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Abstract: We prepared a series of 10 carbamates derivatives based on two common antiprotozoal
drugs: metronidazole (1–5) and secnidazole (6–10). The compounds were tested in vitro against a set
of two amitochondriate protozoa: Giardia duodenalis and Trichomonas vaginalis. Compounds 1–10
showed strong antiprotozoal activities, with potency values in the low micromolar-to-nanomolar
range, being more active than their parent drugs. Metronidazole carbamate (1) was the most active of
the series, with nanomolar activities against G. duodenalis (IC50 = 460 nM) and T. vaginalis (IC50 =

60 nM). The potency of compound 1 was 10 times greater than that of metronidazole against both
parasites. None of compounds showed in vitro cytotoxicity against VERO cells tested at 100 µM.
Molecular dynamics of compounds 1–10, secnidazole, and metronidazole onto the ligand binding
site of pyruvate–ferredoxin oxidoreductase of T. vaginalis and the modeled β-tubulin of G. duodenalis
revealed putative molecular interactions with key residues in the binding site of both proteins
implicated in the mode of action of the parent drugs.

Keywords: carbamates; metronidazole; molecular dynamics; parasites; secnidazole

1. Introduction

Giardia duodenalis is an intestinal parasite that infects several mammalian hosts including humans,
and it is considered a leading cause of waterborne diarrheal disease and malabsorption syndrome [1].
Trichomonas vaginalis is the etiologic agent of the most common non-viral sexually transmitted disease
in humans [2]. The chemotherapy against giardiasis and trichomoniasis is based on the use of
5-nitroimidazole drugs [3], such as metronidazole and secnidazole (Figure 1).
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numerous biomolecules such as nucleic acids, proteins, and membrane lipids [4]. However, the 

clinical resistance to this chemotherapy reveals the need to search for novel and improved 

antiprotozoal drugs [4,5]. The mode of action of 5-nitroimidazoles is multifactorial [6], but one of the 

most accepted mechanisms is inhibition of the pyruvate–ferredoxin oxidoreductase (PFOR) [7]. 

Several benzimidazoles [8,9] and carbamates, such as albendazole and mebendazole, have shown 

giardicidal effects through the inhibition of -tubulin polymerization [10]. In an effort to improve the 

antiprotozoal activity of this 5-nitroimidazole, we suggest the modification of its alcohol tail by 

several carbamates, increasing the lipophilicity of compounds and exploring the participation of the 

carbamate in the activity through the potential inhibition of -tubulin polymerization plus the 

inhibition of PFOR. Thus, the in vitro antiparasitic effects of 10 newly designed carbamates on 

intestinal protozoa G. duodenalis, urogenital tract protozoa T. vaginalis, the cytotoxicity over 

mammalian VERO cells, and the molecular docking and dynamics prediction of this mode of binding 
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Compounds 1–10 were synthesized starting from metronidazole (11) and secnidazole (12), 

which were reacted with appropriated isocyanates 13–17 (Scheme 1). Title compounds were 

recovered with 51–95% yields and were purified by recrystallization. In the 1H NMR spectra, we 

assigned the signals of the respective protons of the carbamate derivatives 1–10 on the basis of their 

chemical shifts, multiplicities, and coupling constants. All compounds showed a typical single signal 

ranging from 7.93 to 8.80 ppm, attributed to H4 of the imidazole ring. Another simple signal 
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Figure 1. Most common antiprotozoal 5-nitroimidazole and benzimidazole methylcarbamate drugs
of choice.

Metronidazole and secnidazole are prodrugs that are reductively activated (the nitro group is
reduced) under low oxygen tension to produce free radical intermediates that form adducts with
numerous biomolecules such as nucleic acids, proteins, and membrane lipids [4]. However, the clinical
resistance to this chemotherapy reveals the need to search for novel and improved antiprotozoal
drugs [4,5]. The mode of action of 5-nitroimidazoles is multifactorial [6], but one of the most
accepted mechanisms is inhibition of the pyruvate–ferredoxin oxidoreductase (PFOR) [7]. Several
benzimidazoles [8,9] and carbamates, such as albendazole and mebendazole, have shown giardicidal
effects through the inhibition of β-tubulin polymerization [10]. In an effort to improve the antiprotozoal
activity of this 5-nitroimidazole, we suggest the modification of its alcohol tail by several carbamates,
increasing the lipophilicity of compounds and exploring the participation of the carbamate in the
activity through the potential inhibition of β-tubulin polymerization plus the inhibition of PFOR. Thus,
the in vitro antiparasitic effects of 10 newly designed carbamates on intestinal protozoa G. duodenalis,
urogenital tract protozoa T. vaginalis, the cytotoxicity over mammalian VERO cells, and the molecular
docking and dynamics prediction of this mode of binding over PFOR and β-tubulin are reported in
this work.

2. Results and Discussion

2.1. Chemistry

Compounds 1–10 were synthesized starting from metronidazole (11) and secnidazole (12), which
were reacted with appropriated isocyanates 13–17 (Scheme 1). Title compounds were recovered
with 51–95% yields and were purified by recrystallization. In the 1H NMR spectra, we assigned the
signals of the respective protons of the carbamate derivatives 1–10 on the basis of their chemical
shifts, multiplicities, and coupling constants. All compounds showed a typical single signal ranging
from 7.93 to 8.80 ppm, attributed to H4 of the imidazole ring. Another simple signal fluctuating
from 2.05 to 2.48 ppm was assigned to the methyl group attached at position two of the imidazole.
For the 13C NMR spectra, constant signals were found for the imidazole heterocycle: one signal at
150.1–156.8 ppm, attributed to C2, and two signals at 128.7–138.3 and 138.5–146.1 ppm, assigned to C4
and C5, respectively. Another recurrent signal was found in downfield shifts from 151.1 to 161.1 ppm,
belonging to the carbamate carbonyl group. The methyl group attached at position 2 of imidazole
always appeared at 14.3–19.1 ppm.
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Scheme 1. Synthesis of carbamates 1–10: (a) triethylamine, NH4Cl (cat.), toluene, reflux. 
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Scheme 1. Synthesis of carbamates 1–10: (a) triethylamine, NH4Cl (cat.), toluene, reflux.

2.2. In Vitro Antiprotozoal Activity

The inhibition of in vitro growth of the amitochondriates Giardia duodenalis and Trichomonas
vaginalis by compounds 1–10 is summarized in Table 1.

Table 1. In vitro antiprotozoal and cytotoxic effects of carbamates 1–10 on Giardia duodenalis and
Trichomonas vaginalis.

Compound IC50 (µM) a CC50 (µM) a SI = CC50/IC50 MLogP
G. duodenalis T. vaginalis VERO Cells G. duodenalis T. vaginalis

1 0.46 ± 0.01 0.06 ± 0.01 >100 >217 >1666 3.73
2 0.98 ± 0.01 0.09 ± 0.01 >100 >102 >1111 1.72
3 1.14 ± 0.12 1.79 ± 0.12 >100 >87 >55 2.4
4 2.03 ± 0.01 3.22 ± 0.21 >100 >49 >31 1.89
5 2.43 ± 0.02 6.25 ± 0.12 >100 >41 >16 1.68
6 2.64 ± 0.61 8.64 ± 0.73 >100 >37 >11 3.87
7 1.67 ± 0.21 6.52 ± 0.71 >100 >59 >15 1.86
8 4.05 ± 0.24 5.93 ± 0.51 >100 >24 >16 2.54
9 3.23 ± 0.11 4.82 ± 1.08 >100 >30 >20 2.02
10 0.86 ± 0.09 9.99 ± 0.56 >100 >116 >10 1.82

Metronidazole 4.42 ± 0.23 0.93 ± 0.12 >100 >22 >107 −0.47
Secnidazole 4.11 ± 0.12 13.45 ± 1.23 >100 >24 >7 −0.10
a Means of three experiments; IC50, median inhibitory concentration; CC50, median cytotoxic concentration; SI,
selectivity index; MLogP, logarithm of the partition coefficient, calculated in https://www.molinspiration.com/cgi-
bin/properties.

The biological activity of carbamates 1–10 was compared with the activity of the two parent
antiprotozoal drugs of choice: metronidazole and secnidazole (Figure 1), which are commercial drugs
used for standard therapies. All the carbamates showed strong giardicidal activity, with potency values
oscillating from the low micromolar to the nanomolar range, being more active than or equipotent to
their parent drugs. Compound 1 (cyclohexylcarbamate of metronidazole) and compounds 2 and 10
(phenylcarbamate of metronidazole and 4-nitrophenylcarbamate of secnidazole, respectively), were the
most potent of the series (IC50 ranging from 0.46 to 0.96 µM) against G. duodenalis. They were almost
5–10 times more potent than metronidazole and secnidazole, which were equipotent among them. All
carbamates were much more lipophilic than metronidazole and secnidazole, with a calculated MlogP
around 1.68–3.87. This physicochemical property is important for high permeability of compounds
across the protozoal membrane [11]. In our studies of T. vaginalis, compounds 1 and 2 also exhibited
nanomolar trichomonicidal effects (IC50 = 60 and 90 nM, respectively). They were 10- to 15-fold more
potent than metronidazole, which is the drug of choice for trichomoniasis. Secnidazole was the least
potent compound against T. vaginalis, but all its carbamate derivatives 6–10 were more potent than this

https://www.molinspiration.com/cgi-bin/properties
https://www.molinspiration.com/cgi-bin/properties
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parent drug. This result is remarkable since if Trichomonas is more resistant to secnidazole treatment,
its carbamate derivatives could be a possible therapeutic option for this protozoosis. In summary,
the preliminary structure–activity relationship (SAR) analysis revealed that cyclic unsubstituted
metronidazole carbamates 1 and 2 are the most potent compounds against both parasites. Of note,
the SAR derived from the results in Table 1 is based on the biological activity measured with the entire
parasite and not with isolated molecular targets (see Section 2.3).

2.3. In Vitro Cytotoxicity Assay

Compounds 1–10, metronidazole, and secnidazole were evaluated for their intrinsic toxicity
against mammalian VERO cell lines (Table 1), showing very low median cytotoxic concentration
(CC50 > 100 µM). The selectivity index (SI) is the ratio of cytotoxicity to biological activities. If SI is
greater than 10, it is typically an indicator that the underlying antiprotozoal activity is not due to the
intrinsic cytotoxicity of a given compound [12]. Compounds 1–10 showed nanomolar to micromolar
giardicidal activities and no observable cytotoxic effects at a 100 µM concentration, showing selectivity
indexes prominently higher than 20. This implies that carbamates 1–10 are more selectively toxic
against G. duodenalis than against mammalian cells. The same parasiticidal discrimination was observed
between T. vaginalis and VERO cells.

2.4. Molecular Docking and Dynamics Studies

Based on the in vitro antiparasitic assays, the most active compounds (1 and 2) were selected
for further computational studies to explore their putative mechanism of action at the molecular
level. Molecular modeling studies were performed with two antiprotozoal relevant molecular targets:
PFOR and β-tubulin. These two targets were chosen based on the known relationship with the parent
compounds. A preliminary molecular docking simulation was performed to assess the putative
binding mode of compounds 1 and 2 with the proposed targets. Then, molecular dynamics simulations
were conducted to determine the relative stability of in silico binding modes. We emphasize that
the molecular modeling studies reported in this work are intended to hypothesize the ligand–target
interactions with two putative molecular targets. However, we did not intend to provide a detailed
explanation for experimental SAR based on the predicted binding models. This is because it is not
feasible to establish a reliable correlation between the measured antiprotozoal activity in vitro using
the entire parasite, with the binding models derived with isolated 3D coordinates of the putative and
isolated molecular targets. In vitro experiments have a significantly larger number of variables that
cannot be addressed with in silico studies.

2.4.1. Docking

Molecular docking suggested that compounds 1 and 2 have the potential to internalize in the
vicinity of the colchicine binding site [13] of β-tubulin. In the binding models, both compounds
form hydrogen bonds interactions with Gln-245, Ser-352, and form π-sp3 interactions with Leu-246
(Figures 2 and 3). In addition, the predicted binding poses of 1 and 2 are characterized by several
hydrophobic contacts with Cys-239, Phe-242, and Pro-243. Compound 1 showed a polar contact with
Ser-238 (Figure 2), which may be due to the higher flexibility of the cyclohexane, facilitating a better fit
in the binding cavity for the imidazole ring.
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For PFOR, we studied the previously proposed site for metronidazole [14], around Thr-37, close to
the catalytic site. Docking simulations showed that metronidazole and the newly designed compounds
have a suitable orientation for the binding site, this is, with the nitro group pointing toward the
[2Fe–2S] core. Additionally, the scoring of compounds 1 and 2 was significantly better than that of
metronidazole due to a better fit on the site (see Supplementary Materials). The main protein–ligand
contacts of both compounds were with Leu-31, Met-32, Ser-33, Asp-36, Lys-7, and Lys-46 (Figures 4
and 5). Docking poses provide a plausible explanation for the lower activity against T. vaginalis
of bulky-substituted compounds on the R-position, as the size of the site could prevent the proper
orientation of the 5-nitroimidazole scaffold.
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for metronidazole in PFOR.

2.4.2. Dynamics

Langevin dynamics were simulated to assess the stability of the binding poses obtained with
docking and the persistence of residue contacts over time. Langevin dynamics were chosen due to their
physics, as its equations introduce dissipation and fluctuation terms, which account for multi-body
contributions to the interaction [15]. Thus, Langevin dynamics are suited for accurate description
of non-equilibrium and diffusion processes [16]. Langevin dynamics showed that protein–ligand
complexes of compounds 1 and 2 in the colchicine site of β-tubulin are quite stable (Figures 6 and 7).
When residue contacts were examined, we found compound 1 shows different contacts when compared
to docking pose (Figure 8). This is in agreement with the higher fluctuations of the 5-nitroimidazole
ring, which changed its orientation towards Glu-197 and His-264. This observation further supports
the proposed arrangement by Aguayo-Ortíz et al. [10]. During the dynamics simulations, compound
2 maintains H-bond contacts with Ser-238, Gln-245, Leu-246, and Asn-247. On such a short time
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scale, the compounds showed different orientations from a similar starting point. Considering the
observed difference in IC50 values, a possible explanation is that both compounds need to move to
the nocodazole site; in this case, the higher conformational freedom of the cyclohexane ring could
provide a significant advantage. Further testing is require to confirm these observations, starting with
longer simulation times to see if a similar behavior is shown for compound 2. Future experimental
testing to corroborate the in silico studies should include binding assays of compounds 1 and 2 with
the proposed molecular targets, but these experiments were beyond the focus of this work on in vitro
antiparasitic activity.
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nitroimidazole complexes: H-bond (yellow), hydrophobic (pink), water bridges (blue), and ionic
(violet) interactions.

For binding poses with PFOR, compound 1 showed less movement and fluctuations compared to
2. In docking, 1 showed a better fit with PFOR compared to 2. This result is mainly due to the planarity
of the benzene ring, which is the group showing higher fluctuations over the course of the simulations
(Figures 9 and 10). The simulations showed that both compounds maintain contact with Ser-33 via
a H-bond.
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The main differences between 1 and 2 are the conserved contact with Lys-31 in the former and
a higher contact rate with Lys-7 and -46 in the latter (Figure 11). Based on these observations, Ser-33
seems to be the main contact for proper orientation with the site; however, this interaction was only
observed for 1 in a dynamic setting.
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3. Materials and Methods

3.1. Chemistry

Solvents and reagents were acquired from Sigma-Aldrich (St. Louis, MO, USA). Melting points
were obtained using a capillary apparatus from Stanford Research Systems (Sunnyvale, CA, USA).
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All reactions were monitored by thin layer chromatography (TLC) on 0.2 mm precoated silica gel
60 F254 Merck plates (Kenilworth, NJ, USA). 1H NMR spectra were determined on Varian 600 MHz
AR Premium Compact (Varian-Agilent, Santa Clara, CA, USA) and 13C NMR (150 MHz) instrument
(Varian-Agilent, Santa Clara, CA, USA). Chemical shifts are reported in ppm in DMSO-d6 and CDCl3 as
deuterated solvents. Mass spectrometry was obtained from a JEOL JMS-700 spectrometer by electronic
impact (JEOL, Tokyo, Japan).

3.2. General Procedure for the Synthesis of Compounds 1–10

To a solution of metronidazole or secnidazole (0.0023 mol) in toluene (5 mL), we dropwise added
the suitable isocyanate 13–17 (0.0046 mol, 2 equivalents), 10% triethylamine, and NH4Cl as catalysts at
25 ◦C. The mixture was stirred at reflux (110 ◦C) under a nitrogen atmosphere for 7–33 h. The solvent
was removed using a high vacuum system, and the residue was suspended in cold water. The solids
were recovered by filtration, dried in the hood and recrystallized from suitable solvent.

2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl cyclohexylcarbamate (1): 21 h, yield 67%,
recrystallized from ethanol-water, white crystals, Mp 103.7 ◦C (dec.). 1H NMR (600 MHz, CDCl3) δ:
1.10–1.31 (m, 4H, H-2’, H-6´), 1.57–1.68 (m, 2H, H-4´), 1.68–1.87 (m, 4H, H-3´, H-5´), 2.45 (s, 3H, CH3),
3.39–3.41 (m, 1H, H-1´), 4.35 (t, 2H, N–CH2), 4.54 (t, 2H, O–CH2), 7.93 (s, 1H, H-4), 9.32 (bs, 1H, N–H)
ppm. 13C NMR (150 MHz, CDCl3) δ: 14.19 (CH3), 24.7 (C-3´, C-5´), 25.4 (C-4´), 33.2 (C-2´, C-6´), 45.6
(N–CH2), 50.04 (C-1´), 62.4 (O–CH2), 133.1 (C-4), 138.5 (C-5), 150.8 (C-2), 154.6 (C=O) ppm. MS/EI: m/z
(% int. rel). 296.32 (M+, 10%), 225.20 (M-71, 100%).

2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl phenylcarbamate (2): 15 h, yield 86%, recrystallized
from ethanol-water, white powder Mp 197.7 ◦C (dec.). 1H NMR (600 MHz, DMSO-d6) δ: 2.48 (s, 3H,
CH3), 4.47 (t, 2H, N–CH2), 4.63 (t, 2H, O–CH2), 7.01 (t, 1H, H-4´), 7.27 (t, 2H, H-3´, H-5´, Jo = 7.4 Hz),
7.40 (d, 2H, H-2´, H-6´, Jo = 7.6 Hz), 8.06 (s, 1H, H-4), 9.66 (bs, 1H, N–H) ppm. 13C NMR (150 MHz,
DMSO-d6) δ: 19.1 (CH3), 50.6 (N–CH2), 67.4 (O–CH2), 123.7 (C-4´), 127.8 (C-2´, C-6´), 133.9 (C-3´, C-5´),
138.3 (C-4), 143.7 (C-5), 143.9 (C-1´), 156.8 (C-2), 158.12 (C=O) ppm. MS/EI: m/z (% int. rel). 290.27 (M+,

80%), 170.05 (M-120, 100%).
2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl (4-chlorophenyl)carbamate (3): 7 h, yield 65%,

recrystallized from ethanol, yellow crystals, Mp 175.0–177.3 ◦C; 1H NMR (600 MHz, DMSO-d6)
δ: 2.45 (s, 3H, CH3), 4.45 (t, 2H, N–CH2), 4.58 (t, 2H, O–CH2), 7.29 (d, 2H, H-2´, H-6´, Jo = 8.9 Hz),
7.39 (d, 2H, H-3´, H-5´, Jo = 8.9 Hz), 8.02 (s, 1H, H-4), 9.77 (bs, 1H, N–H) ppm. 13C NMR (150 MHz,
DMSO-d6) δ: 14.4 (CH3), 45.7 (N–CH2), 62.82 (O–CH2), 120.4 (C-2´, C-6´), 129.1 (C-3´, C-5´), 133.5
(C-1´), 138.2 (C-4), 138.9 (C-5), 152.1 (C-2), 153.3 (C=O) ppm. MS/EI: m/z (% int. rel). 324.71 (M+, 100%),
325.16 (M+2, 33%).

2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl (4-fluorophenyl)carbamate (4): 9 h, yield 77%,
recrystallized from ethanol-water, yellow crystals, Mp 168.2–170.6 ◦C; 1H NMR (600 MHz, DMSO-d6)
δ: 3.34 (s, 3H, CH3), 4.46 (t, 2H, N–CH2), 4.60 (t, 2H, O–CH2), 7.13 (d, 2H, H-2´, H-6´, Jo = 8.6 Hz),
7.10 (d, 2H, H-3´, H-5´, Jo = 8.6Hz), 8.02 (s, 1H, H-4), 9.63 (bs, 1H, N–H) ppm. 13C NMR (150 MHz,
DMSO-d6) δ: 14.4 (CH3), 45.8 (N–CH2), 62.7 (O–CH2), 115.7 (d, C-3´, C-5´, 2JC-F = 21 Hz), 120.6 (C-1),
133.5 (C-2´, C-6´), 135.4 (C-5), 138.9 (C-4), 152.07 (C-2), 153.5 (C=O), 158.2 (d, C-4´, 1JC-F = 237.6 Hz).
MS/EI: m/z (% int. rel). 308.26 (M+, 10%), 137.13 (M-171, 100%).

2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl (4-nitrophenyl)carbamate (5): 10 h, yield 87%,
recrystallized from ethanol, yellow crystals, Mp 253.9–256.0 ◦C. 1H NMR (600 MHz, DMSO-d6)
δ: 2.48 (s, 3H, CH3), 4.50 (t, 2H, N–CH2), 4.85 (t, 2H, O–CH2), 7.62 (d, 2H, H-2´, H-6´, Jo = 9.8 Hz),
8.14 (s, 1H, H-4), 8.28 (d, 2H, H-3´, H-5´, Jo = 9.8 Hz), 9.69 (bs, 1H, N–H) ppm. 13C NMR (150 MHz,
DMSO-d6) δ: 14.2 (CH3), 44.5 (N–CH2), 61.9 (O–CH2), 117.6 (C-2´, C-6´), 124.6 (C-3´, C-5´), 129.4 (C-4),
138.5 (C-5), 139.4 (C-1´), 141.2 (C-4´), 150.1 (C-2), 151.1 (C=O) ppm. MS/EI: m/z (% int. rel). 335.27 (M+,

100%), 125.96 (M-209, 20%).
1-methyl-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl cyclohexylcarbamate (6): 21 h, yield 51%,

recrystallized from ethanol-water, white crystals, Mp 219.2–222.7 ◦C. 1H NMR (600 MHz, DMSO-d6)
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δ: 1.10–1.26 (m, 4H, H-2´, H-6´), 1.22 (d, 3H, CH3), 1.46–1.49 (m, 2H, H-4´), 1.57–1.71 (m, 4H, H-3´,
H-5´), 2.42 (s, 3H, CH3), 4.18-4.22 (m, 1H, H-1´), 4.48 (d, 2H, N-CH2), 5.04–5.07 (m, 1H, O-CH), 7.93
(s, 1H, H-4), 9.32 (bs, 1H, N–H) ppm. 13C NMR (150 MHz, DMSO-d6) δ: 14.4 (CH3), 17.9 (CH3), 25.4
(C-4´), 25.8 (C-3´, C-5´), 33.1 (C-2´, C-6´), 48.6 (N-CH2), 50.1 (C-1´), 64.7 (O-CH), 128.8 (C-4), 134.6 (C-5),
153.4 (C-2), 155.7 (C=O) ppm. MS/EI: m/z (% int. rel). 310.34 (M+, 1%), 264.13 (M-46, 20%), 139.11
(M-171, 100%).

1-methyl-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl phenylcarbamate (7): 33 h, yield 19%,
recrystallized from ethanol-water, white crystals, Mp 238.9–240.5 ◦C. 1H NMR (600 MHz, DMSO-d6)
δ: 1.31 (d, 3H, CH3), 2.47 (s, 3H, CH3), 4.57 (d, 2H, N–CH2), 5.18-5.20 (m, 1H, O–CH), 6.92-695 (m,
1H, H-4´), 7.23–7.26 (m, 2H, H-3´-H5´), 7.42 (dd, 2H, H-2´, H,6´, Jm = 1.14, Jo= 8.64 Hz), 7.99 (s, 1H,
H-4), 9.52 (bs, 1H, N–H) ppm. 13C NMR (150 MHz, DMSO-d6) δ: 14.5 (CH3), 17.9 (CH3), 46.9 (N–CH2),
59.8 (O–CH), 118.3 (C-2´, C-6´), 122.3 (C-4´), 129.2 (C-3´-C-5´), 133.5 (C-4), 138.6 (C-1´), 140.1 (C-5),
152.9 (C-2), 161.1 (C=O) ppm. MS/EI: m/z (% int. rel). 304.30 (M+, 20%), 258.08 (M-46, 30%), 139.11
(M-165, 100%).

1-methyl-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl (4-chlorophenyl)carbamate (8): 17 h,
yield 91%, recrystallized from acetone, white crystals, Mp 268.1 ◦C (dec.). 1H NMR (600 MHz,
DMSO-d6) δ: 1.03 (d, 3H, CH3), 2.05 (s, 3H, CH3), 4.33 (d, 2H, N–CH2), 5.85-5.87 (m, 1H, O–CH),
7.29(dd, 2H, H-2´–H-6´, Jm = 2.22, Jo = 8.88 Hz), 7.45 (dd, 2H, H-3´–H-5´, Jm = 2.22, Jo = 8.94 Hz), 8.80
(s, 1H, H-4), 9.52 (bs, 1H, N-H) ppm. 13C NMR (150 MHz, DMSO-d6) δ: 14.5 (CH3), 17.9 (CH3), 50.4
(N–CH2), 69.4 (O–CH), 120.5 (C-2´, C-6´), 126.8 (C-4´), 129.1 (C-3´-C-5´), 133.5 (C-4), 138.2 (C-1´), 139.1
(C-5), 152.1 (C-2), 152.9 (C=O) ppm. MS/EI: m/z (% int. rel). 338.74 (M+, 1%), 152.01 (M-186, 100%).

1-methyl-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl (4-fluorophenyl)carbamate (9): 20 h, yield
65%, recrystallized from ethanol-water, yellow crystals, Mp 162.3–163.5 ◦C. 1H NMR (600 MHz,
DMSO-d6) δ: 1.31 (d, 3H, CH3), 2.06 (s, 3H, CH3), 4.56 (d, 2H, N-CH2), 5.16–5.21 (m, 1H, O–CH),
7.04–7.10 (m,2H, H-3´–H-5´), 7.42 (dd, 2H, H-2´–H-6´, Jm = 2.4, Jo = 9.18 Hz), 7.98 (s, 1H, H-4), 9.56 (bs,
1H, N–H) ppm. 13C NMR (150 MHz, DMSO-d6) δ: 14.5 (CH3), 17.9 (CH3), 50.4 (N–CH2), 69.2 (O–CH),
115.7 (d, C-3´, C-5´, 2JC-F = 22.5 Hz), 120.5 (d, C-2´, C-6´, 3JC-F = 9 Hz), 133.6 (C-4), 136.4 (d, C-1´, 4JC-F =

3 Hz), 139.0 (C-5), 152.1 (C-2), 153.1 (C=O), 157.8 (d, C-4´, 4JC-F=237 Hz) ppm. MS/EI: m/z (% int. rel).
322.29 (M+, 20%), 276.07 (M-46, 10%).

1-methyl-2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl (4-nitrophenyl)carbamate (10): 15 h, yield
65%, recrystallized from ethanol, yellow crystals, Mp 235.4 ◦C (dec.). 1H NMR (600 MHz, DMSO-d6)
δ: 1.34 (d, 3H, CH3), 2.05 (s, 3H, CH3), 4.58 (d, 2H, N–CH2), 5.23–5.26 (m, 1H, O–CH), 7.53 (dd, 2H,
H-2´–H-6´, Jm = 3.06, Jo = 9.3 Hz), 7.98 (s, 1H, H-4), 8.18 (dd, 2H, H-3´–H-5´, Jm = 3.1, Jo = 9.3 Hz), 9.62
(bs, 1H, N–H) ppm. 13C NMR (150 MHz, DMSO-d6) δ: 14.5 (CH3), 17.8 (CH3), 50.22 (N–CH2), 7.01
(O–CH), 118.3 (C-2´, C-6´), 125.6 (C-3´–C-5´), 133.6 (C-4), 139.1 (C-1´), 142.3 (C-4´), 146.1 (C-5), 152.1
(C-2), 152.7 (C=O) ppm. MS/EI: m/z (% int. rel). 349.29 (M+, 1%), 137.99 (M-211, 100%).

3.3. Biological Assays

3.3.1. Giardicidal and Trichomonicidal Assays

G. intestinalis strain IMSS:0696:1 and T. vaginalis strain GT3 were cultured in TYI-S-33 medium,
complemented with 10% calf serum and bovine bile [12]. In vitro susceptibility assays were executed
using 4 × 104 trophozoites of G. intestinalis or T. vaginalis, which were incubated at 37 ◦C for 48 h with
cumulative concentrations of carbamates 1–10, metronidazole, and secnidazole, and also incubated
alone in culture medium, with DMSO used as the solvent (0.05%). Subsequently, trophozoites were
washed and subcultured for another 48 h in fresh medium without any drugs. Once this time was
reached, trophozoites were counted and the median inhibitory concentration (IC50) was calculated. All
the experiments were completed in triplicate.
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3.3.2. Cytotoxicity on VERO Cell Line

We cultivated 1.5× 104 VERO cells in a 96-well plate and incubated in DMEM media complemented
with 10% fetal bovine serum, 100 µg/mL streptomycin, and 100 UI/mL penicillin. The culture was
incubated at 37 ◦C in a 5% CO2 atmosphere with 95% humidity for 48 h. When cells reached >80%
confluence, the culture media were replaced and the VERO cells were treated with carbamates 1–10,
metronidazole, and secnidazole at 1–100 µM dissolved in DMSO at a maximum concentration of 0.05%.
After 48 h of incubation, viability of the cells was estimated using the sulforhodamine B method [12].
The concentration of the compounds that killed 50% of the cells (CC50) was calculated by nonlinear fit
(GraphPad Prism 4 software). All concentrations were evaluated in triplicate.

3.4. In Silico Methods

3.4.1. Homology Modeling

The modeling was completed with YASARA (v. 19.12.14) [17], following a protocol detailed
elsewhere [18]. Using sequence alignment and analysis [19,20], we identified the β-tubulin of Bos
taurus, Sus scrufa, and Ovis aries as proper templates for the G. duodenallis tubulin model. The model
was further refined with a short molecular dynamics simulation (500 ps) with the YASARA2 forcefield,
which includes knowledge-based potentials. The simulation was conducted at 298 K and 1 atm (NPT
ensemble), using an 8 Å cutoff for Van der Waals interactions. Coulombic interactions were computed
using the particle mesh Ewald (PME) method [21]. The integration timestep was set at 2 fs, with
a recording interval of 25 ps. Finally, the quality of the model was assessed by means of Z-score,
QMEAN [22], and with the SAVES server (https://servicesn.mbi.ucla.edu/SAVES/), which includes
PROCHECK [23], WHATCHECK [24], ERRAT [25], VERIFY 3D [26], and PROVE [27] metrics (see
Supplementary Materials).

3.4.2. Molecular Docking

The crystal structure of the PFOR (PDB-ID: 1L5P) at 2.2 Å resolution was obtained from the Protein
Data Bank (http://www.rcsb.org/pdb) [28]. All docking was calculated with the Molecular Operating
Environment (MOE, Chemical Computing Group Inc. Quebec, Canada, http://www.chemcomp.com)
version 2019.01 [29]. All water molecules were deleted, and the hydrogen atoms and charges were
adjusted with the PFROSST force field from the MOE suite. This forcefield uses AMBER parameters
for protein description and MMFF94 for small organic molecules. The 3D structures were built and
minimized in MOE; using the same force field as that mentioned above, partial charges were added
with MOPAC using the AM1-BCC method [30]. As a validation procedure for the binding sites,
metronidazole was blindly docked on both targets (see Supplementary Materials). As a placement
function, Alpha Triangle was selected, and the scores were calculated with the GBVI/WSA scoring
function, which measures the free energy of binding using forcefield parameters [31] and considers
implicit solvation contribution [32]. After the confirmation of binding, the sites were defined around
Cys-239 (β-tubulin) and Thr-37 (PFOR). The docking was performed considering all residues within
a 5.0 Å sphere centered on the defined sites of each target. For each ligand, 10,000 conformations
were generated prior to placement. The top 100 placements were refined by scoring function. After
molecular docking, the best binding poses were visually inspected. Finally, graphical representations
of ligand interactions were created in Maestro (Schrödinger, NY, USA). The top-ranked poses were
selected for further analysis with molecular dynamics.

3.4.3. Molecular Dynamics

Non-equilibrium Langevin dynamics were used to determine the putative stability of binding
modes obtained from docking with Desmond [33].

Using the top poses of the most active compounds as starting point, protein–ligand complexes
were prepared in Maestro (19-2), with the System Builder utility. The complexes were buffered in

https://servicesn.mbi.ucla.edu/SAVES/
http://www.rcsb.org/pdb
http://www.chemcomp.com
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a truncated octahedron box with a 14.0 Å solvent shell around the protein, the system was neutralized,
and NaCl was added to obtain a 0.15 M concentration. The system was parameterized with the OPLS
2005 force field. Each system was minimized in three steps, using Brownian dynamics under NVT
ensemble at 10 K with a small time-step to avoid numerical errors [34], first with a 1000 kcal/mol/Å
restraint on solute heavy atoms for 250 ps, followed by another 250 ps of Brownian dynamics in
similar conditions with a 10 kcal/mol/Å restraint on the protein backbone. Finally, the simulation was
conducted for 500 ps without restraints. Then the complexes were further relaxed by heating slowly
from 10 to 300 K in the NVT ensemble for 500 ps using the Berendsen thermostat and a 2 fs timestep.
This was followed by a 1000 ps relaxation in NPT (1 atm) ensemble using a Langevin thermostat and
barostat (with a relaxation times of 0.02 and 1.0 ps, respectively). Production runs lasted 10 ns, which
were repeated 10 times using different random seeds. Trajectories were analyzed with the simulation
interaction diagram utility. Ligand RMSD, RMSF, and residue contacts from each run were compared
to obtain the average behavior and the relative stability of the pose [35].

4. Conclusions

We reported the one-step preparation of 10 carbamate derivatives of metronidazole and secnidazole
in modest yields, which showed strong nanomolar and micromolar antiprotozoal activity against two
amitochondriate parasites, Giardia duodenalis and Trichomonas vaginalis, with no observable cytotoxic
effects in mammalian VERO cells. The giardicidal effect of carbamates 1–10 was improved compared
to the two first-line commercial drugs: metronidazole and secnidazole. All compounds showed
trichomonicidal effects greater than secnidazole. The antiprotozoal effect could be related to the
higher lipophilicity of the 10 compounds, because they could penetrate the protozoal membrane more
effectively. The most active compounds were 1 and 2, which are metronidazole cyclohexylcarbamate
and phenylcarbamate, respectively. The plausible modes of action of compounds 1 and 2 involve
inhibition of PFOR and β-tubulin as suggested by docking and molecular dynamics.
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active compounds in the proposed binding site of β-tubulin.
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