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Abstract: The microwave (MW)-assisted direct esterification of phenyl-H-phosphinic acid, 
transesterification of the alkyl phenyl-H-phosphinates so obtained, and the similar reaction of 
dibenzyl phosphite (DBP) were investigated in detail, and the batch accomplishments were 
translated into a continuous flow operation that, after optimization of the parameters, such as 
temperature and flow rate, proved to be more productive. Alcoholysis of DBP is a two-step process 
involving an intermediate phosphite with two different alkoxy groups. The latter species are of 
synthetic interest, as precursors for optically active reagents. 
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1. Introduction 

It has been a great challenge in the pharmaceutical industry to transform batch realizations of 
organic chemical reactions into continuous flow methods [1–3]. Kappe is one of the most prominent 
chemists who have elaborated flow chemical accomplishments that are welcome by the 
pharmaceutical industry in order to introduce up to date techniques, in the first approach, in the R&D 
segment [1]. However, the “sine qua non” of the realization of the flow techniques is that the mixtures 
should be homogenous and non-viscous that represents a limitation. Due to the dynamical 
development in the field, up-to-date models of MW reactors have appeared on the market. The 
application of the MW technique embraces above all organic chemical syntheses, the preparation of 
nanomaterials, and broadly understood material processing [4–6]. The most suitable reactions for 
MW assistance include multicomponent reactions, condensations, eliminations, and substitutions as 
exemplified by esterifications, C–C cross couplings, dehydrations and the Mannich condensation [7]. 
The combination of the flow technique with MW irradiation represents a big step further, as it 
broadens the sphere of reactions that can be performed [8]. We have had interests in converting batch 
MW-promoted reactions involving organophosphorus transformations into flow operation [9–11]. 
Ionic liquids (ILs) are regarded as green solvents [12]. However, there is a vision that ILs might cause 
a real breakthrough as additives or catalysts [13,14]. 

P-esters, like phosphinates and phosphonates may be important building blocks in synthetic 
organic chemistry [15,16]. H-Phosphinates and H-phosphonates are typical starting materials for the 
Hirao P–C coupling reactions and the Kabachnik–Fields condensations resulting in the formation of 
aryl-phosphinates/phosphonates and α-aminophosphonates, respectively [17–19]. α-Amino-
phosphonates are important due to their potential biological activity connected to their enzyme 
inhibitory effect. A novel preparation of phosphinates involves the microwave (MW)-assisted direct 
esterification of phosphinic acids with alcohols [20–22]. The similar esterification of phosphonic acids 
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was a more difficult task [23]. We found that a suitable IL additive may promote the esterification of 
phosphinic acids [24,25], and the monoesterification of phosphonic acids [25]. It was found that 
alkylation was more suitable to convert the second hydroxy group into an alkoxy unit [26]. The senior 
author of this article together with co-workers developed the MW-assisted transesterification 
(alcoholysis) of dialkyl phosphites [27,28]. It was possible to conduct the reactions to afford the 
dialkyl phosphites with two different alkyl groups as the predominating products. 

In this article we summarize our experience acquired during the translation of batch MW 
preparations of H-phosphinates and H-phosphonates into flow processes. Esterifications and 
transesterifications were chosen as suitable model reactions, as, in these cases, MW irradiation and 
IL additives proved to be useful in our earlier studies. 

2. Results and Discussion 

2.1. MW-Assisted Direct Esterification of phenyl-H-phosphinic acid (1)  

Before the flow chemical attempts, let us survey the precedents on the batch MW synthesis of 
alkyl phenyl-H-phosphinates (2). In the first round, phosphinic acid 1 was reacted with ethyl and 
other linear or branched C3–C5 and C8 alcohols applied in a 15-fold quantity at 160–200 °C to afford 
the esters 2a, 2b, 2d–i in yields of 73–90% (Table 1/Entries 1, 3, 7–9, 11, 13, 15, 17 and 19). More 
developed syntheses were performed in the presence of 10% of [bmim][PF6] at a lower temperature 
of 140–160 °C providing the products 2a, 2b, 2d–I after a short reaction time of 30 min in somewhat 
higher yields of 82–94% (Table 1/Entries 2, 4, 10, 12, 14, 16, 18 and 20). It was found earlier that a 
catalytic amount (5–10%) of the IL is beneficial in the direct esterifications. A few ILs were tested as 
additives. Although all tested ILs enhanced the esterifications, [bmim][PF6] was the best one [24]. In 
the small-scale reactions it was appropriate to apply 10% of the IL. The basic role of the IL additive 
may be to enhance the absorption of MWs due to its polar nature. The results with i-propanol referred 
to steric hindrance, as an almost complete conversion could only be attained at 180 °C in the presence 
of the IL (Table 1/Entries 5 and 6). Most of the results were reported earlier [20,26] that were 
completed by a few new data (Table 1/Entries 4, 6, 8, 9, 15, 16, 19 and 20). 

Next, we tried to convert the esterification into a flow method. The sketch of the continuous flow 
system used in our experiments is shown in Figure 1. A commercially available flow cell (Figure 2) 
was inserted into the CEM reactor, and the transport of the PhP(O)H(OH)/ROH mixture was ensured 
by a HPLC pump. The pressure was maintained by a back pressure regulator. 

 

 

Figure 1. Sketch of the continuous flow system used. 



Molecules 2020, 25, 719 3 of 16 

 

 

Figure 2. The commercial continuous flow cell. 

Table 1. Direct esterification of phenyl-H-phosphinic acid (1) in a batch MW reactor. 

 
Entry R IL T (°C) t (min) Conversion* (%) Yield (%) Product Ref 

1 Et – 160 60 100 80 2a [20] 
2 Et 10% [bmim][PF6] 140 30 100 94 2a [26] 
3 nPr – 160 60 100 73 2b [20] 
4 nPr 10% [bmim][PF6] 160 30 100 84 2b  
5 iPr – 180 120 58 48 2c [20] 
6 iPr 10% [bmim][PF6] 180 120 96 80 2c  
7 nBu – 160 60 100 85 2d [20] 
8 nBu – 180 30 100 90 2d  
9 nBu – 200 10 100 89 2d  

10 nBu 10% [bmim][PF6] 140 30 100 94 2d [26] 
11 iBu – 160 60 100 75 2e [20] 
12 iBu 10% [bmim][PF6] 140 30 100 93 2e [26] 
13 nPent – 190 30 100 89 2f [26] 
14 nPent 10% [bmim][PF6] 140 30 100 92 2f [26] 
15 iPent – 190 30 100 87 2g  
16 iPent 10% [bmim][PF6] 150 30 100 94 2g  
17 nOct – 180 30 100 84 2h [26] 
18 nOct 10% [bmim][PF6] 140 30 100 88 2h [26] 
19 iOct – 180 30 100 75 2i  
20 iOct 10% [bmim][PF6] 150 30 100 82 2i  

* On the basis of relative 31P-NMR integrals. 

During the continuous flow esterification of phenyl-H-phosphinic acid (1), 0.10 g 1/mL alcohol 
solutions were prepared, and fed in the reactor at different temperatures (160–200 °C) and flow rates 
(Table 2). The unstationary phase that was comparable with the residence time (at V=0.15 mL/min 
and V =0.25 mL/min t = 67 min and t = 40 min, respectively) was followed by the steady state 
operation. The esterifications were monitored by 31P-NMR measurements. The reaction of phosphinic 
acid 1 with nBuOH was investigated in detail. In this particular case, the 0.1 g/mL concentration 
means 15-fold quantity of the alcohol. Increasing the temperature from 160 °C to 180 °C, and then to 
200 °C, at a flow rate of 0.25 mL/min, the conversions were 50%, 53% and 63%, respectively (Table 
2/Entries 1, 3 and 5). At the same temperatures, but setting a lower flow rate of 0.15 mL/min that 
allows a longer residence time in the reactor, somewhat higher conversions of 54%, 64% and 72%, 
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respectively, were detected (Table 2/Entries 2, 4 and 6). The addition of 5% of [bmim][PF6] to the 
mixture of the reagents prior to irradiation was helpful to attain higher conversions. It has to be 
mentioned that 5% of the IL was sufficient. Applying a flow rate of 0.25 mL/min at 160 °C, 180 °C and 
200 °C, the conversions were 66%, 83% and 100%, respectively (Table 2/Entries 7, 9 and 11). At a lower 
rate of 0.15 mL/min, the conversions were somewhat higher 72% (160 °C) and 95% (180 °C) (Table 
2/Entries 8 and 10) than setting 0.25 mL/min. In the next step, the volatile alcohols EtOH, nPrOH and 
iPrOH were reacted at the possible maximum temperatures of 160–180 °C applying the lower flow 
rate of 0.15 mL/min. In these cases, the conversions were 65%, 71% and 68%, respectively (Table 
2/Entries 12–14). Recycling the mixture from the esterification with EtOH, and re-reacting it under 
the same conditions (160 °C/0.15 mL/min), the conversion became quantitative (see footnote “e” of 
Table 2). The comparative thermal esterification of phosphinic acid 1 with EtOH at 160 °C applying 
a flow rate of 0.15 mL/min proceeded until a conversion of 35% (see footnote “d” of Table 2). Using 
iBuOH (160 °C, 0.15 mL/min), the conversion was quantitative (Table 2/Entry 15). nPentOH, iPentOH, 
nOctOH and iOctOH allowed the application of a somewhat higher temperature of 180–200 °C. In 
these cases, the higher rate of 0.25 mL/min was efficient at 190 °C (and in one case at 200 °C) as the 
conversions were quantitative (Table 2/Entries 17, 19, 21 and 23). Applying a lower flow rate of 0.15 
mL/min at somewhat lower temperature of 180 °C, the conversion was 100%, or almost quantitative 
(Table 2/Entries 16, 18, 20 and 22). The yields of the phosphinates 2a–i prepared from the best 
experiments fell in the range of 63–91%. If there is a time frame for the preparation of the esters (2), it 
is worth choosing the parameter set of 190 °C/0.25 mL/min against 180 °C/0.15 mL/min. 
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Table 2. Direct esterification of phenyl-H-phosphinic acid (1) with different alcohols in a flow MW 
reactor in a concentration of 0.1 g/mL. 

 
Entry R IL T (°C) V (mL/min) Conversiona,b (%) Yieldc (%) Product 

1 

nBu 

– 

160 0.25 50 – 2d 
2 160 0.15 54 – 2d 
3 180 0.25 53 – 2d 
4 180 0.15 64 – 2d 
5 200 0.25 63 – 2d 
6 200 0.15 72 – 2d 
7 

5 % [bmim][PF6] 

160 0.25 66 – 2d 
8 160 0.15 72 – 2d 
9 180 0.25 83 – 2d 
10 180 0.15 95 – 2d 
11 200 0.25 100 81 2d 
12 Et 5 % [bmim][PF6]  160 d 0.15 65 e – 2a 
13 nPr 5 % [bmim][PF6] 160 0.15 71 63 2b 
14 iPr 5 % [bmim][PF6] 180 0.15 68 – 2c 
15 iBu 5 % [bmim][PF6] 160 0.15 100 91 2e 
16 

nPent 5 % [bmim][PF6] 
180 0.15 100 – 2f 

17 190 0.25 100 85 2f 
18 

iPent 5 % [bmim][PF6] 
180 0.15 97 – 2g 

19 200 0.25 100 90 2g 
20 

nOct 5 % [bmim][PF6] 
180 0.15 100 82 2h 

21 190 0.25 100 84 2h 
22 

iOct 5 % [bmim][PF6] 
180 0.15 100 86 2i 

23 190 0.25 100 85 2i 
a On the basis of relative 31P-NMR integrals; b After reaching the steady state; c After an operation of 45 or 75 min 
belonging to 0.25 mL/min and 0.15 mL/min, respectively; d The comparative thermal experiment led to a 
conversion of 35%; e Recycling this mixture, and reacting under the same conditions, the final conversion was 
100%. 2a was isolated in a yield of 79%. 

Comparing the batch and continuous flow preparation of the butyl- (2d) or pentyl phosphinate 
(2f) (Table 1/Entries 10 and 14 vs. Table 2/Entries 11 and 17), one can conclude that the flow operation 
afforded products 2d and 2f in a 4.5-fold and 6.9-fold higher quantity, respectively, as compared to 
the corresponding batch method. Of course, during the comparison, the operation time of the flow 
reactor should be equal to the reaction time applied in the batch reactor. It can be said that the batch 
method provides ca. 0.10 g ester/30 min, while the flow preparation may give ca. 0.75 g product after 
the same time. It can be concluded that the batch approach is more limited in respect of scale. If more 
alkyl phenyl-H-phosphinate is needed, it is worth choosing the flow operation. It is noteworthy that 
the quantity of the IL (that is the most expensive component) could be halved, as 5% was enough. 

2.2. MW-Assisted Transesterification of ethyl-phenyl-H-phosphinate (2a) 

As an alternative method to direct esterification, transesterification (alcoholysis) is another 
option for the preparation of esters, and seemed to be a suitable model for MW application. For this, 
we wished to investigate the reaction of ethyl phenyl-H-phosphinate (2a) (a commercially available 
P-ester) with simple alcohols under MWs to prepare other representatives of this family of 
compound. The C1, C3–C5 alcohols, along with BnOH were applied in a 15-fold quantity, and with 
the exception of the volatile MeOH, they were used at 160–190 °C. The experimental data are listed 
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in Table 3. One can see that in reaction with MeOH at 120 °C for 3 h and at 140 °C for 2 h, a conversion 
average of 91% was attained (Table 3/Entries 1 and 2). Alcoholysis with nPrOH and iPrOH at 180 °C 
took place in conversions of 97% and 89%, after reaction times of 1 h and 2 h, respectively (Table 
3/Entries 3 and 4). Regarding nBuOH, quantitative conversions could be observed at parameter sets 
of 160 °C/2.25 h and 180 °C/40 min (Table 3/Entries 5 and 6). The transesterifications of ethyl 
phosphinate 2a with iBuOH, nPentOH, iPentOH, 3-PentOH and BnOH were complete at 160 °C/2.25 
h, 180 °C/40 min, 190 °C/40 min, 190 °C/45 min, and 180 °C/1 h, respectively (Table 3/Entries 7–11). 
Phosphinates 2b–g, 2j–l were obtained in yields of 74–91% after flash column chromatography. One 
may conclude that the uncatalyzed transesterifications of H-phosphinate 2a requires harsh 
conditions, but can be performed efficiently under MW irradiation. 

Table 3. Transesterification of ethyl-phenyl-H-phosphinate (2a) in a batch MW reactor. 

 
Entry R T (°C) t (min) Conversion* (%) Yield (%) Product 

1 Me 120 180 93 79 2j 
2 Me 140 120 89 74 2j 
3 nPr 180 60 97 83 2b 
4 iPr 180 120 89 74 2c 
5 nBu 160 135 100 90 2d 
6 nBu 180 40 100 89 2d 
7 iBu 160 135 100 85 2e 
8 nPent 180 40 100 91 2f 
9 iPent 190 40 100 88 2g 
10 3-Pent 190 45 95 80 2k 
11 Bn 180 60 100 90 2l 

* On the basis of relative 31P-NMR integrals. 

In the next phase, we tried to elaborate the continuous flow transesterification of ethyl 
phosphinate 2a with nBuOH applied in a 15-fold excess quantity. As can be seen from Table 4, at 180 
or 200 °C, the alcoholysis remained incomplete (as characterized by conversions of 53–84%) no matter 
if the flow rate was 0.25 or 0.15 mL/min (Table 4/Entries 1–4). At 220 °C, the conversions were 81% 
(0.25 mL/min) and 94% (0.15 mL/min) (Table 4/Entries 5 and 6). The optimum parameter set for a 
quantitative reaction involved a temperature of 225 °C and a flow rate of 0.15 mL/min (Table 4/Entry 
7). In this case, the yield of butyl phosphinate 2d was 85%. Adopting these parameters to the 
transesterification of phosphinate 2a with iBuOH, nPentOH and iPentOH, the corresponding esters 
2e–g were obtained in complete conversions, and in high yields of 82–89%.  
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Table 4. Transesterification of 2a with n-butanol in a flow MW reactor in a concentration of 0.1 g/mL. 

 
Entry R T (°C) V (mL/min) Conversion a,b (%) 

1 nBu (d) 180 0.25 53 
2 nBu (d) 180 0.15 62 
3 nBu (d) 200 0.25 71 
4 nBu (d) 200 0.15 84 
5 nBu (d) 220 0.25 81 
6 nBu (d) 220 0.15 94 
7 nBu (d) 225 0.15 100 c 
8 iBu (e) 225 0.15 100 d 
9 nPent (f) 220 0.15 100 e 
10 iPent (g) 220 0.15 100 f 

a On the basis of relative 31P-NMR integrals; b After reaching the steady state; c Yield of 2d: 85%; 
d Yield of 2e: 84%; e Yield of 2f: 82%; f Yield of 2g: 89%; c–f After an operation of 1 h. 

2.3. MW-Assisted Transesterification of dibenzyl phosphite (3) 

Keglevich and co-workers have investigated the MW-assisted transesterifications (alcoholyses) 
of dialkyl phosphites [27,28]. These kinds of reactions take place in two steps resulting first in a 
phosphite with two different alkyl groups, and in the second step the fully transesterified dialkyl 
phosphite. The outcome of the reaction depended on the temperature, and on the molar ratio of the 
reactants. It was not easy to achieve selectivity. At the same time, it is known that the benzyl 
phosphonates may undergo easy substitution of the BnO group [29]. For this, alcoholysis of dibenzyl 
phosphite (3) seemed to be an appropriate model. Simple C1–C4 alkyl alcohols were used as reactants 
in 25 equivalent quantities in the temperature range of 80–130 °C under MW irradiation. 
Experimental data can be found in Table 5. In reaction with MeOH, irradiation at 80 °C for 3 h or at 
120 °C for 0.5 h led to similar results, to a mixture containing 26/26% starting phosphite 3, 57/54% of 
the intermediate 4a, and 17/20% of the fully transesterified phosphite 5a (Table 5/Entries 1 and 3). 
Running the alcoholysis at 100 °C for 2 h or at 120 °C for 1.5 h, dimethyl ester 5a predominated in 
56/70% (Table 5/Entries 2 and 4). After a 2.5 h heating the diester (5a) was present in a maximum 
quantity of 87% (Table 5/Entry 5). Using EtOH, the course of alcoholysis towards diethyl phosphite 
was somewhat slower than that with MeOH (Table 5/Entries 6, 9 and 10 vs. 1, 2 and 3, respectively). 
After an irradiation at 120 °C for 1 h, the ratio of products 3b, 4b and 5b was 9:51:40, that after 4 h 
was shifted to 0:11:89 (Table 5/Entries 11 and 12). A comparison was made at 100 °C/0.5 h to see the 
effect of 20% of [bmim][PF6] as an additive. In the absence of the IL, the starting dibenzyl phosphite 
(3) was the main component (65%), while performing the alcoholysis in the presence of the additive, 
the diethyl ester (5) predominated (58%) (Table 5/Entries 7 and 8). In the presence of iPrOH as the 
agent, the consecutive transformation was slower at 100 and 120 °C (Table 5/Entries 13 and 14). There 
was need for a 5 h irradiation at 130 °C to compensate the effect of steric hindrance (Table 5/Entries 
15 and 16). In reaction with nBuOH, almost similar results were obtained as with EtOH (Table 
5/Entries 17, 18 and 20 vs. 9, 10 and 12). A comparative thermal experiment at 100 °C for 2 h took 
place in a lower conversion of 73% (Table 5/Entry 17/ footnote “d”). It is recalled that the conversion 
of the MW variation was 92% (Table 5/Entry 17). While the relative quantity of the intermediate (4d) 
was almost the same (59/61%), that of dibutyl phosphite (5d) was 14% (Δ) and 31% (MW). 

It is noteworthy that the valuable H-phosphonates with different alkyl groups could be obtained 
in a maximum proportion of 57% (4a), 68% (4b), 60% (4c) and 61% (4d) covered by entries 1, 10, 13 
and 17, respectively (Table 5). Isolated yields of the BnO–RO phosphonates 4a–d fell in the range of 
47–59%. 
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Table 5. Alcoholysis of dibenzyl phosphite (3) in a batch MW reactor. 

 
Entry R T (°C) t (h) 

Composition a (%) 
Yield (%) Product 

3 4 5 
1 

Me 

80 3 b 26 57 17 49 4a 
2 100 2 6 38 56 –  
3 120 0.5 26 54 20 47 4a 
4 120 1.5 3 27 70 –  
5 120 2.5 b 0 13 87 72  
6 

Et 

80 3 b 49 50 1 –  
7 100 0.5 65 33 2 –  
8 100 0.5 c 6 36 58 –  
9 100 2 11 64 25 59 4b 
10 120 0.5 23 68 9 58 4b 
11 120 1 9 51 40 –  
12 120 4 b 0 11 89 75  
13 

iPr 

100 2 35 60 5 51 4c 
14 120 3 b 4 33 63 –  
15 130 2.5 2 46 52 –  
16 130 5 0 5 95 80  
17 

Bu 

100 d 2 8 61 31 52 4d 
18 120 0.5 22 54 24 –  
19 120 1.5 0 29 71 –  
20 120 4 0 6 94 82  

a On the basis of relative 31P-NMR integrals. DMSO-d6 was used to ensure better separation of the 
signals; b No change of further irradiation; c In the presence of 20% [bmim]PF6; d The comparative 
thermal experiment led to a composition of 27% (3), 59% (4d), 14% (5d); the shaded percentage values 
refer to the maximum ratios. 

Regarding the conditions (T and t) needed to reach complete conversions (disappearance of the 
starting material (3) from the mixture, and predominant appearance of the fully transesterified 
product (5)) (see entries 5, 12, 16 and 20 of Table 5), the order of reactivity of the alcohols was the 
following: MeOH > BuOH ~ EtOH > iPrOH. 

It is worth noting that dibenzyl phosphite (3) is significantly more reactive in transeserifications 
than ethyl phenyl-H-phosphinate 2a. The enhanced reactivity of dibenzyl phosphite (3) in 
transesterification prompted us to try the reaction with nBuOH at room temperature. The data 
summarized in Table 6 and Figure 3. showed that the consecutive transesterification took place 
slowly: after 18 days, there was 54% of the starting phosphite (3) together with 44% of the “mixed” 
ester 4d, and 2% of the dibutyl derivative 5d (Table 6/Entry 7). The final “equilibrium” concentration 
was attained after 38 days, when the mixture comprised 16% of the starting material (3), 67% of the 
Bu-Bn ester (4d) and only 17% of the dibutyl ester (5d) (Table 6/Entry 10). This experiment was found 
reproducible. It is assumed that the application of a larger excess of BuOH would result in the shift 
of the equilibrium toward esters 4d and 5d. However, it is worth noting that the composition of the 
above “equilibrium” mixture with 67% of the benzyl-butyl ester (4d) is favorable, as it is a valuable 
intermediate.  
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Table 6. Alcoholysis of dibenzyl phosphite (3) at room temperature. 

BuOH+
(25 equiv.)

25 °C
P

BnO O

BnO
P

BnO O

BuO
P

BuO O

BuO
4d 5d3

H HH

 
Entry t (days) 

Composition * (%) 
3 4d 5d 

1 1 98 2 0 
2 3 89 11 0 
3 5 84 16 0 
4 7 82 20 2 
5 10 71 28 1 
6 14 64 35 1 
7 18 54 44 2 
8 24 36 57 7 
9 31 25 62 13 
10 38 16 67 17 

* On the basis of relative 31P NMR integrals. DMSO-d6 was used 
to ensure better separation of the signals. 

 
Figure 3. Alcoholysis of dibenzyl phosphite (3) with butanol at room temperature. 

The next step was to try the continuous flow method. The transesterification of dibenzyl 
phosphite (3) with MeOH at 110 °C applying a flow rate of 0.25 mL/min led to a mixture containing 
24% of the starting material (3), 52% of the “mixed” ester (4a) and 24% of dimethyl phosphite (5a) 
(Table 7/Entry 1). At 120 °C, the composition was 17% (3), 44% (4a) and 39% (5a) (Table 7/Entry 2). 
Operation at a lower rate of 0.15 mL/min and at 135 °C provided the three components (3a, 4a and 
5a) in relative quantities of 5%, 23% and 72%, respectively (Table 7/Entry 3). EtOH displayed 
somewhat lower reactivity, and under the previous two sets of parameters, mixtures containing 28% 
of 3b, 48% of 4b, 24% of 5b, and 7% of 3b, 27% of 4b and 66% of 5b, respectively, were obtained (Table 
7/Entries 4 and 7). The use of parameter sets of 0.15 mL/min at 120 °C and 0.25 mL/min at 135 °C 
resulted in a comparative outcomes of 20/17% of 3b, 40/36% of 4b and 40/47% of 5b (Table 7/Entries 
5 and 6). In agreement with expectation, iPrOH was found to be the less reactive alcohol. Setting a 
flow rate of 0.25 mL/min at 120 °C, the composition of the reaction mixture was 49% of 3c, 48% of 4c 
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and 3% of 5c (Table 7/Entry 8). In order to achieve a more complete conversion, a temperature of 145 
°C and a rate of 0.15 mL/min were applied (Table 7/Entry 9). The results with nBuOH were again 
rather similar to those obtained with EtOH (Table 7/Entries 10 and 11 vs. entries 4 and 7). The 
experiments providing the phosphites with different alkoxy groups 4a–d are of importance, as the 
“mixed” phosphites may be used as valuable intermediates in the reactions outlined in the 
Introduction. Optical resolution may lead to enantiomer-enriched forms of the >P(O)H species. The 
best runs are marked by entries 1, 4, 8 and 10 of Table 7. The proportions of 47–52% allowed isolated 
yields of 39–44% for the “mixed” esters 4a–d. A comparative thermal transesterification of dibenzyl 
ester 3 with butanol at 120 °C and at a flow rate of 0.25 mL/min led to a composition of 49% of starting 
material 3, 47% of benzyl-butyl ester 4d, and 4% of dibutyl ester 5d, suggesting that on conventional 
heating, the efficiency is lower (compare footnote “d” of Table 7 with Entry 10). 

Table 7. Continuous flow MW-assisted alcoholysis of dibenzyl phosphite. 

 
Entry R V (mL/min) T (°C) 

Composition a,b (%) 
Yield c (%) Product 

3 4 5 
1 

Me 
0.25 110 24 52 24 44 4a 

2 0.25 120 17 44 39 –  
3 0.15 135 5 23 72 –  
4 

Et 

0.25 120 28 48 24 41 4b 
5 0.15 120 20 40 40 –  
6 0.25 135 17 36 47 –  
7 0.15 135 7 27 66 –  
8 

iPr 
0.25 120 49 48 3 39 4c 

9 0.15 145 18 36 46 –  
10 

Bu 
0.25 120 d 30 47 23 40 4d 

11 0.15 135 8 34 58 –  
a On the basis of relative 31P-NMR integrals. DMSO-d6 was used to ensure better separation of the 
signals; b After reaching the steady state; c After an operation of 30 or 45 min belonging to 0.25 mL/min 
and 0.15 mL/min, respectively; d Comparative thermal experiment at 120 °C after a steady state 
operation led to a composition of 49% (3), 47% (4d), 4% (5d). 

As a novel trial, the pre-reacted mixture of dibenzyl phosphite (3) and BuOH (26 °C, 18 days) 
comprising 55% of dibenzyl phosphite, 41% of the “mixed” ester (4d) and 4% of dibutyl phosphite 
(5d) was re-fed into the flow reactor at 120 °C applying 0.25 mL/min. The final mixture contained 8% 
of the starting material (3), as well as 23% and 69% of esters 4d and 5d, respectively. Hence, the 
product ratio could be shifted towards the fully transesterified product 5d. 

3. Materials and Methods 

3.1. General Information 

The MW-assisted reactions were carried out in a Discover (300 W) focused MW reactor (CEM 

Microwave Ltd. Buckingham, UK) equipped with a stirrer and a pressure controller applying 
irradiation. The reaction temperature was monitored by an external IR sensor located at the bottom 
of the cavity. 

The continuous flow reactions were performed in a system using a CEM® Discover (300 W) 
focused MW reactor equipped with a CEM® 10-mL Flow Cell Accessory continuous flow unit 
(irradiated volume 7 mL). The material flow was ensured by a 305 HPLC pump (Gilson Inc., 
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Middleton, WI, USA) while the pressure of 250 psi (17.2 bar) was maintained by an HPLC 
backpressure regulator. Teflon® tubes with an outside diameter of 3.175 mm and an inside diameter 
of 1.575 mm were used. All of the accessories applied were compatible with a regular HPLC system. 
The reaction temperature was monitored by an external IR sensor. 

The 31P-, 13C- and 1H-NMR spectra were obtained in CDCl3 or DMSO-d6 solution on an AV-300 
or DRX-500 spectrometer (Bruker AXS GmBH, Karlsruhe, Germany) operating at 121.5, 75.5 and 300 
or 202, 126 and 500 MHz, respectively. The 31P-NMR chemical shifts are referred to H3PO4, while the 
13C and 1H chemical shifts to TMS. The couplings are given in Hz. The exact mass measurements were 
performed using an 6545 QTOF mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) in 
high resolution, positive electrospray mode.The reagents and solvents were purchased from Sigma-
Aldrich Ltd. (St. Louis, MO, USA), and were used as received without further purification. 

The product ratios were determined on the basis of relative 31P-NMR intensities. Representative 
examples are shown in the Supplementary Materials for the cases marked by Table 2/ Entries 5 and 
11, Table 3/Entry 7 and Table 5/ Entry 13. 

3.2. General Procedure for the Batch Esterificaton of phenyl-H-phosphinic acid (1) 

A mixture of phosphinic acid 1 (0.10 g, 0.70 mmol) and 15 equivalents of the alcohol (0.60 mL of 
ethanol, 0.79 mL of n-propanol, 0.80 mL of isopropanol, 0.96 mL of n-butanol, 1.0 mL of isobutanol, 
1.14 mL of n-pentanol, 0.14 mL of i-pentanol, 1.65 mL of n-octanol, 1.64 mL of 2-ethylhexanol) was 
measured into a sealed tube in the presence or absence of 13.6 μL (0.07 mmol) of [bmim][PF6], and 
irradiated in a CEM MW reactor at first with a power of 200–300 W, and after the set temperature 
was attained, it was maintained by an automatic regulation using 80–150 W. The values for the 
temperature and pressure together with the times are shown in Table 1. Then, the alcohol was 
removed under reduced pressure, and the residue so obtained purified by flash column 
chromatography using silica gel and ethyl acetate as the eluent to give phosphinates 2 as oils in a 
purity of ≥98% according to GC. Identification data of the phosphinates 2a–i can be found in Table 8. 

Table 8. 31P-NMR and HRMS data for phosphinates 2. 

Product R δP (CDCl3) δP[lit] [M+H]+found [M+H]+requires formula 
2a Et 24.7 25.7 [30] 171.0569 171.0575 C8H11O2P 
2b nPr 24.8 24.9 [20] 185.0725 185.0731 C9H13O2P 
2c iPr 22.5 22.3 [20] 185.0726 185.0731 C9H13O2P 
2d nBu 24.9 25.3 [30] 199.0881 199.0888 C10H15O2P 
2e iBu 24.9 25.0 [20] 199.0881 199.0888 C10H15O2P 
2f nPent 25.6 25.7 [23] 213.1037 213.1044 C11H18O2P 
2g iPent 27.7 25.7 [23] 213.1042 213.1044 C11H18O2P 
2h nOct 25.1 25.0 [23] 255.1517 255.1514 C14H24O2P 
2i iOct 25.1 25.2 [23] 255.1516 255.1514 C14H24O2P 

3.3. General Procedure for the Continuous Flow Direct Esterification of phenyl-H-phosphinic acid (1) 

A mixture of phosphinic acid 1 (10.0 g, 70.4 mmol) and 100 mL of an alcohol (2.8 mol of ethanol, 
2.1 mol of n-propanol, 2.1 mol of isopropanol, 1.1 mol of n-butanol, 1.1 mol of i-butanol, 0.92 mol of 
n-pentanol, 0.92 mol of i-pentanol, 0.64 mol of n-octanol, 0.64 mol of 2-ethylhexanol) was 
homogenized by stirring for 5 min at 25 °C in the presence or absence of 3.5 mmol (0.68 mL) of 
[bmim][PF6]. The reactor was flushed with 20 mL of the mixture with a flow rate of 10 mL/min at 25 
°C and 17 bar. Then, the flow rate was set to the desired value (see Table 2), and the flow cell was 
irradiated with a power of 200–300 W for a few minutes, until the desired temperature was reached. 
After this, the power was controlled automatically (by 80–150 W) to maintain the value set. The 
operation was regarded steady state after an unstationary phase of 45–70 min as suggested by 31P- 
NMR analysis. After a 45 min or 75 min period of steady state operation belonging to 0.25 mL/min 
and 0.15 mL/min, respectively, the collected sample was concentrated under reduced pressure, and 
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the residue so obtained purified by flash column chromatography using silica gel and ethyl acetate 
as the eluent to afford phosphinates 2 as oils in a purity of ≥98% according to GC. 

The yields were calculated on the basis of the molar quantity of the ester [m(2)/Mw(2), where 
m(2): weight of ester 2, Mw(2): molecular weight of ester 2] obtained after purification, taking into 
consideration the molar quantity of the phosphinic acid fed in during the given time [V∙t∙c(1), where 
V: the flow rate (0.15 mL/min or 0.25 mL/min), t: time of stationary operation (45 min or 75 min) and 
c(1): molar concentration of acid 1 (0.65 mmol/mL)] 

Realization of the recirculation: the reaction mixture obtained from 10.0 g (70.4 mmol) of 
phosphinic acid 1 and 100 mL (2.8 mol) of ethanol in the presence of 0.68 mL (3.5 mmol) of 
[bmim][PF6] as shown above in the general procedure (and marked by Table 2/Entry 12) was placed 
in the container of the starting mixture, and after a flush with 20 mL of the mixture with a flow rate 
of 10 mL/min at 25 °C and 17 bar, and after setting a flow rate of 0.15 mL/min, the temperature was 
adjusted to 160 °C exactly as described above for the first run. The product was collected after getting 
in the stationary operation phase (Table 2/footnote “e”). 

3.4. General Procedure for the Batch Transesterification of ethyl-H-phenylphosphinate (2a) 

A mixture of ethyl-H-phenylphosphinate (2a, 0.10 g, 0.58 mmol) and 15 equivalents of an alcohol 
(0.36 mL of methanol, 0.66 mL of n-propanol, 0.70 mL of isopropanol, 0.81 mL of n-butanol, 0.81 mL 
of i-butanol, 0.96 mL of n-pentanol, 0.96 mL of i-pentanol, 0.95 mL of 3-pentanol, 0.92 mL of benzyl 
alcohol) was measured in a sealed tube and irradiated in the MW reactor at first with a power of 80–
300 W, and after the set temperature was attained, it was maintained by an automatic regulation 
using 50–150 W. The temperatures and the times are shown in Table 3. Then, the alcohol was removed 
under reduced pressure, and the residue so obtained purified by flash column chromatography using 
silica gel and ethyl acetate as the eluent to afford phosphinates 2 as oils in a purity of ~98% according 
to GC. 

3.5. General Procedure for the Continuous Flow Transesterification of ethyl-H-phenylphosphinate (2a) 

A mixture of ethyl-H-phenylphosphinate (2a, 10.0 g, 58.8 mmol) and 100 mL of an alcohol (1.1 
mol of n-butanol, 1.1 mol of i-butanol, 0.92 mol of n-pentanol and 0.92 mol of i-pentanol) was 
homogenized by stirring for 5 min at 25 °C. The reactor was flushed with 20 mL of the mixture with 
a flow rate of 10 mL/min at 25 °C and 17 bar. Then, the flow rate was set to the desired value (see 
Table 4), and the system irradiated as described above under point 3 (300 W/150–200 W). The 
operation was regarded steady state on the basis of the 31P-NMR analyses. In the preparative 
experiments, the solutions containing esters 2d-g were collected for 1 h. Excess of the alcohol of the 
collected fraction was removed under reduced pressure, and the residue so obtained purified by flash 
column chromatography using silica gel and ethyl acetate as the eluant to provide phosphinates 2d-
g as oils in a purity of ~98% according to GC. The yield of 2d-g was calculated similarly as shown for 
that of 2a-i above [(m(2)/Mw(2)/ V∙t∙c(2a), where V: 0.15 mL/min, t: 1 h, c(2a): 0.54 mmol/mL. 

3.6. General Procedure for the Batch Transesterification of dibenzyl phosphite 

A mixture of dibenzyl phosphite (0.11 mL, 0.50 mmol) and 12.5 mmol of an alcohol (0.51 mL of 
methanol or 0.73 mL of ethanol or 0.96 mL of isopropanol or 1.1 mL of butanol) was heated in a sealed 
tube in the MW reactor (at first with a power of 60–80 W, then, in the maintainance phase by 30–50 
W) at the temperatures and for the times shown in Table 5. The volatile components were removed 
under vacuum, and the residual oil was analyzed by 31P-NMR spectroscopy. The crude mixture was 
purified by column chromatography using hexane–ethyl acetate 6:4 (for 4a–c) or hexane–acetone 8:2 
(for 4d) as the eluent. The phosphites 4a–d with different alkoxy groups were obtained as colorless 
oils in >99% purities. 
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3.7. General Procedure for the Continuous Flow Transesterification of dibenzyl phosphite 

A mixture of dibenzyl phosphite (7.7 mL, 35 mmol) and 0.88 mol of an alcohol (35.6 mL of 
methanol or 51.4 mL of ethanol or 67.8 mL of isopropanol or 80.5 mL of butanol) was homogenized 
by stirring for 5 min at 25 °C. The reactor was flushed with 20 mL of the mixture with a flow rate of 
10 mL/min at 25 °C and 17 bar. Then, the flow rate was set to the desired value (see Table 7), and the 
flow cell was irradiated with a power of 60-100 W for a few minutes, until the desired temperature 
was reached. After this, the power was controlled automatically (by 30–70 W) to maintain the value 
set. The operation was regarded steady state on the basis of the 31P-NMR results. Development of the 
steady state condition required ca. 45–80 min. The details can be seen in Table 7. The solutions 
containing esters 4a–d were collected until 30 min (0.25 mL/min) or 45 min (0.15 mL/min). The volatile 
components of the collected fractions were removed in vacuum, and the crude mixture was purified 
by column chromatography as above (see subsection 3.6.). Products 4a–d were obtained as colorless 
oils in >99% purities. Yields were calculated on the basis of the isolated molar quantity of the product 
4a–d as compared to the molar quantity of dibenzyl phosphite (3) fed in during the stationary 
operation.  

Realization of the experiment starting from a pre-reacted mixture: the pre-reacted mixture of 
dibenzyl phosphite (3, 7.1 mL, 32.0 mmol) and BuOH (73.2 mL, 0.80 mol) obtained at 26 °C after a 18 
days stirring was fed in the MW reactor at 120 °C at a flow rate of 0.25 mL/min as the “fresh” mixtures 
exactly as shown above to result in a mixture consisting 8% of 3, 23% of the ”mixed” ester 4d, and 
69% of the fully transesterified product 5d in the stationary phase. 

 
3.8. Product Characterization Data 

Benzyl methyl-H-phosphonate (4a). Yield: 0.50 g (44%); 31P-NMR (CDCl3) δ 9.2; 13C-NMR (CDCl3) δ 52.1 
(d, J = 5.9, OCH2a), 67.5 (d, J = 5.6, OCH3a), 128.1 (C2b), 128.8 (C3b and C4), 135.7 (d, J = 5.9, C1); 1H-
NMR (CDCl3) δ 3.71 (d, J = 12.0, 3H, OCH3), 5.11 (d, J = 9.7, 2H, OCH2), 6.84 (d, J = 703.0, 1H, PH), 
7.32–7.42 (m, 5H, ArH), a,bmay be reversed; [M+H]+ = 187.0528, C8H12O3P requires 187.0524. 

Benzyl ethyl-H-phosphonate (4b). Yield: 0.36 g (41%); 31P-NMR (CDCl3) δ 8.6; δP [31] (CDCl3) 5.2; 13C-
NMR (CDCl3) δ 16.4 (d, J = 6.3, CH3), 62.1 (d, J = 5.9, OCH2), 67.3 (d, J = 5.5, OCH2), 128.1 (C2*), 128.7 
(C4), 128.8 (C3*) 135.8 (d, J = 6.0, C1), *may be reversed; 1H-NMR (CDCl3) δ 1.31 (t, J = 7.1, 3H, CH3), 
4.00–4.19 (m, 2H, OCH2CH3), 5.10 (d, J = 9.6, 2H, OCH2Ph), 6.86 (d, J = 700.0, 1H, PH), 7.30–7.42 (m, 
5H, ArH); δH [31] 1.31 (t, 3H, J = 7.0), 4.09 (qd, 2H, J1 = 7.0, J2 = 9.2), 5.10 (d, 2H, J = 9.6), 6.86 (d, 1H, J = 
698.9), 7.37 (m, 5H); [M+H]+ = 201.0685, C9H14O3P requires 201.0681. 

Benzyl isopropyl-H-phosphonate (4c). Yield: 0.29 g (39%); 31P-NMR (CDCl3) δ 6.2; 13C-NMR (CDCl3) δ 
24.0 (d, J = 4.8, CH3), 24.1 (d, J = 4.3, CH3), 67.2 (d, J = 5.5, OCH2a), 71.5 (d, J = 6.0, OCHa), 128.0 (C2b), 
128.7 (C4), 128.8 (C3b) 135.9 (d, J = 6.3, C1), a,bmay be reversed; 1H-NMR (CDCl3) δ 1.33 (m, 6H, OCH3), 
4.65-4.82 (m, 1H, OCH), 5.10 (d, J = 9.3, 2H, OCH2), 6.89 (d, J = 697.1, 1H, PH), 7.31–7.43 (m, 5H, ArH); 
[M+H]+ = 215.0838, C10H16O3P requires 215.0837. 

Benzyl butyl-H-phosphonate (4d). Yield: 0.27 g (40%); 31P-NMR (CDCl3) δ 7.9; 13C-NMR (CDCl3) δ 13.6 
(CH3), 18.8 (CH3CH2), 32.4 (d, J = 6.2, OCH2CH2), 65.7 (d, J = 6.2, OCH2), 67.3 (d, J = 5.6, OCH2), 128.1 
(C2*), 128.75 (C4), 128.80 (C3*), 135.8 (d, J = 6.0, C1), *may be reversed; 1H-NMR (CDCl3) δ 0.91 (t, J = 
7.4, 3H, CH3), 1.31–1.44 (m, 2H, CH2), 1.58-1.69 (m, 2H, CH2), 3.95–4.11 (m, 2H, OCH2CH2), 5.11 (d, J 
= 9.6, 2H, OCH2Ph), 6.87 (d, J = 699.4, 1H, PH), 7.32–7.43 (m, 5H, ArH); [M+H]+ = 229.0989, C11H18O3P 
requires 229.0994. 

NMR spectra of products 4a-d are shown in the Supplementary Materials. 

The characterization data of the dialkyl phosphites 5 is summarized in Table 9. 
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Table 9. 31P NMR and HRMS data for the known compounds 5a–d prepared. 

Compound δP (CDCl3) δP[lit] [M+H]+found [M+H]+requires Formula 
5a 8.6 8.5 [32] 111.0213 111.0211 C2H8O3P 
5b 7.8 7.9 [33] 139.0527 139.0524 C4H12O3P 
5c 1.8 1.9 [32] 167.0837 167.0837 C6H16O3P 
5d 8.6 8.4 [33] 195.1149 195.1150 C8H20O3P 

4. Conclusions 

The microwave-assisted direct esterification of phenyl-H-phosphinic acid, transesterification of 
the resulting alkyl phenyl-H-phosphinates, as well as that of dibenzyl phosphite was elaborated, and 
then, after optimization of the parameters (temperature and flow rate), these transformations were 
translated into continuous flow methods. While the direct esterifications were performed at 160–200 
°C, the transesterifications of the ethyl phosphinate required somewhat higher temperatures up to 
225 °C. Dibenzyl phosphite was more reactive, and already took part in alcoholyses at 80–145 °C. The 
esterifications and transesterifications proved to be more productive in the flow embodiment. 
Regarding the esterifications, while the flow preparation may give ca. 0.75 g ester/30 min, the batch 
method affords only ca. 0.10 g product after the same time. In the optimized cases, esters 2 were 
obtained in yields above 75%. The two-step alcoholysis of dibenzyl phosphite involves an 
intermediate 4 with two different alkyl groups prepared in moderate yields that, among other uses, 
may be important precursors for optically active reagents in the Hirao reaction or the Kabachnik–
Fields condensation, which will be further studied by us in future work. 

Supplementary Materials: Representative examples for the calculation of the conversions in the esterifications 
and transesterifications, as well as 31P-, 13C- and 1H-NMR spectra for the new alkyl, alkyl’ phosphites. 
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