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Abstract: Constructed wetlands (CWs) could achieve high removal efficiency of antibiotics,
but probably stimulate the spread of antibiotic resistance genes (ARGs). In this study, four CWs
were established to treat synthetic wastewater containing sulfamethoxazole (SMX). SMX elimination
efficiencies, SMX degradation mechanisms, dynamic fates of ARGs, and bacterial communities were
evaluated during the treatment period (360 day). Throughout the whole study, the concentration
of SMX in the effluent gradually increased (p < 0.05), but in general, the removal efficiency
of SMX remained at a very high level (>98%). In addition, the concentration of SMX in the
bottom layer was higher compared with that in the surface layer. The main byproducts of SMX
degradation were found to be 4-amino benzene sulfinic acid, 3-amino-5-methylisoxazole, benzenethiol,
and 3-hydroxybutan-1-aminium. Temporally speaking, an obvious increase of sul genes was
observed, along with the increase of SMX concentration in the bottom and middle layers of CWs.
Spatially speaking, the concentration of sul genes increased from the surface layer to the bottom layer.

Keywords: sulfamethoxazole; antibiotic resistance genes; sul genes; bacterial community;
constructed wetlands

1. Introduction

In recent years, antibiotics have been extensively used as livestock food additives and to fight
infections in animal husbandry [1,2]. The overuse of antibiotics results in their continuous release into
the environment in China. Additionally, previous investigations have indicated that antibiotics in
animal waste could not be entirely removed using traditional lagoon treatment and in wastewater
treatment plants (WWTPs) [3]. As a result, antibiotics were widely detected in wastewater, surface water,
and groundwater [4,5].

The wide presence of antibiotics in the environment could cause concern because it not only
causes serious toxic effects on organisms, but also promotes the spread of antibiotic-resistant genes
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(ARGs) [6], even with low concentrations in the environment [7,8]. ARGs could be spread through
horizontal gene transfer (HGT) and vertical gene transfer (VGT), and in many cases, could be
maintained in microbial populations, even without selection pressure from antibiotics [9–11]. HGT is
a major pathway for the transfer of ARGs, including conjugative transposons, integrons, insertion
sequences, and plasmids [11,12]. ARGs have often been detected as part of antibiotic resistance super
integrons. Therefore, one antibiotic may coselect resistance to other antibiotics when applying multiple
antibiotics [13]. Even if antibiotic-resistant bacteria were damaged or killed, ARGs could still be released
to the environment and then transformed into other bacteria [14,15]. Previous studies have revealed
the high relative abundances of ARGs in wastewater lagoons and municipal wastewater, even after
treatment [16–18]. In recent years, ARGs were regarded as fast-growing potential pollution because of
the extensive application of antibiotics in the livestock industry [19–21]. Hence, effective treatment
processes for antibiotic removal could also prevent the spread of ARGs.

Constructed wetlands (CWs) are designed and constructed exploiting natural processes to treat
rural wastewater [22,23]. The advantages of CWs mainly lie in high purification removal, relatively low
construction and maintenance costs, reduced energy consumption, convenient operation, and broad
application prospects in developing countries or rural areas [24,25]. Recently, CWs were used to
remove antibiotics from agricultural and municipal wastewater via natural processes involving plants,
soil/sediment, and microorganisms [21,26,27]. CWs have been shown to be more efficient in the
removal of antibiotics and ARGs than conventional wastewater treatment systems [16,28]. Liu et al.
(2013) [28] found that the total absolute abundances of tetracycline resistance (tet) genes and the 16S
rRNA were reduced by 50% from swine wastewater using CWs. Huang et al. (2015) [16] reported that
the absolute abundances of the ARGs were greatly reduced, with their log units ranging from 0.26 to
3.3. However, previous studies of ARG reduction have always focused on their elimination, rather than
the induction of ARGs along with antibiotics removal by CWs. CWs could also be a significant source
of ARGs, and may enhance their spread. Therefore, exploring the induction of ARGs in CWs would
greatly assist in evaluating their environmental risks.

Sulfamethoxazole (SMX) is a synthetic antibiotic within the sulfonamide antibiotic family, and is
largely consumed in the livestock husbandry [29,30]. Sul genes (sulI and sulII) were chosen as the
representatives of ARGs for their frequent use [17,31–33]. In this study, four CWs were established
to treat a synthetic wastewater containing SMX for 360 day. The objectives of this study were: (1) to
investigate the elimination efficiencies and products of SMX, (2) to explore the development of sul
genes in the reactors, (3) to assess the risks of ARGs in effluent, and (3) the bacterial community during
the treatment process.

2. Results and Discussion

2.1. SMX Removal Efficiency

The concentrations of SMX in the effluent, bottom layer, and surface layer of CWs at five sampling
points are shown in Figure 1. The concentrations of SMX in the effluent ranged 0.051–0.214, 0.047–0.274,
0.0584–0.342, and 0.098–0.574 µg L−1 in CW1, CW2, CW3, and CW4. CW4 fed with 200 µg L−1 SMX
exhibited significantly higher concentrations of SMX in the effluent than CW1 fed with 20 µg L−1

(p < 0.05). On D360, the SMX concentrations in the effluent were 0.214, 0.185, 0.342, and 0.574 µg L−1

with influent SMX concentration of 20, 50, 100, and 200 µg L−1, respectively. Temporally speaking,
the SMX concentrations in effluent gradually increased during the study (p < 0.05). In the effluent
of CW3, SMX concentrations were 0.0584, 0.142, 0.198, 0.247, and 0.342 on D30, D60, D120, D240,
and D360, respectively. Notably, excellent removal efficiencies (>98%) for SMX were obtained using
CWs, even when the influent SMX concentration was as high as 200 µg L−1.
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Figure 1. Concentrations of SMX (mean ± SD, n = 3) in the effluent water and layers. (A) concentration
of SMX in the effluent; (B) concentration of SMX in the bottom layer; (C) concentration of SMX in the
surface layer.

SMX has been reported to be easily biodegradable, especially under anaerobic conditions in
the CWs [25]. In the present study, it was noteworthy that the removal efficiencies of antibiotics
by different CWs were even better than conventional WWTPs [34]. As demonstrated by previous
experiments, biodegradation, absorption, hydrolysis, and photodecomposition played significant roles
in the removal of antibiotics in the solid and aqueous phases in CWs [34–36].

Previous reports also showed that the adsorption process only accounted for a minor percentage
of the total removal in CWs [12].

The SMX concentrations of the bottom layer ranged 4.256–8.620, 14.213–19.281, 8.546–17.322,
and 36.564–47.684 µg Kg−1 in CW1, CW2, CW3, and CW4. The SMX concentrations of the surface layer
ranged 0.239–0.852, 0.327–2.652, 2.526–4.365, and 4.531–9.829 µg Kg−1 in CW1, CW2, CW3, and CW4,
respectively. The difference of SMX concentration between the bottom and surface layers was affected
by the influent SMX concentration. This was probably because the relatively high Kd values prompted
SMX to be adsorbed in the substrates of CWs [37]. However, the SMX concentrations in the layers did
not significantly increase during the treatment (p > 0.05). This result was probably due to the fact that
other physicochemical and biological processes occurred jointly or separately after SMX adsorption
in substrate [16]. Clearly, the concentration of SMX in the bottom layer was higher compared with
that in surface layer. This was not surprising, because that the bottom layer was faced with a higher
concentration of SMX due to the vertical up-influent.

2.2. SMX Degradation Products

LC-MS/MS was employed to identify the degradation products in order to clarify the degradation
pathway of SMX (C10H11N3O3S, m/z 252.0450). According to the detected mass/charge ratios
under positive mode, several potential metabolites were identified, including 4-amino benzene



Molecules 2020, 25, 834 4 of 11

sulfinic acid (C6H7NO2S, m/z 158.0123), 3-amino-5-methylisoxazole (3A5MI, C4H6N2O, m/z 99.5315),
benzenethiol (C6H6S, m/z 111.0496), and 3-hydroxybutan-1-aminium (C4H11NO, m/z 90.5263) (Figure 2).
A previous report indicated that the removal of antibiotics was mainly caused by adsorption rather than
degradation in wastewater treatment plants [38]. However, in this study, it was found that the products
of SMX may be transformed by bacterial communities. A previous study also found 4-amino benzene
sulfinic acid and 3A5MI during the degradation of SMX [39]. During the degradation process, SMX was
initially hydrolyzed into 4-amino benzene sulfinic acid and 3A5MI; then, 4-amino benzene sulfinic
acid was further transformed into benzenethiol, which was finally degraded to generate methane or
carbon dioxide. During the transformation of 3A5MI to 3-hydroxybutan-1-aminium, the isoxazole
ring was opened and its nitrogen atom was removed. Since 3-hydroxybutan-1-aminium has a chain
structure, it can be easily mineralized into methane by microbes under anoxic conditions [40].
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2.3. Sul Genes in the Effluent and Media

In order to analyze the changes of corresponding target genes, the relative abundances of sul
genes were analyzed during the treatment process. The distributions of two sul (sulI and sulII) in
the CWs are shown in Figure 3. The relative abundances of sul genes showed an obvious increase
with the increase of SMX concentrations in the bottom and middle layers. In wastewater treatment
installations, the abundances of ARGs were not only determined by their abundances, but were also
affected by the concentrations of antibiotics in the influent [6]. Since synthetic wastewater was used in
this study, the abundances of sul genes in the influent may be ignored. In addition, the sul genes were
not found in CW0. Therefore, most of the target genes were induced by the antibiotics in the influent.
Further, bacteria would also gain the corresponding ARGs via VGT and HGT [10].
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middle layer and surface layer) of CW1, CW2, CW3, and CW4, respectively (mean ± SD, n = 3). (A)
sulI genes; (B) sulII genes.

Notably, the concentration of sul genes in the bottom layer was higher than that in the middle layer,
with the surface layer containing the least (Figure 3). A similar result was obtained in a previous study,
which found that the level of ARGs was high in CWs [28]. This observation was mainly influenced
by the level of SMX sources and oxygen transport capacity in the bottom layer [28]. Clearly the
concentration of SMX in the bottom layer was the highest, followed by the middle and surface layers
(Figure 1). The fate of ARGs in the different layers of CWs was mainly attributable to the accumulation
of SMX in the substrate. Interestingly, the relative abundances of sul genes in the CWs were in the order
of sulII > sulI (Figure 3). This was not surprising, because the different fates of sul genes in CWs were
mainly caused by their specific mechanisms [6]. The sulI gene was generally found to be associated
with other ARGs in class 1 integrons, while sulII was usually located on small nonconjugative plasmids,
or generally located on large transmissible multi-resistance [41]. Therefore, the persistence of sulII genes
might be attributed to the successive pressure exerted by antimicrobial agents that were transferred
via HGT and VGT between pathogens, nonpathogens, and even distantly related organisms [31,41].

ARGs, as a major source of pollution, may be spread in bioreactors [42]. The relative abundances
of corresponding sul genes in effluent have been reported (Figure 4). The CWs, indicating the rate
of spread for sul genes, were probably caused by antibiotics. This was comparable to previous
reports in which similar abundances of ARGs were observed in the effluent of CWs [21]. In addition,
the relative abundance of most sul genes was enhanced with higher concentrations of SMX; sul genes
were not detected in the effluent of CW0. The relative abundance of sul genes exhibited an increase,
which tended to be stable among the treatment duration. Meanwhile, the relative abundances of sul
genes in the effluent were in the order of sulII > sulI. In a word, vertical up-CWs may be a good choice
for application as an effective SMX removal method, but the fate of ARGs remains to be further studied
in practical applications.
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2.4. Composition of Bacterial Communities

The microbial community was evaluated in terms of abundance and bacterial structure in
response to the different treatments in CWs [43]. There were 30 dominant genera in the phylum
level for the bottom layers, occupying > 94.90% of sequences (Figure 5). Twenty genera were
identified while 10 remained unknown by taxonomy assignment. OD1 (49.32%), Proteobacteria (44.59%),
Proteobacteria (31.36%), and Proteobacteria (54.53%) had the maximum amounts of dominant phylum and
high relative abundances of detection in CW1, CW2, CW3, and CW4, respectively, followed by Chloroflexi,
Bacteroidetes, and Acidobacteria. Previous studies reported that proteobacteria is responsible for the
degradation of refractory organic [44]. In addition, Proteobacteria (12.79%), Bacteroidetes, Acidobacteria,
and Planctomycetes increased after the SMX treatment process. Because of potential coselection on
SMX, the accumulation of antibiotics in substrates may also contribute to the enhancement of some
dominant bacteria. Our result was similar to that in a previous report, i.e., that Proteobacteria occupied
the string majority in antibiotic-correlated bacteria, followed by Bacteroidetes and Actinobacteria [45].
Some specific bacteria in CWs, like Nitrospirae, are well-known to be involved in nitrification and
ammonia oxidization [46]. In accordance with our result, Nitrospirae was a dominant phylum,
with a relative abundance of up to 4.45%.

To assess the variation of dominant bacteria after CW treatment, five samples could be divided
into three clusters according to the bacterial composition and relative abundance. Cluster I comprised
the original sample, cluster II included the CW1 and CW2 samples, and cluster III comprised all of
the remaining samples (CW3 and CW4). Previous study has shown that no significant difference
was observed in terms of bacterial abundance, richness, or diversity among different treatments of
antibiotics [43]. However, in this experiment, the bacterial communities and their relative abundance
were influenced by the SMX content of the influent. Therefore, the phenomenon suggested that the
original bacterial structure had to adapt to the variation of different SMX concentration conditions,
appearing to change over the 360 days of the experiment period.
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3. Materials and Methods

3.1. Reactor Configuration

Four CWs were set up with 65 cm in height and 35 cm in diameter with the temperature maintained
at 26 ± 3 ◦C and a relative humidity of 55–65%. The CWs were filled with siliceous gravel and sand
(siliceous gravel: sand volume ratio = 1:1; siliceous gravel was 4–7 mm and sand was 5–8 mm in
diameter). Phragmites australis were transplanted into the top layer. The synthetic wastewater was fed
into four CWs from the bottom inlet by peristaltic pump with a hydraulic loading rate of 5 cm d−1.
The synthetic wastewater was prepared with tap water containing chemical oxygen demand (500 mg
L−1), ammonia nitrogen (40 mg L−1), total nitrogen (150 mg L−1), and total phosphorus (20 mg L−1).
Then, 0, 20, 50, 100, and 200 µg L−1 of SMX were spiked into synthetic wastewater for CW0, CW1,
CW2, CW3, and CW4, respectively.

3.2. SMX Detection

First, 1000 mL of effluent was collected at days 30, 60, 120, 240, and 360, to measure the SMX
concentrations. Then, 200 g wetland media was collected from the bottom, middle, and surface layers
on day 360. Both water samples and wetland media were taken in triplicate. Water samples were filtered



Molecules 2020, 25, 834 8 of 11

through 0.45 µm fiber filters [16]. Wetland media were extracted by solid-phase extraction (Waters,
Millford, MA, USA) [47]. Liquid chromatography-mass spectrometry (LC-MS/MS, Thermo Scientific Q
Exactive Hybrid Quadrupole-Orbitrap; Thermo Fisher Scientific, Waltham, MA, USA) was used to
analyze the concentrations of SMX in water and wetland media. The mobile phase was composed
of pure 30% acetonitrile and 70% water solution (v/v) [39]. Hypersil GOLD C18 column (Acquity
UPLC BEH C18; 100 mm × 2.1 mm, 3 µm) was used in this study. The capillary voltage was 3.8 (±) kV,
the collision energy was 8 eV, and the capillary temperature was set to 350 ◦C. SMX products were
detected by the LC-MS/MS in positive mode [16].

3.3. DNA Extraction and ARG Analysis

Genomic DNA was extracted from effluents (200 mL) and wetland media (5 g) using a DNA
extraction kit (MoBio, Carlsbad, CA, USA) at each sampling point in Section 2.2. The DNA
concentrations were tested using ND-1000 NanoDrop spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, USA). The 16S rRNA gene and two sul genes (sulI and sulII) were quantified by
a Real-Time PCR System (CFX96, Bio-Rad). The reaction was 25 µL on 96-well plates (Bio-Rad,
Shanghai) containing 12.5 µL SYBR Green qPCR mix (Bio-Rad, Shanghai), 0.5 µL of each forward and
reverse primers (Bio-Rad, Shanghai), 1 µL DNA templates, and 10.5 µL ddH2O [48]. PCR protocol and
primer sequences of sul genes were based on previous studies [49,50].

3.4. High-Throughput Sequencing

Wetland media (5 g) were collected at the bottom layer to analyze microbial community. The V4
region of the bacteria 16S rRNA gene was amplified by PCR (5′-GTGCCAGCMGCCGCGGTAA-3′,
5′-GGACTACHVGGGTWTCTAAT-3′) according to previous reports [51,52]. Each PCR reaction was
performed with 50 µL mixture containing 35 ng template DNA, 4 µL PCR Primer Cocktail (5 µM,
Qiagen, Valencia, CA, USA), 25 µL PCR Master Mix (Qiagen), and ddH2O [53]. Illumina MiSeq
platform was employed to purify and pool amplicons in equimolar amounts and paired-end sequenced
(2 × 250) [51,54]. Data were analyzed with Microsoft Excel 2010, and statistical analyses were conducted
by SPSS ver. 19.0.

4. Conclusions

This study clearly demonstrated that excellent SMX removal efficiency among different SMX
concentrations was obtained during the treatment in the CWs. The concentration of SMX in the bottom
layer was higher compared with that in the surface layer. Good removal efficiencies for SMX were
observed using the systems. A degradation mechanism of SMX was proposed. The relative abundances
of sul genes showed an obvious increase with the increase of SMX content in the bottom and middle
layers. The concentration of sul genes in the bottom layer was shown to be higher than that in the
middle layer; the surface layer presented the lowest concentration. The relative abundance of sul genes
exhibited an increase, which tended to be stable among the treatment duration. Proteobacteria was the
dominant phylum in the CWs.
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