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Abstract: Molar balances of continuous and batch reacting systems with a simple reaction are
analyzed from the point of view of finding relationships between the thermodynamic driving force
and the chemical reaction rate. Special attention is focused on the steady state, which has been the
core subject of previous similar work. It is argued that such relationships should also contain, besides
the thermodynamic driving force, a kinetic factor, and are of a specific form for a specific reacting
system. More general analysis is provided by means of the non-equilibrium thermodynamics of
linear fluid mixtures. Then, the driving force can be expressed either in the Gibbs energy (affinity)
form or on the basis of chemical potentials. The relationships can be generally interpreted in terms of
force, resistance and flux.
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1. Introduction

The thermodynamic analysis of chemically reacting systems is still a lively research area,
which continues to include efforts to find deeper relationships between thermodynamics and chemical
kinetics. A typical example is the identification of “thermodynamic driving forces”, which could
be directly related to reaction rates, usually to rates in both forward and reverse directions, often
called fluxes. The driving force is not a precisely defined quantity. The term probably originates with
Berthelot [1], who related it to the heat released by a reaction, and for which was soon criticized by
Helmbholtz. The classical work on the theory of chemical kinetics [2] also includes a brief mention of the
driving force, and links it to the strength of the chemical bond formed during a reaction. The energetic
nature of the driving force concept has survived to this day [3,4].

Perhaps the most common result of the ‘driving force-reaction flux’ type of relationship is
the equation

AG = -RTIn(J*/]7) 1)

where A,G is the reaction Gibbs energy, or the driving force, and J* and ]~ are the rates of reaction in
the forward and the reverse directions, respectively (the forward and reverse fluxes). Equation (1) can
be obtained by directly combining the reaction isotherm equation known from traditional (equilibrium)
thermodynamics and the classical reaction rate equation in the form of the mass action law. A crucial
point here is the identification of the true thermodynamic equilibrium constant with the kinetic
equilibrium constant; this is the main source of certain inconsistencies, which probably cannot be fully
resolved even under ideal conditions. More details are given in the review [5] and in the relevant book
chapter [6]. In short, the two equilibrium constants are conceptually different. The thermodynamic
constant is nondimensional and has no units, while the kinetic constant possesses both dimension and
units. The (value of the) thermodynamic constant is dependent on the selection of the standard state,
and its dependence on, or independence of a given parameter, e.g., pressure, also depends on this
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selection (that is, whether the selected standard state depends on the given parameter, e.g., pressure, or
not). This is quite strange for kinetic rate constants, which form the kinetic equilibrium constant.

Beard and Qian [7] tried to derive Equation (1) solely on the basis of the conservation of mass,
without invoking any rate law, as a fundamental relation for any chemical process operating in the
steady state of an open system. The steady state condition thus imposes a certain limitation on their
approach. Their argumentation is illustrated in the simple general reaction A < B. Let us follow
it step by step. First, they suppose that in a nonequilibrium steady state, the numbers of A and B
molecules are held constant by A being pumped into the system, and B out of the system. Second, they
suppose that A molecules formed by a back-reaction from B molecules can be labeled (A*), but are
otherwise identical to A molecules. Thus, the following reactions take place formally:

A—B @
B— A" (ITa)
A" > B (IIb)

It is further claimed that in a steady state, A* molecules are in equilibrium with B molecules,
and that the corresponding equilibrium constant is defined according to K = Np/N+, where N;
denotes the number of molecules 7 (in the steady state). This, in fact, means that steps Ila and IIb are
taken as a single reversible reaction in equilibrium, which is the essence of another claim that the
equality of fluxes is A* — B and B — A". This equality is written in Beard and Qian [7] as

J"(Na/Nza) =]~ ()

where Ny 4 is the total number of type A molecules (the sum of A and A*). Upon substitution from the
definition of K, we obtain:
J*/]” = KNga/Ng 3)

The thermodynamic definition of the equilibrium constant [7] gives
AG = -RTInK (4)
and the corresponding reaction Gibbs energy
A/G = AG + RTIn(Ng/Ny-) (5)

where Nj; should be taken generally (not just in a steady state).
Combining Equations (3) and (4), we obtain

AG +RTIn(Ng/Ngp) = ~RTIn(]* /") ©
which, however, is not Equation (1) for the exemplified reaction. For this, Equation (1) should read
A,G® + RTIn(Ng/Nga) = -RTIn(] " /]") @

where A,G® = -RTInK and K = (Np/Nxa).q- This discrepancy, mixing K and K, seems to have
gone unnoticed.

In this work, some different—let us say traditional—approaches to steady state kinetics are
analyzed from the ‘driving force-reaction flux” point of view, and supplemented with some more
general results of the nonequilibrium thermodynamics of chemically reacting mixtures.
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2. Results and Discussion

2.1. Steady States of Basic Open Reacting Systems

In chemical kinetics (chemical reaction engineering), a steady state is a clear concept referring to a
special state of open systems (reactors). Two principal models of open systems are used: the well-mixed
system with continuous input and output (the continuous stirred tank reactor or CSTR); and the
tubular flow-through system with a plug flow regime (the plug flow reactor or PFR). Let us analyze the
steady states of these systems for the above simple reaction from the point of view of driving force-flux
relationships. This basic analysis is still missing in the area of seeking these relationships for chemically
reacting systems. First, it should be noted that PFR can be modeled as a series (of a sufficient number)
of CSTRs; thus, here we will only focus on the CSTR system. As in [7], we suppose the validity of the
following equation, the reaction isotherm originating in classical (equilibrium) thermodynamics:

AG = -RTInK+RTInQ = A,G° + RTInQ )

Here, K = cp,/ca, is the equilibrium constant (for an ideal system with a standard state of unit
concentration; subscript e denotes equilibrium) and Q = cg/cp is the reaction quotient, where c; is the
concentration of i. Obviously, the component reaction rates fulfill the condition: o = —Jg = —J (all in
mol m~3 s71).

The molar balance of CSTR (Figure 1) with inputs F? (referred to as “pumping”, especially in
bio-related works) and outputs F; (both in mol m3s1)ina steady state (no special index is used to
denote steady state values) is given by

F+Ji=Fi=c(VF/V) =ci/7 )

where VF is the volumetric flow rate (m3 s™!) and V, the reactor (system) volume, 7 is usually called
the space time. From the balance (Equation (9)), the steady state concentrations can be expressed
as follows:

ca =1(F4-7]), s = (5 +]) (10)

(" )

C;

Figure 1. Scheme of the continuous stirred tank reactor (CSTR).

The reaction quotient in the steady state is then:

Q= (Fy+1)/(F\-)) (11)
Equilibrium can be defined as a state in which | = 0. Then, from (10), ca, = TFOA and cg, = TF%,
and consequently, K = F%/ F?A. However, the last equation cannot be seen as a definition of the
equilibrium constant, but rather as a condition on the setting of the reactor input to attain equilibrium.

In fact, the input composition is then identical to the equilibrium composition, and no reaction occurs
in the system (it does not even begin).
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Introducing Equation (10) into Equation (8), we obtain
AG = A,G® = RTIn(F§ +J)/(F} - J)] (12)

and
D = exp[(A/G — AG®) /RT] = (ES +1)/(FS - ) (13)

where D is a measure of the distance (of an actual state described by the value of A,G) from equilibrium.
That is, the distance from the standard state. However, the standard state is intimately related to the
equilibrium descriptor through the definition A,G° = —RTInK. In fact, D is equal to the reaction
quotient; however, we will use a special symbol to highlight its definition by the identity in Equation (13),
while the reaction quotient is regularly written as a proper fraction with concentrations (activities).
For example, see Q = cg/ca above. The reaction rate can be expressed from Equation (13) explicitly

J=(DF)-1)F}/(D+1) (14)

where FQ = FOA / F%, and denotes the ratio of the components in the input.

Equations (13) and (14) are the most general relationships which can be derived from the basic
equations (balances) describing this system. On the left-hand side of Equation (13), we can see the
thermodynamic forcing in terms of the distance from equilibrium. On the right-hand side, we can see
the kinetic forcing (the composition of the input) together with the kinetic outcome: the reaction rate.
This result should be understood much more like the “bookkeeping” of the (steady state) situation in
the system than as some predictor-like equation. Of course, the reaction rate can be expressed from this
bookkeeping, as seen in Equation (14). Here again, the rate is related to the thermodynamic forcing (D),
together with the (macroscopic) kinetic forcing, which is simply the input composition (F?). Selected
examples for F% = 1 are shown in Figure 2. It should be remembered that even the thermodynamic
forcing is determined by the composition, as A,G can be expressed in terms of chemical potentials,
which in turn can be expressed in terms of concentration.

110
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Figure 2. Schematic examples of the dependence of the reaction rate on the kinetic forcing (F(r))
for various values of the thermodynamic forcing (D) shown in the legend; Equation (14), F% =1
Left: overall view, right: detailed view.

In equilibrium, F? = 1/K, D, = K and Equation (14) predict a zero reaction rate, as expected.
When there is no B in the input, Equation (13) gives the following simplified version of Equation (14)

J=DF/(D+1) (15)

which predicts a positive reaction rate, again as expected.
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It is interesting to compare a flow-through system with a batch (closed) system (reactor). Here,
there is no steady state; the reaction reaches equilibrium, where the reaction rate is zero. The general
(nonstationary, i.e., out of equilibrium) balance at constant volume is dc;/dt = J;. In contrast to the
previous CSTR steady state example, the rate is not constant or related directly to concentration.
Integrating the balance, we obtain:

t

- = f Jidt = I; (16)
0

Because Jo = —Jp, Ipa = —Ig = — fot Jdt = —I, and:

cA:coA—I, cB:c%+I (17)
Thus,
Q= (3 +0/(%-1) (18)
and

AG = —RTInK+ RTIn(c§ +1)/(c} - 1)] (19)

The distance measure is here again equal to Q:
D =(cj+1)/(c5 -1) (20)
Then we have the final “force-flux” relationship
I=(D} - )/ (D+1) = (D ~1)3 /(D +1) (1)

(= c&/ cg). As noted above, here we do not see the actual (instantaneous) reaction rate, but its
integral (I) up to a specific time. Nonetheless, in Equation (21), we see again the thermodynamic
forcing, D, related to this integral kinetic characteristic, together with the kinetic forcing, which in this
case is determined by the initial concentrations of both components. If there is no product B present at
the beginning;:

I=Dc/(D+1) (22)

In equilibrium—which is the final state here, in contrast to the steady state—we have:
I= (K - )/ (K+1) (23)

These results, arising from the standard balances of a specific reacting system (reactor), can
be summarized in the following way. Though a reaction has a unique reaction Gibbs energy, its
relationship to kinetics depends on the system in which the reaction occurs. This is due to the
concentration dependence of the reaction Gibbs energy and the different equations balancing the
concentrations in different systems. Nevertheless, the two “flux-force” relationships of Equations (14)
and (21), or Equations (15) and (22), are analogous, as the rate characteristics (J or I) are related to
the thermodynamic “distance” (D) and to the initial state, be it the starting time or the input into
the reaction system. Both relationships include the history of the reaction up to a specific time point.
In the case of the flow-through system, this is (the steady-state point and is) represented just by the
steady-state reaction rate, i.e., a single value, which is, however, the result of the previous development
of the reacting system before a steady state had been achieved. In the case of a batch system, there is
no single specific rate value, and the history is expressed by the integral from the initial to the actual
time. Note that the “flux-force” relationships of Equations (14) and (21), or Equations (15) and (22), do
not require the separation of the reaction rate into forward and reversed rates, nor do the reaction rates
need to be expressed in a mass-action form.
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2.2. Steady State as a Kinetic Approximation

The steady state has yet another connotation in chemical kinetics. Itis used also as an approximating
tool in the description of complex reaction schemes, stating that the concentration of (reactive)
intermediates is constant (and usually very low). The analyzed single reaction is too simple for the
application of this tool, and the easiest extension is the following two-step scheme

A+C=AC (R1)

AC=B+C (R2)

in which AC is the intermediate and C can be viewed, for example, as a catalyst accelerating A
to B conversion. Let us start with the batch system, which will provide results quickly and easily.

The balances are
dea/dt = =1

dCB/di’=]2
dec/dt = =]t + J?
deac/dt = ]1 —]2 = —dcc /dt

(24)

where J! is the rate of (R1) and J? the rate of (R2). The steady state approximation for AC gives
deac/dt = 0, from which it also follows that dec/dt = 0 and J' = J?. Thus, Jo» = —Jg and the
same situation results in the simple transformation A = B above. Note that without the steady state
approximation, J4 # —Jp generally, but J4 = -4 s =T

The nonstationary CSTR balance for AC in the scheme (R1)-(R2) is:

Foc+J'=J* = deac/dt + Fac (25)

Because AC is an intermediate formed inherently during the reaction, it is quite reasonable
(perhaps even necessary) to assume that it has no input or output. The steady state approximation
then gives | 1 _J2 = 0. Let us denote the common value of the two reaction rates as J; the remaining

balances are then:
FO =] =dca/dt+ Fa

F) +] = dcg/dt + Fg (26)
F((): = dCC/dt+FC

Thus, the accumulation of C is only due to the difference between its input and output. In the
reactor steady state, the time derivatives in Equation (26) vanish and the analysis given above for the
simpler case of A = B remains valid, as the last Equation (26) does not affect the first two Equations (26).
Note that if the “catalyst” C is also not pumped into or out of the reactor, the steady state approximation
is automatically valid for this as well.

2.3. An Alternative Offered by Non-Equilibrium Thermodynamics

Yet another quite general approach to the “flux-force” topic is provided by continuum
nonequilibrium thermodynamics, as developed by Samohyl for chemically reacting mixtures of linear
fluids [8]. Linear fluids appear in many systems commonly encountered in chemistry. In comparison
to the basic analysis in the previous parts, nonequilibrium thermodynamics provides quite general
conclusions that are restricted neither to specific reactor systems nor to steady states. The theory is
explained in the referenced book, and here, only results relevant for the discussed topic and example
are given. First, the theory derived what had for a long time been a matter of empirical knowledge in
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phenomenological kinetics [9]. Namely, the fact that the reaction rate is generally a function of (only)
temperature and concentration:

J=]I(T, c) (27)

Here, | is the vector of reaction rates whose components are the rates of R independent reactions,
J = (J1, J2,..., Jr), and c is the vector of molar concentrations. The function is not dependent on the
reactor type in which reactions occur, nor is it limited to a steady state. Note that the theory generally
does not need the assumption that the reaction rate is the difference between the forward and backward
rates. To find some “flux-force” relationship, it is necessary to transform this function to a function of
Gibbs energy, or equivalently, of affinity. Samohyl’s method takes two important facts into account:
first, the transformation should be mathematically correct; and second, the transformation to affinity
should conform to stoichiometric constraints.

Function (27) can be easily transformed into a function of chemical potentials, if we accept
the widely used relationship between concentration and chemical potential (in ideal systems):
pi = p? + RT Inc; (unit standard concentration used but not emphasized). It should be understood
that this is a rather specific formula, which simplifies the general finding that the chemical potential of
a component is a function of the concentrations of all components. The standard chemical potential
is not dependent on concentration. We thus have:

J=I(T, ¢) > ]=](T, p) (28)

As shown by Bowen [10], the linear algebra of reaction stoichiometry results in the conclusion
that the vector of chemical potential generally decomposes into two perpendicular vectors

pu=A+B (29)

where vector A is the vector of chemical affinities or reaction Gibbs energies (its components are
AP = Z?:l yiPpi = A,GP, where p refers to the independent reaction, PPl is the stoichiometric coefficient
of the componentiin reaction p and 7 is the number of components (In the book by Pekaf and Samohyl [8]
the affinity is defined by the reversed sign following the tradition of classical thermodynamics.) and
vector B is the vector of constitutive affinities [5]. Using the decomposition (Equation (29)), the final
transformation is given by:

J=J(T, p) > J=]J(T, A, B) (30)

Thus, the reaction rate cannot be expressed as a function of chemical affinity only. In other words, itis a
function of a single affinity (or Gibbs energy). The constitutive affinity reflects the atomic composition
of the components of the reacting mixture through its specific combination of chemical potentials [5,8].
The second equation in Equation (30) can thus be interpreted as pointing to the fact that not only the
chemical potentials of the reactants and products (which are combined in A) but also the way in which
atoms combined in the reactants and products (which is reflected in B) participate in the driving force.
Let us demonstrate the transformation just on the discussed example of a single reaction from
introduction A & B. The full derivation of all equations is given in our recent work [11], and only the
results important for this tractate are presented here. There is only one independent reaction with the

(first order) rate equation [11]:
J =ki(ca - K'cp) (31)

Its transformation to the function of affinities is given by:

J =k exp(—(ui /RT) exp(B/RT) exp(A/2RT)[exp(—A/RT) —1] (32)
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The italicized symbols A and B represent the two affinities (not the two components). Equation (32)
shows a rather complex relationship between the reaction rate and the (thermodynamic) driving force
in which both affinities are involved. It can be modified to the following “condensed” form:

J = k®exp[(A +2B)/2RT][exp(-A/RT) — 1] (33)

(k° =kq exp(— B/ RT)). Equations (32) and (33) are analogs of Equation (1), which could be rewritten
in the form J* /]~ = exp(—A/G/RT) = exp(—A/RT), and show that both affinities are involved in
what could be called the “driving force” in Equations (32) and (33). Besides affinities (thermodynamic
factors), these equations also contain the kinetic factor (k;), as should be expected. Perhaps the
expression in square brackets (the second in the case of Equation (33)) could be called the “principal”
or “leading” driving force, as it is this expression which ensures a zero reaction rate in equilibrium
(where A = 0) and resembles the expression exp(—A,G/RT), appearing in Equation (1), which was the
motivation behind this paper.
The two affinities in this example are as follows [11]:

A= —pa+pp; B=(1/2)pa + (1/2)up (34)

Thus, A + 2B = 2up and the first exponential in Equation (33) contain only the chemical potential
of B (the product). This is natural, as this very simple reaction represents some isomerization, and the
same atoms are still combined in the isomers. Consequently, the role of the constitutive affinity in the
driving force mentioned after Equation (30) above is not so important here.

This approach does not require forward and reversed reaction rates either.

2.4. Chemical Potential in the Role of the Driving Force

An alternative search for the reaction driving force can focus on chemical potentials and not just
on the Gibbs energy. The method involving the continuum nonequilibrium thermodynamics of linear
fluid mixtures gives the following equation for the discussed reaction:

J=k [exp(HAR_THZ ) - exp(%) exp(%)]
=k [exp( s A ) - eXp( HBR_#Z )] (35)
- {3 s §)-p( 2] - Flee(5) -l

The term in the last square brackets can be viewed as the (thermodynamic) driving force, which is
simply and naturally rooted in the difference in the (exponentials of the) chemical potentials of the
reactants and products. If the chemical potential of reactant (A) is higher than that of the product,

the reaction rate is positive, as required. When the two potentials are equal, the reaction rate vanishes,
which is the equilibrium state. Note that Equation (35) still contains the kinetic factor (%O). Very similar
conclusions were reported for a simple enzymatic reaction [12]. Efforts to formulate the thermodynamic
driving force in terms of energy are probably motivated by the general use of energy in the descriptions
of the causes and directions of natural processes. Natural processes are usually described as being
“propelled” by a high energy, running in the direction of decreasing energy and settling at the point
of minimum energy. Perhaps chemical reactions are better described in terms of chemical potential,
which is a (compositional) derivative of energy, and chemical reactions are processes changing
the composition.

3. Conclusions

Steady states of two basic open systems of traditional chemical kinetics were analyzed from the
point of view of the thermodynamic force-reaction flux perspective. Further, a general view on this
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force-flux issue was presented, which follows from continuum nonequilibrium thermodynamics of
chemically reacting linear fluids.

It seems important to differentiate between the identification of a thermodynamic driving force
for a chemical reaction and the finding of a relationship between this driving force and the reaction
rate. Such relationships should also contain—besides the driving force and general parameters like
temperature or the universal gas constant—some kinetic factor(s).

The driving force behind a chemical reaction can probably be seen in terms of the difference
between the energetic states of its reactants and products. Relating the driving force to the reaction
rate (“flux”) was achieved by combining the concentration dependencies of both the force and the rate.
Thus, there need not be a single universal “flux-force equation”, but rather diverse relationships for
specific concentration dependencies and reacting systems. In other words, these are not expressions
of the cause-effect type, but rather the results of the transformations of functions (i.e., the results of
changes of independent variables), and express a form of “bookkeeping” in a reacting system.

The relationships derived from the nonequilibrium thermodynamics of linear fluids, Equations (32)
or (35), could be generally interpreted in the following form:

reaction rate = w or flux = f,oi (36)
resistance resistance
The resistance, or more properly, its reciprocal value, represents the kinetic factor, while the driving
force represents the thermodynamic (energetic) factor. The thermodynamic factor can be formulated in
terms of the reaction Gibbs energy (equivalently, affinities) or the chemical potentials of the reactants
and products.
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