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Abstract: p-Coumaric acid (pCA) and trans-ferulic acid (TFA) were co-crystallised with
2-amino-4-picoline (2A4MP) and 2-amino-6-picoline (2A6MP) producing organic salts of
(pCA−)(2A4MP+) (1), (pCA− )(2A6MP+) (2) and (TFA− )(2A4MP+)·( 3

2 H2O) (3). For salt 3, water was
included in the crystal structure fulfilling a bridging role. pCA formed a 1:1 salt with 2A4MP (Z’ = 1)
and a 4:4 salt with 2A6MP (Z’ = 4). The thermal stability of the salts was determined using differential
scanning calorimetry (DSC). Salt 2 had the highest thermal stability followed by salt 1 and salt 3. The
salts were also characterised using Fourier transform infrared (FTIR) spectroscopy. Hirshfeld surface
analysis was used to study the different intermolecular interactions in the three salts. Solvent-assisted
grinding was also investigated in attempts to reproduce the salts.

Keywords: p-coumaric acid; trans-ferulic acid; organic sals; hydroxycinnamic acids;
multicomponent crystals

1. Introduction

Multicomponent crystals are structurally homogeneous crystalline materials containing two or
more building blocks present in definite stoichiometric amounts [1–3]. The design and synthesis
of multicomponent crystals have considerable therapeutic and commercial benefits as they often
lead to improvement of physicochemical properties like solubility, bioavailability and stability [4,5].
Multicomponent crystals encompass co-crystals, organic salts, hydrates and solvates.

Organic salts are multicomponent crystals that can be identified by the transfer of a proton
between an acid and a base [6]. An organic salt can improve the physicochemical properties such as
solubility of an API 100–1000 times more than co-crystals. Thus, 50% of the drugs on the market are in
a salt form [7]. The most studied donor group is the carboxylic acid [8]. The reaction of an acid and a
base will produce organic salts or co-crystals depending on the pKa difference between the acid and
the base. According to the previous observations on the pKa rule in the literature, if the ∆pKa (pKa

base − pKa acid) is less than −1, non-ionised acid–base complexes are exclusively observed. Ionised
acid–base complexes are exclusively expected for ∆pKa ≥ 4 and for ∆pKa between −1 and 4, there is a
probability of either salt or co-crystal formation [9–11].

This study focuses on the formation of organic salts of p-coumaric acid (pCA) and trans-ferulic acid
(TFA), both derivatives of hydroxycinnamic acid. They are classified as phytochemical and nutraceutical
molecules and are found in various plant species, such as peanuts, carrots and tomatoes [12,13]. They
possess antioxidant and anti-inflammatory properties [14–16]. pCA and TFA are the most prevalent
hydroxycinnamic acids [17]. They differ structurally due to the substituted methoxy group present in
the meta position in TFA. pCA and TFA both contain carboxylic acid (strong hydrogen bond donor) and
hydroxyl (hydrogen bond donor and/or acceptor) functional groups. These functional groups compete
in the formation of supramolecular synthons in crystalline solids [18]. A CSD search (version 5.40,
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August 2019 update) [19] revealed only five multicomponent crystal structures of p-coumaric acid (pCA)
and seven of trans-ferulic acid (TFA). In this study, 2-amino-4-picoline (2A4MP) and 2-amino-6-picoline
(2A6MP) were used as co-crystal formers (Scheme 1).Molecules 2020, 25, x FOR PEER REVIEW 2 of 11 
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H···O interactions forming  (8) rings; it is also hydrogen bonded to the phenolic OH of another 
pCA− anion resulting in 10  chains [21]. The 2-aminopyridinium carboxylate heterosynthon is 
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Scheme 1. Chemical structures of p-coumaric acid (pCA), trans-ferulic acid (TFA), 2-amino-4-picoline
(2A4MP) and 2-amino-6-picoline (2A6MP).

2. Results and Discussion

The ∆pKa for pCA with 2A4MP is 3.61; for pCA with 2A6MP ∆pKa = 3.59, whereas ∆pKa for TFA
with 2A4MP is 4.04 [20]. Thus, a higher probability of salt formation is expected for these compounds
as ∆pKa is between 3 and 4 [9]. No crystals were obtained for TFA with 2A6MP.

Organic salt 1, (pCA−)(2A4MP+), crystallised in the orthorhombic space group Pbca with Z = 8.
The deprotonated carboxylic acid group of pCA is linked to both nitrogen atoms of 2A4MP via N-H···O
interactions forming R2

2 (8) rings; it is also hydrogen bonded to the phenolic OH of another pCA− anion
resulting in C1

1(10) chains [21]. The 2-aminopyridinium carboxylate heterosynthon is known to be a
robust interaction [22], see Figure 1. The second amine hydrogen atom is involved in a weaker N-H···O
interaction with the carboxylate group of a neighbouring pCA− anion forming C2

2(6) chains. These
interactions result in a 2D network along the c axis (Figure 2).
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Figure 2. Packing diagram of salt 1 along [100].

Organic salt 2, (pCA−)(2A6MP+), crystallised in the monoclinic space group P21 with Z = 8. Again,
the 2-aminopyridinium carboxylate heterosynthon forms R2

2 (8) rings with a C2
2(20) chain which is a

result of alternating pCA− and 2A6MP+ ions (Figure 3). These interactions form a complex 3D network.
It is interesting to note that this salt has Z’ = 4 unlike the previous structure which had Z’= 1. The
density of this salt is lower than that for salt 1, thus less close packing is possible when the methyl group
changes position in 2A4MP (para to the pyridine nitrogen) vs 2A6MP (ortho to the pyridine nitrogen).
Salt 2 also displays moderate hydrogen bonds in the range 2.606(3) to 2.941(3) Å [23], compared to salt
1, which has three moderate (2.662(2)–2.893(3) Å) and one weaker hydrogen bond of 3.365(2) Å. Thus,
the lower density for salt 2 is accompanied by shorter hydrogen bonds compared to salt 1, and this is
typical for high Z’ structures [24–26].
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Figure 3. Hydrogen bonding with motif ring of organic salt 2.

Organic salt 3, (TFA−)(2A4MP+) ( 3
2 H2O), was successfully solved in the monoclinic space group

C2/c and again the 2-aminopyridinium carboxylate heterosynthon is observed forming R2
2 (8) rings.

The TFA− anions are bridged by water molecules resulting in R4
4 (24) rings and C2

2(14) chains. The
TFA− anions are disordered over two positions with the site occupancy of the major component,
0.80837. The hydrogen bonding is shown in Figure 4 with the major component of the TFA− anion
shown. Both pCA and TFA contain hydroxyl and carboxylic acid groups which compete in synthon
formation [18]. For all three structures, the supramolecular heterosynthons were preferred over the
homosynthons with the persistence of the 2-aminopyridinium carboxylate heterosynthon. In addition,
this synthon was favoured in the presence of the competing hydroxyl group. Furthermore the
hydroxyl group participated in this interaction by acting as a hydrogen bond donor to the carboxylate
forming a three-centred (bifurcated) hydrogen bond. For salt 3, the hydroxyl group interacts with the
carboxylate via the water molecule. TFA also has a methoxy group, which reduces the donating ability
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of the phenolic OH group compared to the carboxylic acid [27], and did not affect the formation of
the 2-aminopyridinium carboxylate heterosynthon. In a recent article, the crystal structures of two
aminopyridinium citrate salts were reported, the 3:1 2-aminopyridinium:citrate salt displayed the
2-aminopyridinium carboxylate heterosynthon whereas the other 1:1 salt did not [28].
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Note that neighbouring TFA− anions are oriented parallel to each other with the distance between
the ring centroids approximately 3.856 Å. This could be due to the steric hindrance of the methoxy
group on the aromatic ring, as for salt 1 the adjacent pCA− anions are nearly orthogonal. In salt 3,
the water molecules act as a space filler and play a bridging role linking the hydroxyl group to the
carboxylate of neighbouring TFA− anions. The R4

4 (24) rings form columns that are linked by water
molecules (Figure 5). The water molecule located on a twofold axis and sandwiched between the
columns is hydrogen bonded to two TFA− anions and two other water molecules.
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2.1. PXRD Analysis

Solvent-assisted grinding was used in an attempt to reproduce the organic salts, and an equimolar
mixture of the acid and the co-former were placed in a mortar and ground for 20 to 30 min with a few
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drops of the solvent mixture, 75:25 (v/v) ethanol and 1,2-dichloroethane. For the grinding experiment
of TFA and 2A4MP, a few drops of water were also added. The PXRD patterns of the ground products
1g, 2g and 3g were compared with their respective starting materials and the calculated patterns of
organic salts 1, 2 and 3 from LAZY PULVERIX [29]. For pCA and 2A4MP, partial reaction occurred
(1g, Figure 6). For pCA and 2A6MP partial reaction was also observed but unidentified peaks were
also found in the PXRD pattern of the ground product (2g). This grinding experiment was repeated
for 60 min and the PXRD pattern showed a better match to that of the calculated one; however, there
were still unidentified peaks, thus confirming the presence of a mixture. The corresponding PXRD
patterns have been deposited in the supplementary data. The ground product 3g obtained after 20 min
grinding appears to be a mixture of starting material, salt 3 and an unidentified product (Figure 7).
Thus, the solvent-assisted grinding experiments were partially successful in the preparation of the salts.
The grinding experiment of TFA and 2A6MP was also attempted even though no single crystals were
obtained. A 1:1 mixture of TFA and 2A6MP was ground for 60 min using the same solvent mixture
used in the previous experiments. The PXRD pattern of the resultant powder showed new peaks when
compared to those of the starting materials, indicating that a new compound was formed (Figure 8).
There were also residual peaks of 2A6MP present, thus the reaction was incomplete. Mechanochemical
syntheses is a popular technique for preliminary co-crystallisation experiments as it gives quick results
and requires either no solvent or a minimum amount of solvent [30]. The grinding experiments of
these hydroxycinnamic acids gave promising results even though partial reaction occurred, possibly
due to the manual grinding technique which requires longer reaction times than an automatic device.
However, these preliminary experiments could pave the way for further study into the structural
landscape of pCA and TFA which is underexplored as shown by the few crystal structures present in
the CSD.
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Figure 6. PXRD patterns for pCA, the ground products 1g and 2g after 30 min and the calculated
organic salts 1 and 2.
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Figure 7. PXRD pattern for TFA compared with the ground product 3g after 20 min and the calculated
organic salt 3.
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Figure 8. PXRD analyses of the ground product of TFA and 2A6MP after 60 min (black), TFA (red) and
2A6MP (blue).

2.2. Infrared Spectroscopy

The absence of the carboxylic acid OH stretching broad band of pCA around the 3000 cm−1 region
was observed for both salts 1 and 2, confirming the proton transfer between the starting material and
the co-formers. Salt 1 shows two small peaks around those regions corresponding to the primary amine
(NH2) of 2A4MP. For salt 2, no primary amine peak is shown but a shifted peak was observed, which is
assigned to the hydrogen bonding between the phenolic OH of pCA and the carbonyl oxygen of another
pCA in the crystal structure. Similarly, salt 3 does not show a carboxylic OH stretching band but a shift
due to the hydrogen bonding between the phenolic OH of TFA and the water molecule, is observed at
approximately 3000 to 3700 cm−1. The FTIR spectra of the salts are given in the supplementary data.
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2.3. Thermal Analysis

The differential scanning calorimetry (DSC) curves of the organic salts displayed one endothermic
peak which corresponds to the melting points of the compounds. All the salts have melting peaks
occurring at temperatures in between those of the starting materials, Figure 9. The melting point of
salt 1 results in an endothermic peak at 170 ◦C, which differs from the melting points of pCA (214.9 ◦C)
and 2A4MP (100 ◦C). The endothermic peak for salt 2 occurs at a slightly higher temperature (173 ◦C)
compared to salt 1 (Tpeak of 2A6MP = 44.9 ◦C). Salt 3 has the lowest melting point at 135 ◦C (Tpeak for
TFA =174 ◦C), the inclusion of water could have contributed to the lower melting point of this salt.
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Figure 9. Differential scanning calorimetry (DSC) plot of pCA (blue), TFA (brown), salt 1 (black), salt 2
(green) and salt 3 (red).

2.4. Torsion Angles

Figure 10 depicts the torsion angles considered in this study for both pCA and TFA. The torsion
angles for all four pCA− anions in salt 2 were obtained and significant differences were found. For this
salt, τ1 varied from 0.5 to 14.4◦ and τ2 varied from 5.1 to 26.7◦. Salt 1 showed similar flexibility in the
rotation of the ring (τ1) compared to salt 2 with τ1 = 12.8◦ and τ2 = 10.1◦. TFA in salt 3 has both the
lowest ring twist torsion angle (τ1 = 0.2◦) and the lowest carboxylic acid twist torsion angle (τ2 = 4.9◦).
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2.5. Hirshfeld Surface Analysis

For all three salts, the leading interactions are as follows, H···H > O···H > C···H. The π···π stacking
represented by C···C has a lower contribution to the stability of the salts, with salt 3 displaying the
highest value of 7.5%. Similar percentage contributions were found for the O···H interactions in the
three salts (average 30.8%). For all three salts, the C···H contacts are shown as “chicken wings”. The
H···H contacts (average 40.1%) are prominent in the molecular packing and appear as scattered points
in the middle region of the 2D fingerprint plots [31].

3. Materials and Methods

All chemicals were obtained from Sigma Aldrich (Schnelldorf, Germany) and were used without
further purification.

3.1. Crystallisation

The salts were obtained by dissolving the target compound and co-former (1:1 molar ratio) in a
solvent mixture followed by gentle heating on a hot plate and stirring until the solution became clear.
The solutions were left at room temperature until crystallisation occurred. For (pCA−)(2A4MP+) (1)
and (pCA−)(2A6MP+) (2) a 75:25 (v/v) ethanol and 1,2-dichloroethane solvent mixture was used and
crystals were obtained after 1 week. For (TFA−)(2A4MP+)·( 3

2 H2O) (3) a similar solvent mixture was
used; however, a few drops of water were added to give a clear solution. Slow evaporation of this
solution gave crystals after 4 days.

3.2. Thermal Analysis

Differential scanning calorimetry (DSC) was conducted on a Perkin–Elmer 6000 (PerkinElmer Inc.,
Waltham, MA, USA) with a nitrogen gas purge at 20 mL min−1. Experiments were performed from 30
to 250 ◦C at a heating rate of 10 ◦C min−1.

3.3. Infrared Spectroscopy

IR spectra were measured on a PerkinElmer Spectrum Two FTIR spectrometer (PerkinElmer Inc.,
Waltham, MA, USA) equipped with an ATR Diamond accessory for powder samples. Samples were
scanned over a range of 400 to 4000 cm−1.

3.4. Powder X-ray Diffraction

The powder X-ray diffraction patterns of the samples were recorded with a D2 Phaser Bruker
diffractometer (Bruker, Karlsruhe, Germany) with Cu-Kα radiation of 1.54184 Å. The samples were
scanned between 4 and 50◦ 2θ and the voltage tube and amperage were at 30 kV and 10 mA max,
respectively, with an Xflash detector and a scintillation counter, 1-dim LYNXEYE.

3.5. Crystal Structure Determination

Single crystal X-ray diffraction data were recorded on a Bruker KAPPA APEX II DUO diffractometer
(Bruker, Karlsruhe, Germany) using graphite monochromated Mo-Kα radiation (λ = 0.71073 Å) at
173 K. Data were corrected for Lorentz-polarization effects and for absorption (SADABS) [32]. The
structures were solved by direct methods in SHELXS and refined by full-matrix least-squares on F2

using SHELXL [33] within the interface XSEED [34]. The non-hydrogen atoms were found in the
difference electron density map and were refined anisotropically, whereas hydrogen atoms were placed
in calculated positions and refined with isotropic temperature factors. Details of the crystal structure
refinements are given in Table 1.
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Table 1. Crystallographic data for salts 1, 2 and 3.

Organic Salts 1 2 3

Molecular formula C15H16N2O3 C60H64N8O12 C16H21N2O6
Mr (g/mol) 272.30 1089.19 329.35

Temperature (K) 173 173 173
Crystal system Orthorhombic Monoclinic Monoclinic

Space group Pbca P21 C2/c
a (Å) 12.056(2) 13.930(3) 20.111(4)
b (Å) 9.1511(18) 9.948(2) 12.016(2)
c (Å) 25.048(5) 20.797(4) 14.226(3)
α (◦) 90 90 90
β (◦) 90 94.33(3) 104.96(3)
γ (◦) 90 90 90

V (Å3) 2763.4(9) 2873.6(10) 3321.4(12)
Z 8 2 8
λ (Å) 0.71073 0.71073 0.71073

ρ (calcd) (g/cm3) 1.309 1.259 1.317
Absorption coefficient µ

(mm−1) 0.092 0.089 0.100

2θmax (◦) 56.6 55.8 56.7
Reflections collected 26738 23267 24936

No. data with I > 2σ(I) 3424 13608 4149
No. parameters 198 789 288

Final R (I > 2σ(I)) R1 = 0.0460; wR2 = 0.1049 R1 = 0.0574; wR2 = 0.1372 R1 = 0.0431; wR2 = 0.1072
R indices (all data) R1 = 0.0714; wR2 = 0.1198 R1 = 0.0783; wR2 = 0.1493 R1 = 0.0540; wR2 =0.1153

Goodness-of-fit on F2 1.028 1.052 1.030
Min, max e− density (e Å−3) −0.241, 0.199 −0.234, 0.239 −0.239, 0.297

4. Conclusions

The pKa rule predicted that both pCA and TFA would form salts with the aminopicolines.
The salts (pCA−)(2A4MP+), (pCA−)(2A6MP+) and (TFA−)(2A4MP+)·( 3

2 H2O) were analysed using
single crystal X-ray diffraction. No suitable crystals were obtained for TFA and 2A6MP however
grinding experiments revealed that a new compound was formed. The aminopyridinium carboxylate
supramolecular heterosynthon was favoured in the presence of the hydroxyl group in the case of pCA,
and it was also preferred in the presence of both hydroxyl and methoxy groups for TFA. For the pCA
salts, the phenol OH hydrogen bonds to the carboxylate and in the case of the TFA salt, water forms a
bridge between the phenol OH and the carboxyl group. pCA gave a 1:1 salt with 2A4MP and a 4:4 salt
with 2A6MP. The change in position of the methyl group in the aminopicolines influenced the packing.
Similarly the presence of the methoxy group in TFA compared to pCA also resulted in a different
packing arrangement for the salts involving 2A4MP. The thermal stability trend as determined by the
melting points for the salts is 2 > 1 > 3.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/25/3/751/s1:
Hydrogen bond data, torsion angles, Hirshfeld surface analysis, PXRD and FTIR spectra. The crystallographic
data have been deposited with the CCDC, deposition numbers 1957748-1957750. These data can be obtained free
of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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