): colorless oil.
Elemental analysis: found: C, 76.38; H, 12.08; N, 4.43; calcd. for C18H35NO: C, 76.81; H, 12.53;
N, 4.98%. HRMS (EI/DFS) m/z [M]+ calcd for (C18H35NO)+ 281.2713, found 281.2710.IR (neat) νmax:
3377, 2960, 2933, 2874, 1626, 1462, 1392, 1363, 1219, 1201, 1167, 1092, 1059, 1018, 955, 924, 837, 802, 727,
582 cm−1. UV (EtOH) λmax (log ε): 204 (3.01), 232 (2.52). 1H NMR (600 MHz; CDCl3, δ): 0.81 (t, Jt =

7.4 Hz, 3H), 0.84 (t, Jt = 7.4 Hz, 3H), 0.85 (t, Jt = 7.0 Hz, 3H), 1.16 (s, 9H), 1.17–1.41 (m, 7H), 1.41 (dq, Jd =

14.2 Hz, Jq = 7.2 Hz, 1H), 1.44 (dq, Jd = 14.0 Hz, Jq = 7.4 Hz, 1H), 1.53 (dq, Jd = 14.0 Hz, Jq = 7.4 Hz, 1H),
1.61 (dq, Jd = 14.2 Hz, Jq = 7.2 Hz, 1H), 1.84 (m, 1H), 1.96 (ddd, Jd1 = 7.0 Hz, Jd2 = 7.0 Hz, Jd3 = 6.3 Hz,
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1H), 2.64 (ddd, Jd1 = 5.9 Hz, Jd2 = 10.0 Hz, Jd3 = 4.7 Hz, 1H), 3.47 (dd, Jd1 = 10.6 Hz, Jd2 = 6.8 Hz, 1H),
3.67 (dd, Jd1 = 10.6 Hz, Jd2 = 6.8 Hz, 1H). 13C{1H} NMR (150 MHz, CDCl3, δ): 8.33, 8.96, 13.89, 22.44,
27.30, 27.36, 29.35, 31.86, 32.62, 33.68, 35.98, 50.21, 53.64, 63.32, 76.46, 181.82. For 2D NMR correlation
spectra 1H−1H (COSY, mixing time 0.8 s) and 1H−13C (HSQC, HMBC) see Figures S64–S66.

3.2.12. The General Method for Nitroxides 4 and 5, Reduction with Zn in CF3COOH for NMR

Trifluoroacetic acid (20–50µL) was added dropwise to a mixture of of the nitroxide (0.04–0.08 mmol),
Zn dust (50–100 mg, 0.8–1.5 mmol) and CD3OD (0.3–0.4 mL). The reaction mass was incubated at
ambient temperature for 15 min and then diluted with 0.3 mL of CDCl3; the precipitate was filtered off.
The filtrate was placed into an NMR tube, and 1H spectra were recorded.

5-(tert-Butyl)-5-butyl-2,2-diethylpyrrolidine-1,3-diol 2,2,2-trifluoroacetate (4H): 1H NMR (400 MHz;
CDCl3, CD3OD, CF3COOH, δ): 0.94 (t, J = 6.8 Hz, 3H), 1.03, 1.05 (t, J = 7.4 Hz, both 3H), 1.08 (s, 9H),
1.23 (m, 1H), 1.36 (m, 4H), 1.66 (m, 2H), 1.78-2.06 (m, 4H), 2.12 (m, 1H), 2.23 (m, 1H), 4.31 (m, 1H).

(2-(tert-Butyl)-2-butyl-5,5-diethyl-1-hydroxypyrrolidine-3,4-diyl)dimethanol 2,2,2-trifluoroacetate (5H):
1H NMR (400 MHz; CDCl3, CD3OD, CF3COOH, δ): 0.97 (t, J = 6.8 Hz, 3H), 1.03, 1.07 (t, J = 7.4 Hz,
both 3H), 1.15 (s, 9H), 1.26–1.51 (m, 4H), 1.68–2.01 (m, 6H), 2.35 (m, 1H), 2.48 (m, 1H), 3.66 (m, 1H),
3.76 (m, 1H), 3.87 (m, 2H).

4. Conclusions

Here, we again demonstrated that the addition of organolithium compounds to cyclic α-tert-butyl
nitrones is an efficient method of the synthesis of highly strained nitroxides. The new 2-butyl-2-tert-butyl
pyrrolidine-1-oxyls were prepared in good yields. The data on reduction of the new nitroxides mean
that a further increase in the steric demand of the substituents will make the nitroxides more resistant
to reduction. Modification of the hydroxy groups may enable incorporation of these nitroxides into
macromolecular or supramolecular nanostructures that can serve as organic radical contrast agents for
in vivo MRI. Examples of similar application of highly lipophilic nitroxides were mentioned in the
introduction. The use of 5 and similar structures with exceptionally high resistance to reduction can
ensure long lifetime of paramagnetic centers in live tissues and a prolonged enhancement for MRI.
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