SUPPORTING INFORMATION

Synthesis of functionalized cannabilactones

Yingpeng Liu, ${ }^{\text {a }}$ Thanh C. Ho, ${ }^{\text {a }}$ Mohammed Baradwan, ${ }^{a}$ Maria Pascual Lopez-Alberca, ${ }^{\text {a }}$ Christos IliopoulosTsoutsouvas, ${ }^{\text {a }}$ Spyros P. Nikas, ${ }^{*, a}$ Alexandros Makriyannis. ${ }^{*, a, b}$
${ }^{a}$ Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
${ }^{b}$ Departments of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
*To whom correspondence should be addressed.

LIST OF CONTENTS

1. Experimental procedures, spectroscopic, analytical, and physical data for
all synthesized compounds... Pages 2-21
2. References

Page 22
3. Reproductions of the NMR spectra for final compounds

Page 23

Experimental section

All reagents and solvents were purchased from Sigma-Aldrich Chemical Company, unless otherwise specified, and used without further purification. All anhydrous reactions were performed under a static argon atmosphere in flame-dried glassware using scrupulously dry solvents. Flash column chromatography employed silica gel 60 (230-400 mesh). All compounds were demonstrated to be homogeneous by analytical TLC on pre-coated silica gel TLC plates (Merck, 60 F245 on glass, layer thickness 250 mm), and chromatograms were visualized by phosphomolybdic acid staining. IR spectra were recorded on a PerkinElmer Spectrum One FT-IR spectrometer. NMR spectra were recorded in the indicated solvent on Varian $500\left({ }^{1} \mathrm{H}\right.$ at $500 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 126 MHz$)$, and Bruker $400\left({ }^{1} \mathrm{H}\right.$ at $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ at 100 MHz$)$ NMR spectrometers and chemical shifts are reported in units of δ relative to internal TMS. Multiplicities are indicated as br (broadened), s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and coupling constants (J) are reported in hertz (Hz). Mass spectral data are reported in the form of m / z (intensity relative to base $=100$). Purities of compounds were determined by LC/MS analysis using a Waters MicroMass ZQ system (electrospray ionization (ESI) with Waters-2525 binary gradient module coupled to a photodiode array detector (Waters-2996) and ELS detector (Waters-2424) using a XTerra MS C18 (5 $\mu \mathrm{m}, 4.6$ $\mathrm{mm} \times 50 \mathrm{~mm}$ column and acetonitrile/water) and were $>95 \%$.

(4-(1-Hexylcyclopentyl)-2,6-dimethoxyphenyl)boronic acid (17). To a solution of 1-(1-hexylcyclopentyl)-3,5dimethoxybenzene ${ }^{1}(\mathbf{1 6}, 206 \mathrm{mg}, 0.71 \mathrm{mmol})$ in anhydrous THF $(1.8 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ under an argon atmosphere was added dropwise $n-\mathrm{BuLi}(0.57 \mathrm{~mL}$ of a 2.5 M solution in hexane, 1.42 mmol$)$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 45 min , then at $10^{\circ} \mathrm{C}$ for 1.5 h , and back to $-78{ }^{\circ} \mathrm{C}$ for another 30 min . To the reaction mixture was added dropwise trimethyl borate ($369 \mathrm{mg}, 3.55 \mathrm{mmol}$) and it was stirred from $-78^{\circ} \mathrm{C}$ to room temperature over a period of 12 h . Then the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and acidified to pH 6.5 with 5% aqueous HCl , and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel ($10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) gave $17\left(153 \mathrm{mg}, 65 \%\right.$ yield) as a colorless viscous oil. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3508(\mathrm{OH}), 2924,2858,1607,1559,1421$, $1118,764,704 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 6.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.90\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $1.93-1.79(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.09(\mathrm{~m}, 6 \mathrm{H}), 1.03-0.91(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,155.4,103.3,55.9,51.9,41.7,37.6,31.7,29.8,25.1,23.2$, 22.6, 14.0.

Methyl 4'-(1-hexylcyclopentyl)-2',5,6'-trimethoxy-[1,1'-biphenyl]-2-carboxylate (18). The synthesis was carried out as described for $\mathbf{1 5}$, using boronic acid $\mathbf{1 7}(150 \mathrm{mg}, 0.45 \mathrm{mmol}), \mathbf{1 4}(121 \mathrm{mg}, 0.49 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(587 \mathrm{mg}, 1.8 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(52 \mathrm{mg}, 0.045 \mathrm{mmol})$ in DME/ $\mathrm{H}_{2} \mathrm{O}(5: 1,1.25 \mathrm{~mL}$ of DME and 0.25 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-25 \%$ EtOAc/hexane) to give 18 ($140 \mathrm{mg}, 69 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 2953, 2933, 1733 (CO), 1581, 1512, 1322, 1236, 1181, 1019, 863, 757, 696; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88(\mathrm{dd}, J=8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.84(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.69\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H})$, $1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.14(\mathrm{~m}, 6 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,161.6,156.4,150.3,137.4,131.9,124.2,117.7,116.6$, 112.3, 103.2, 55.9, 55.3, 51.6, 51.1, 42.0, 37.8, 31.8, 29.9, 25.2, 23.4, 22.6, 14.0.

3-(1-Hexylcyclopentyl)-1-hydroxy-9-methoxy-6H-benzo[c]chromen-6-one (19). The synthesis was carried out as described for 1 a , using $18(140 \mathrm{mg}, 0.31 \mathrm{mmol})$ and $9-$ iodo- $9-\mathrm{BBN}(1.0 \mathrm{~mL}$ of a 1.0 M in hexane, 1.0 $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.8 \mathrm{~mL})$. The reaction was quenched by ethanolamine $(0.5 \mathrm{~mL})$ and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give 19 ($91 \mathrm{mg}, 75 \%$ yield) as a white solid. Mp 159-164 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3321(\mathrm{OH}), 2926,1683(\mathrm{CO})$, 1609, 1403, 1106, 1030, 872, 747; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.36 (d, $J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.71(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.96\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.59-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.07(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 2 \mathrm{H}), 0.80(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6$, $161.5,153.6,152.8,152.4,136.7,132.3,114.9,113.7,110.8,110.7,109.0,104.8,55.6,51.2,41.8,37.6,31.7$, 29.9, 25.3, 23.2, 22.6, 14.0. HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{O}_{4}$: calculated 395.2222; found 395.2214. Mass spectrum (ESI) m/z (relative intensity) 395 ($\mathrm{M}^{+}+\mathrm{H}, 100$). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.8 min for the title compound.

(Z)-(4-(1-(Hex-1-en-1-yl)cyclopentyl)-2,6-dimethoxyphenyl)boronic acid (21). The synthesis was carried out as described for $\mathbf{1 7}$, using $\mathbf{2 0}^{1}(286 \mathrm{mg}, 1.0 \mathrm{mmol}), n-\mathrm{BuLi}(0.8 \mathrm{~mL}$ of a 2.5 M solution in hexane, 2.0 mmol$)$ and trimethyl borate ($520 \mathrm{mg}, 5.0 \mathrm{mmol}$) in dry THF $(2.5 \mathrm{~mL})$. The crude oil obtained after acidic work up was purified by flash column chromatography on silica gel (10-30\% EtOAc/hexane) to give 21 ($265 \mathrm{mg}, 80 \%$ yield) as a colorless viscous oil. IR (thin film, cm^{-1}) $3513(\mathrm{OH}), 3087,2941,2869,1606,1587,1554,1351,1171,1113$, $761 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 6.64(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.71(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}$, $J=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.89\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.98(\mathrm{~m}, 4 \mathrm{H}), 1.84-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.44-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.74(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,155.5,138.0,132.7,103.3,55.9,52.8,41.1,31.3,28.4,23.7$, 22.3, 13.9.

Methyl (Z)-4'-(1-(hex-1-en-1-yl)cyclopentyl)-2',5,6'-trimethoxy-[1,1'-biphenyl]-2-carboxylate (22). The synthesis was carried out as described for 15, using boronic acid $21(265 \mathrm{mg}, 0.79 \mathrm{mmol}), \mathbf{1 4}(197 \mathrm{mg}, 0.80$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1043 \mathrm{mg}, 3.20 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(93 \mathrm{mg}, 0.08 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(5: 1,2.5 \mathrm{~mL}$ of DME and 0.5 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($5-20 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give 22 ($290 \mathrm{mg}, 81 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 3085, 2974, 2911, 2854, 1722 (CO), 1575, 1433, 1122, 1021, 773, 696; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.87(\mathrm{dd}, J=8.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $6.63(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.74(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.67(\mathrm{~s}$, $\left.6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.12-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.19-1.45$ $(\mathrm{m}, 4 \mathrm{H}), 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.9,161.6,156.4,150.3,138.7,137.4,132.0$, $131.8,124.1,117.8,116.6,112.2,103.2,55.9,55.3,52.7,51.1,41.1,31.5,28.3,23.7,22.4,13.9$. Mass spectrum (ESI) m / z (relative intensity) $475\left(\mathrm{M}^{+}+\mathrm{Na}, 30\right)$, $421\left(\mathrm{M}^{+}-\mathrm{MeO}, 100\right) . \mathrm{LC} / \mathrm{MS}$ analysis (Waters MicroMass ZQ system) showed retention time 5.9 min for the title compound.

(Z)-3-(1-(Hex-1-en-1-yl)cyclopentyl)-1-hydroxy-9-methoxy-6H-benzo[c]chromen-6-one (23). The synthesis was carried out as described for 1a, using $22(110 \mathrm{mg}, 0.24 \mathrm{mmol}), 9$-iodo-9-BBN (0.8 mL of a 1.0 M in hexane, 0.80 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The reaction was quenched by ethanolamine (0.5 mL) and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give 23 ($67 \mathrm{mg}, 70 \%$ yield) as a white solid. Mp 146-149 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3269(\mathrm{OH}), 2955,2871,1679$ (CO), 1604, 1399, 1103, 1027, 748; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.35(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{dd}, J=8.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.00(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.72(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $5.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 5.71(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{dt}, J=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 2.05-$ $1.90(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 4 \mathrm{H}), 0.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 164.6, 161.6, 153.7, 152.8, 152.6, 137.8, 136.7, 132.9, 132.3, 114.9, 113.6, 111.0, 110.7, 108.6, 104.7, 55.6, 52.0, 41.0, 31.2, 28.5, 23.6, 22.3, 13.8. HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{4}$: calculated 393.2066; found 393.2062. Mass spectrum (ESI) m/z (relative intensity) 393 ($\mathrm{M}^{+}+\mathrm{H}, 100$). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.6 min for the title compound.

(2,6-Dimethoxy-4-(1-(5-phenoxypentyl)cyclopentyl)phenyl)boronic acid (25). The synthesis was carried out as described for $\mathbf{1 7}$, using $24^{2}(1050 \mathrm{mg}, 2.85 \mathrm{mmol}), n-\mathrm{BuLi}(2.3 \mathrm{~mL}$ of a 2.5 M solution in hexane, 5.7 mmol$)$ and trimethyl borate ($1481 \mathrm{mg}, 14.25 \mathrm{mmol}$) in dry THF (7.1 mL). The crude oil obtained after acidic work up was purified by flash column chromatography on silica gel (10-30\% EtOAc/hexane) to give 25 ($853 \mathrm{mg}, 73$ \% yield) as a colorless viscous oil. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3515(\mathrm{OH}), 2938,2868,1604,1557,1328,1228,1108,753$, $690 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.26(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 6.92(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $6.84(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.90\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.94-$ $1.81(\mathrm{~m}, 4 \mathrm{H}), 1.79-1.64(\mathrm{~m}, 6 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,159.0,155.2,129.3,120.5,114.5,103.3,67.7,55.9,51.9,41.6,37.6,29.0,26.6,24.9,23.2$.

Methyl 2',5,6'-trimethoxy-4'-(1-(5-phenoxypentyl)cyclopentyl)-[1,1'-biphenyl]-2-carboxylate (26). The synthesis was carried out as described for $\mathbf{1 5}$, using boronic acid $\mathbf{2 5}$ ($770 \mathrm{mg}, 1.87 \mathrm{mmol}$), $\mathbf{1 4}$ ($458 \mathrm{mg}, 1.87$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.44 \mathrm{~g}, 7.48 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(219 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(5: 1,5 \mathrm{~mL}$ of DME and 1 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-40 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give $26(757 \mathrm{mg}, 76 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 2937, 2863, 1728 (CO), 1600, 1574, 1237, 1121, 1019, 754, 692; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.94(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.94-6.82(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 3.89(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.02-1.93$ (m, 2H), $1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.09(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,161.7,159.1,156.5,150.1,137.5,131.8,129.3,124.1,120.4,117.7,116.9$, $114.5,112.3,103.3,67.8,55.9,55.3,51.6,51.1,41.9,37.8,29.2,26.7,25.1,23.4$. Mass spectrum (ESI) m / z (relative intensity) $555\left(\mathrm{M}^{+}+\mathrm{Na}, 30\right), 501\left(\mathrm{M}^{+}-\mathrm{MeO}, 100\right) . \mathrm{LC} / \mathrm{MS}$ analysis (Waters MicroMass ZQ system) showed retention time 6.0 min for the title compound.

1-Hydroxy-3-(1-(5-iodopentyl)cyclopentyl)-9-methoxy-6H-benzo[c]chromen-6-one (27). The synthesis was carried out as described for $\mathbf{1 a}$, using $26(620 \mathrm{mg}, 1.16 \mathrm{mmol}), 9$-iodo-9-BBN (5.3 mL of a 1.0 M in hexane, 5.3 $\mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14.5 \mathrm{~mL})$. The reaction was quenched by ethanolamine (1 mL) and the crude
obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give 27 ($395 \mathrm{mg}, 67 \%$ yield) as a white solid. Mp 141-143 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3280(\mathrm{OH}), 2925,2854$, 1694 (CO), 1673, 1608, 1445, 1401, 1298, 1228, 1104, 869, 748; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.53$ (d, $J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.07(\mathrm{dd}, J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.88(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $6.67(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-$ $1.87(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.54(\mathrm{~m}, 10 \mathrm{H}), 1.30-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.09-0.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.7,161.6,153.9,152.8,152.0,136.7,132.3,115.0,113.6,110.8,110.7,108.9,104.9,55.6,51.1,41.6,37.6$, 33.3, 31.0, 24.3, 23.2, 7.1. Mass spectrum (ESI) m / z (relative intensity) $507\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.7 min for the title compound.

6-(1-(1-Hydroxy-9-methoxy-6-0x0-6H-benzo[c]chromen-3-yl)cyclopentyl)hexanenitrile (28). To a stirred solution of $27(105 \mathrm{mg}, 0.21 \mathrm{mmol})$ in DMSO (4.1 mL), at room temperature under an argon atmosphere, was added NaCN ($61 \mathrm{mg}, 1.2 \mathrm{mmol}$). After stirring at the same temperature overnight, ice-cold water was added into the reaction mixture. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layer was washed with brine, dried over MgSO_{4}, and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel ($5-30 \% \mathrm{EtOAc} /$ hexane) gave $\mathbf{2 8}(76 \mathrm{mg}, 90 \%)$ as a white amorphous solid. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3289(\mathrm{OH}), 2935,2866,2245(\mathrm{CN}), 1714(\mathrm{CO}), 1603,1402,1343,1261,1017,748 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 8.52 (brs, $1 \mathrm{H}, \mathrm{OH}$), 8.35 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.05 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.83(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.78(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right)$, $2.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.50(\mathrm{~m}, 10 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.14-0.98(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 164.6,161.7,155.3,152.7,151.5,137.2,132.1,119.8,114.7,113.6,110.8,110.7$, 107.7, 104.8, $55.5,51.1,41.5,37.6,29.1,25.1,24.5,23.2,17.0$. HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NO}_{4}$: calculated 406.2018; found 406.2010. Mass spectrum (ESI) m / z (relative intensity) $406\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.1 min for the title compound.

(2,6-Dimethoxy-4-(2-methyl-7-phenoxyheptan-2-yl)phenyl)boronic acid (30). The synthesis was carried out as described for $\mathbf{1 7}$, using $\mathbf{2 9}^{3}(1010 \mathrm{mg}, 2.95 \mathrm{mmol}), n-\mathrm{BuLi}(2.4 \mathrm{~mL}$ of a 2.5 M solution in hexane, 5.9 mmol$)$ and trimethyl borate $(1.53 \mathrm{~g}, 14.75 \mathrm{mmol})$ in dry THF $(7.3 \mathrm{~mL})$. The crude oil obtained after acidic work up was purified by flash column chromatography on silica gel (10-30\% EtOAc/hexane) to give 30 ($695 \mathrm{mg}, 61 \%$ yield) as a colorless viscous oil. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3519(\mathrm{br}, \mathrm{OH}), 2937,2862,1604,1558,1464,1419,1324,1230$, $1110,1044 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 6.94-6.91(\mathrm{~m}, 1 \mathrm{H}$, Ar-H), 6.87-6.84 (m, 2H, Ar-H), $6.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right)$, $1.75-1.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.65-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.43-1.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.17-1.11(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.3,159.0,155.9,129.4,120.5,114.4,103.4,102.3,67.6,55.9,44.2$, $38.6,29.1,28.8,26.7,24.5$. Mass spectrum (ESI) m / z (relative intensity) $409\left(\mathrm{M}^{+}+\mathrm{Na}, 50\right), 249\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{OPh}\right.$
$\left.-\mathrm{B}(\mathrm{OH})_{2}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.3 min for the title compound.

Methyl 2',5,6'-trimethoxy-4'-(2-methyl-7-phenoxyheptan-2-yl)-[1,1'-biphenyl]-2-carboxylate (31). The synthesis was carried out as described for 15, using boronic acid $30(600 \mathrm{mg}, 1.55 \mathrm{mmol})$, 14 ($382 \mathrm{mg}, 1.56$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.02 \mathrm{~g}, 6.2 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(173 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(5: 1,4.5 \mathrm{~mL}$ of DME and 0.9 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) to give 31 ($695 \mathrm{mg}, 84 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 2937, 2862, 1727 (CO), 1600, 1575, 1463, 1406, 1241, 1123, 1034. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94-6.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.90-6.87(\mathrm{~m}, 3 \mathrm{H}$, Ar-H), $6.85(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.59(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.93\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.70\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.79-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.69-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.26-1.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.7, 161.8, 159.2, 156.7, $150.8,137.7,132.0,129.5,124.1,120.6,117.9,116.8,114.5,112.3,102.2,67.8,55.9,55.3,51.3,44.8,38.4,29.4$, 29.1, 26.9, 24.7. Mass spectrum (ESI) m/z (relative intensity) $529\left(\mathrm{M}^{+}+\mathrm{Na}, 50\right), 475\left(\mathrm{M}^{+}-\mathrm{MeO}, 100\right) . \mathrm{LC} / \mathrm{MS}$ analysis (Waters MicroMass ZQ system) showed retention time 5.8 min for the title compound.

1-Hydroxy-3-(7-iodo-2-methylheptan-2-yl)-9-methoxy-6H-benzo[c]chromen-6-one (32). The synthesis was carried out as described for $\mathbf{1 a}$, using $31(352 \mathrm{mg}, 0.69 \mathrm{mmol})$, 9 -iodo- $9-\mathrm{BBN}(3.13 \mathrm{~mL}$ of a 1.0 M in hexane, 3.13 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7.5 \mathrm{~mL})$. The reaction was quenched by ethanolamine (1 mL) and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give 32 ($224 \mathrm{mg}, 68 \%$ yield) as a white solid. $\mathrm{Mp} 150-151^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3297 (br, OH), 2932, 2859, 1683 (CO), 1605, 1401, 1267, 1226, 1103, 1026. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49$ (d, $\left.J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right)$, $8.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.07(\mathrm{dd}, J=8.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.65(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 5.65 (brs, $1 \mathrm{H}, \mathrm{OH}$), $3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.12\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{I}\right), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 1.62-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37-1.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.14-1.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.0,163.0,155.2,152.8,152.6,137.5,132.1,115.3,113.0,110.7,110.4,107.1$, $104.9,55.7,44.0,37.9,33.3,31.1,28.6,23.7,7.1$. Mass spectrum (ESI) m / z (relative intensity) $481\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 100). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.4 min for the title compound.

6-(1-Hydroxy-9-methoxy-6-oxo-6H-benzo[c]chromen-3-yl)-6-methylheptyl nitrate (33). To a solution of 32 ($32 \mathrm{mg}, 0.067 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(3.3 \mathrm{~mL})$ at room temperature was added AgNO_{3} ($33 \mathrm{mg}, 0.196 \mathrm{mmol}$). After being flushed with argon, the reaction mixture was stirred at room temperature until most of the starting material was consumed as judged by TLC (ca. 4.5 h). Celite was added, and $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane (1/4) as eluent to afford 33 ($25 \mathrm{mg}, 91 \%$) as a white solid. Mp 131-132 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3255 (br, OH), 2937, 2862, 1682 (CO), 1620, $1602,1400,1275,1224,1104,1024,864 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.36$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$), 7.07 (dd, $J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.93(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.67(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.37\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{ONO}_{2}\right), 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.66-1.59(\mathrm{~m}, 4 \mathrm{H}, 2 \times$ $\left.\mathrm{CH}_{2}\right), 1.36-1.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.15-1.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $165.1,163.0,155.3,152.7,152.6,137.5,132.1,115.3,113.0,110.8,110.4,107.0,104.9,73.3,55.7,43.9,37.9$, 28.6, 26.6, 26.2, 24.3. HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}_{7}$: calculated 416.1719; found 416.1702. Mass spectrum (ESI) m / z (relative intensity) $416\left(\mathrm{M}^{+}+\mathrm{H}, 100\right), 370\left(\mathrm{M}^{+}+\mathrm{H}-\mathrm{NO}_{2}, 10\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.2 min for the title compound.

1-(3,5-Dimethoxyphenyl)adamantane (34). ${ }^{4}$ To a solution of triflate $43(2.1 \mathrm{~g}, 5.0 \mathrm{mmol})$ in DMF (25 mL) at room temperature was subsequently added $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(190 \mathrm{mg}, 0.27 \mathrm{mmol})$, dppp ($206 \mathrm{mg}, 0.5 \mathrm{mmol}$), n - $\mathrm{Bu}_{3} \mathrm{~N}$ ($6 \mathrm{~mL}, 25.0 \mathrm{mmol}$), $\mathrm{HCOOH}\left(88 \% \mathrm{w} / \mathrm{v}\right.$ in $\mathrm{H}_{2} \mathrm{O}, 0.5 \mathrm{~mL}, 11.7 \mathrm{mmol}$), and PMHS (350 mg). After being flushed with argon, the reaction mixture was stirred at room temperature for 5 min and then at $95^{\circ} \mathrm{C}$ for 19 h . The mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}$ (ca .13 mL) and aqueous $1 \mathrm{M} \mathrm{HCl}(\mathrm{ca} .5 \mathrm{~mL}$), and stirred for 30 min . The organic material was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with ($0-10 \%$ acetone/hexane) as eluent to afford $34(1.25 \mathrm{~g}, 92 \%)$ as a white solid. Mp $54-55^{\circ} \mathrm{C}$. Literature, ${ }^{5} \mathrm{Mp} 47-48^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 2900, 2847, 1594, 1453, 1421, 1320, 1203, 1151, 1068, $1037,926,844 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.58(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.35(\mathrm{dd}, J=2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $3.83\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 2.13-2.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.94-1.93(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.84-1.76(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,154.2,103.6,97.1,55.3,43.2,36.9,36.6,29.1$. Mass spectrum (ESI) m / z (relative intensity) $273\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.5 min for the title compound.

(4-(Adamantan-1-yl)-2,6-dimethoxyphenyl)boronic acid (35). The synthesis was carried out as described for 17, using $34(1.2 \mathrm{~g}, 4.41 \mathrm{mmol})$, $n-\mathrm{BuLi}(3.5 \mathrm{~mL}$ of a 2.5 M solution in hexane, 8.82 mmol) and trimethyl borate $(2.29 \mathrm{~g}, 22.05 \mathrm{mmol})$ in dry THF $(7.5 \mathrm{~mL})$. The crude oil obtained after acidic work up was purified by flash column chromatography on silica gel ($10-20 \%$ EtOAc/hexane) to give 35 ($850 \mathrm{mg}, 61 \%$ yield) as a colorless oil.

IR (thin film, cm^{-1}) $3494(\mathrm{OH}), 2904,2847,1607,1558,1455,1415,1332,1118,1081 .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 6.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.92\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 2.11-2.10(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.91-1.90$ (m, 6H, Ad-H), 1.82-1.74 (m, 6H, Ad-H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,157.1,103.1,101.0,55.6,42.6$, $36.8,36.4,28.5$. Mass spectrum (ESI) m/z (relative intensity) $317\left(\mathrm{M}^{+}+\mathrm{H}, 65\right), 273\left(\mathrm{M}^{+}+2 \mathrm{H}-\mathrm{B}(\mathrm{OH})_{2}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.1 min for the title compound.

Methyl 2-bromo-4-(((triisopropylsilyl)oxy)methyl)benzoate (37). To a solution of $\mathbf{3 6}$ ($4.40 \mathrm{~g}, 17.95 \mathrm{mmol}$) in DMF (18 mL) under an argon atmosphere at $0^{\circ} \mathrm{C}$ was added imidazole ($2.44 \mathrm{~g}, 35.90 \mathrm{mmol}$) and triisopropylsilyl chloride ($4.1 \mathrm{~mL}, 18.85 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature for 2 h . Water was added to the reaction mixture, and the organic material was extracted with EtOAc. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with ($0-10 \% \mathrm{EtOAc} /$ hexane) as eluent to afford 37 ($6.85 \mathrm{~g}, 95 \%$) as a colorless oil. IR (thin film, cm^{-1}) 2944, 2866, 1735 (CO), 1605, 1463, 1434, 1290, 1246, 1151, 1039, 882. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.34(\mathrm{dd}, J=8.1,1.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 1.21-1.14(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CH}), 1.09(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}$, $6 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.3,147.1,131.4,131.4,130.0,124.1,121.8,63.8,52.2,18.0,12.0$.

Methyl 4'-(adamantan-1-yl)-2',6'-dimethoxy-5-(((triisopropylsilyl)oxy)methyl)-[1,1'-biphenyl]-2carboxylate (38). The synthesis was carried out as described for 15, using boronic acid $\mathbf{3 5}$ ($800 \mathrm{mg}, 2.53 \mathrm{mmol}$), methyl 2-bromo-4-(((triisopropylsilyl)oxy)methyl)benzoate ($\mathbf{3 7}, 1015 \mathrm{mg}, 2.53 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.1 \mathrm{~g}, 6.44$ $\mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(289 \mathrm{mg}, 0.25 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}\left(5: 1,5 \mathrm{~mL}\right.$ of DME and 1 mL of $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-25 \% \mathrm{EtOAc} /$ hexane) to give $38\left(1.25 \mathrm{~g}, 83 \%\right.$ yield) as a white solid. $\mathrm{Mp} 173-174{ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 2903, 2865, 2849, 1733 (CO), 1609, 1574, 1461, 1449, 1407, 1283, 1238, 1125, 1103. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.30(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $6.61(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 2.13-2.12(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ad}-$ H), 1.98-1.97 (m, 6H, Ad-H), 1.83-1.77 (m, 6H, Ad-H), 1.20-1.13 (m, 3H, $3 \times \mathrm{CH}$), 1.08 (d, J=7.1 Hz, 18H, 6 $\times \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,156.7,152.4,144.7,135.0,130.3,130.0,129.6,124.0,116.5$, $101.0,64.8,55.7,51.4,43.3,36.9,36.9,29.1,18.1,12.0$.

3-(Adamantan-1-yl)-1-hydroxy-9-(((triisopropylsilyl)oxy)methyl)-6H-benzo[c]chromen-6-one (39). The synthesis was carried out as described for 1a, using $\mathbf{3 8}(1000 \mathrm{mg}, 1.69 \mathrm{mmol})$, 9 -iodo-9-BBN (5.5 mL of a 1.0 M in hexane, 5.5 mmol$)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The reaction was quenched by ethanolamine (1.3 mL) and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give 39 ($657 \mathrm{mg}, 73 \%$ yield) as a white solid. Mp 246-247 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3344 (br, OH), 2902, 2848, 1691 (CO), 1612, 1402, 1278, 1261, 1099. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.76$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 9.14 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.46(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.91(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.94\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.06-2.01(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.85-1.81$ (m, 6H, AdH), 1.76-1.65 (m, 6H, Ad-H), 1.20-1.09 (m, 3H, $3 \times \mathrm{CH}$), $1.04\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 18 \mathrm{H}, 6 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) $\delta 161.0,156.8,154.1,152.7,149.2,135.2,129.7,125.1,124.0,118.9,109.1,104.7,104.3,64.8$, 42.7, 36.5, 36.4, 28.7, 18.3, 11.9.

3-(Adamantan-1-yl)-1-hydroxy-9-(hydroxymethyl)-6H-benzo[c]chromen-6-one (40). To a solution of 39 (53 $\mathrm{mg}, 0.1 \mathrm{mmol})$ in THF (2.5 mL) under an argon atmosphere at room temperature was added a 1 M solution of tetrabutylammonium fluoride in THF ($0.3 \mathrm{~mL}, 0.3 \mathrm{mmol}$), and the reaction mixture was stirred at room temperature for 2 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ was added, and the organic material was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane (3/2) as eluent to afford $40(34 \mathrm{mg}, 90 \%)$ as a white solid. Mp 256-257 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3230(\mathrm{br}, \mathrm{OH}), 2902$, 2848, 1691 (CO), 1631, 1405, 1291, 1243, 1108. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 10.79$ (brs, 1H, OH), 9.04 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.19(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.50(\mathrm{dd}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.89(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.82(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 5.49(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 4.66\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.07-2.02$ $\left(\mathrm{m}, 3 \mathrm{H}\right.$, Ad-H), $1.87-1.82(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.76-1.67\left(\mathrm{~m}, 6 \mathrm{H}\right.$, Ad-H). ${ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 161.0$, 156.7, 154.0, 152.7, 150.5, 135.0, 129.8, 126.0, 124.5, 118.7, 109.0, 104.9, 104.3, 63.3, 42.7, 36.5, 36.4, 28.7. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{4}$: calculated 377.1753; found 377.1748. Mass spectrum (ESI) m / z (relative intensity) $377\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 4.9 min for the title compound.

4-(Adamantan-1-yl)-2,6-dimethoxyphenol (42). To a homogeneous mixture of 1-adamantanol ($6.91 \mathrm{~g}, 45.4$ mmol) and 99% methanesulfonic acid (22.4 mL) at $40^{\circ} \mathrm{C}$ was added 2,6-dimethoxyphenol ($41,7.0 \mathrm{~g}, 45.4 \mathrm{mmol}$). After being flushed with argon, the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to room
temperature, ice cold water was added, and the organic material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with saturated aqueous NaHCO_{3}, water, and brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with acetone/hexane $(0 / 1 \rightarrow 3 / 7)$ as eluent to afford $42(7.59 \mathrm{~g}, 58 \%)$ as a white solid. Mp 115-116 ${ }^{\circ} \mathrm{C}$. Literature, ${ }^{5}$ Mp 111-112 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3465(\mathrm{OH}), 2897,2847,1607,1522,1451,1354,1265,1189,1114 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.59(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.41(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.90\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 2.10-2.09(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{H})$, $1.90-1.89(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.81-1.74(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.5,142.6,132.6,101.8$, $56.1,43.3,36.6,36.0,28.9$. Mass spectrum (ESI) m/z (relative intensity) $289\left(\mathrm{M}^{+}+\mathrm{H}, 50\right), 135\left(\mathrm{M}^{+}+\mathrm{H}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{2}(\mathrm{OMe})_{2}(\mathrm{OH}), 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 4.9 min for the title compound.

4-(Adamantan-1-yl)-2,6-dimethoxyphenyl trifluoromethanesulfonate (43). To a solution of $\mathbf{4 2}$ (4.30 g, 14.9 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(83 \mathrm{~mL})$ under an argon atmosphere at room temperature was subsequently added N phenyltrifluoromethanesulfonimide ($6.14 \mathrm{~g}, 17.2 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(2.4 \mathrm{~mL}, 17.2 \mathrm{mmol})$, and DMAP ($421 \mathrm{mg}, 3.45$ mmol) and the reaction mixture was refluxed for 18 h . After the mixture was cooled to room temperature, a 3 M aqueous solution of NaOH was added, and the organic material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane (1/9) as eluent to afford 43 (5.94 $\mathrm{g}, 95 \%$) as a white solid. Mp $151-152^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $2905,2849,1602,1410,1250,1226,1201,1133$, 889. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.89\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{OCH}_{3}\right), 2.12-2.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.91-$ $1.90(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}), 1.83-1.74(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Ad}-\mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.7,151.9,126.0,118.8\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}\right.$ $=320.6 \mathrm{~Hz}$), 101.9, $56.2,43.2,37.0,36.7,29.0 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-73.8$. Mass spectrum (ESI) m / z (relative intensity) $421\left(\mathrm{M}^{+}+\mathrm{H}, 20\right), 273\left(\mathrm{M}^{+}+2 \mathrm{H}-\mathrm{CF}_{3} \mathrm{SO}_{3}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.9 min for the title compound.

Methyl (Z)-4'-(1-(hex-1-en-1-yl)cyclopentyl)-5-hydroxy-2',6'-dimethoxy-[1,1'-biphenyl]-2-carboxylate (45). The synthesis was carried out as described for 15 , using boronic acid 21 ($153 \mathrm{mg}, 0.46 \mathrm{mmol}$), 44 (91 mg , $0.39 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(520 \mathrm{mg}, 1.6 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(46 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(5: 1,1.0 \mathrm{~mL}$ of DME and 0.2 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-80 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) to give $\mathbf{4 5}$ ($140 \mathrm{mg}, 82 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) $3087,2978,2911,2854,1723$ (CO), 1575, 1435, 1122, 1021, $773 ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.80(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.73(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.62(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.74(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 5.34(\mathrm{dt}, J=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 6 \mathrm{H},-$ $\left.\mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 2.12-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.19-1.45(\mathrm{~m}$, $4 \mathrm{H}), 0.80(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. Mass spectrum (ESI) m / z (relative intensity) $439\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$.

(Z)-3-(1-(Hex-1-en-1-yl)cyclopentyl)-1,9-dihydroxy-6H-benzo[c]chromen-6-one (46). The synthesis was carried out as described for 1a, using $45(118 \mathrm{mg}, 0.27 \mathrm{mmol})$, 9 -iodo-9-BBN (0.82 mL of a 1.0 M in hexane, $0.82 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.4 \mathrm{~mL})$. The reaction was quenched by ethanolamine (0.5 mL) and the crude obtained after work up was purified by flash column chromatography on silica gel ($30-80 \% \mathrm{Et}_{2} \mathrm{O}$ in hexane) to give 46 ($66 \mathrm{mg}, 65 \%$ yield) as a white solid. Mp 134-136 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3269(\mathrm{OH}), 2955,2873,1679$ (CO), 1604, 1397, 1102, 1027, 750; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.45(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.29(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.94(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.70(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $5.70(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dt}, J=11.3,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 6 \mathrm{H}), 1.14-$ $1.06(\mathrm{~m}, 4 \mathrm{H}), 0.69(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. Mass spectrum (ESI) m/z (relative intensity) $379\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.2 min for the title compound.

Methyl 2-bromo-4-(methoxy- \boldsymbol{d}_{3})benzoate (47). To a solution of methyl 2-bromo-4-hydroxybenzoate (44, 1.0 g , 4.35 mmol) in anhydrous DMF (24 mL) under an argon atmosphere was added $\mathrm{K}_{2} \mathrm{CO}_{3}(1.44 \mathrm{~g}, 10.44 \mathrm{mmol}$), and the mixture was stirred at room temperature for 20 minutes. The mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{CD}_{3} \mathrm{I}(756 \mathrm{mg}, 5.22 \mathrm{mmol})$ in 1.3 mL of dry DMF was added dropwise. After 5 minutes stirring at $0{ }^{\circ} \mathrm{C}$, the mixture was stirred at room temperature for 2.5 h . The reaction was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ and then $\mathrm{Et}_{2} \mathrm{O}$ was added. The water phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic phase were washed with brine and dried over MgSO_{4}. The solvent was removed, and the crude product was purified by flash column chromatography on silica gel ($10 \% \mathrm{EtOAc} /$ hexane) to give 47 ($930 \mathrm{mg}, 86 \%$ yield) as colorless oil. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 1725(\mathrm{CO}), 1595,1489,1257,1241,1099,999,768 .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ar-H), $7.17(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.84(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 165.9,162.3,133.2,123.6,123.4,119.8,113.0,52.1$.

Methyl 2',6'-dimethoxy-5-(methoxy- $\left.\boldsymbol{d}_{3}\right)$-4'-(2-methyloctan-2-yl)-[1,1'-biphenyl]-2-carboxylate (48). The synthesis was carried out as described for $\mathbf{1 5}$, using boronic acid $\mathbf{1 3}(1.04 \mathrm{~g}, 3.38 \mathrm{mmol}), 47$ ($699 \mathrm{mg}, 2.82 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.67 \mathrm{~g}, 11.27 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(325 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(5: 1,8 \mathrm{~mL}$ of DME and 1.6 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash
column chromatography on silica gel ($10-30 \% \mathrm{EtOAc} /$ hexane) to give 48 ($984 \mathrm{mg}, 81 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 2930, 2073 (CD), 1727 (CO), 1601, 1576, 1406, 1224, 1126, 1104, 745. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.86(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.56(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.68\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 1.62-1.59\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.32\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right)$, 1.26-1.22 (m, 6H, $-\mathrm{CH}_{2}-$), 1.11 (br s, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.84\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $167.9,161.7,156.6,151.0,137.5,131.9,124.1,117.7,116.7,112.4,102.2,55.9,51.2,44.7,38.3,31.8,30.0,29.0$, 24.7, 22.6, 14.0.

1-Hydroxy-9-(methoxy- \boldsymbol{d}_{3})-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (49). The synthesis was carried out as described for $\mathbf{1 a}$, using $48(24 \mathrm{mg}, 0.056 \mathrm{mmol})$, 9 -iodo- $9-\mathrm{BBN}(0.23 \mathrm{~mL}$ of a 1.0 M in hexane, 0.23 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The reaction was quenched by ethanolamine (0.3 mL) and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give 49 ($16 \mathrm{mg}, 75 \%$ yield) as a white solid. Mp $150-152{ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) $3421(\mathrm{OH}), 2931,2073$ (CD), 1676 (CO), 1626, 1607, 1402, 1303, 1111, 722. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.48(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.04(\mathrm{dd}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H})$, 5.75 (brs, $1 \mathrm{H},-\mathrm{OH}$), 1.58-1.55 (m, 2H, $-\mathrm{CH}_{2}$-), $1.27\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.23-1.17\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.06-1.00(\mathrm{~m}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\right), 0.81\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 164.8,161.7,153.9,153.1,152.9,136.8$, $132.2,114.9,113.6,110.8,109.8,108.0,104.8,44.3,37.9,31.7,29.9,28.6,24.6,22.6,14.0$. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{D}_{3} \mathrm{O}_{4}$: calculated 372.2254 ; found 372.2249 . Mass spectrum (ESI) m / z (relative intensity) $372\left(\mathrm{M}^{+}+\mathrm{H}\right.$, 100). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.5 min for the title compound.

Methyl 5-(hydroxymethyl)-2',6'-dimethoxy-4'-(2-methyloctan-2-yl)-[1,1'-biphenyl]-2-carboxylate (50). The synthesis was carried out as described for 15, using boronic acid $\mathbf{1 3}$ ($754 \mathrm{mg}, 2.45 \mathrm{mmol}$), $\mathbf{3 6}$ ($580 \mathrm{mg}, 2.36$ $\mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.66 \mathrm{~g}, 8.16 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(462 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}(5: 1,5 \mathrm{~mL}$ of DME and 1 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-40 \% \mathrm{EtOAc} /$ hexane) to give $\mathbf{5 0}$ ($810 \mathrm{mg}, 80 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) $3235(\mathrm{OH}), 2916,2895,1698(\mathrm{CO}), 1613,1403,1105,1045,757 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.57(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{OH}), 4.76$ $(\mathrm{d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.69\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 1.65-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.33\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.29-$ $1.18(\mathrm{~m}, 6 \mathrm{H}), 1.15-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.2,156.5,151.1$, $143.9,135.4,131.1,130.7,130.0,125.0,116.1,102.1,64.9,55.8,51.4,44.7,38.3,31.8,30.0,28.9,24.7,22.6$, 14.0.

9-(Bromomethyl)-1-hydroxy-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (51). To a stirring solution of $\mathbf{5 0}(806 \mathrm{mg}, 1.88 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ was added dropwise $\mathrm{BBr}_{3}(7.8 \mathrm{~mL}$ of a 1.0 M solution in hexane, 7.8 mmol). The temperature was slowly warmed to room temperature and the reaction mixture was stirred overnight. Then the reaction was cooled back to $0^{\circ} \mathrm{C}$ and water was added. The organic phase was removed under reduced pressure and the residue water phase was extracted by EtOAc. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel ($10-40 \%$ EtOAc/hexane) gave 51 ($550 \mathrm{mg}, 68 \%$ yield) as a white solid. Mp 197$201{ }^{\circ} \mathrm{C}$ (decomposed). IR (thin film, cm^{-1}) $3325(\mathrm{OH}), 2927,2856,1699(\mathrm{CO}), 1611,1402,1262,1092,749 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.95(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.67(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 1.61-1.55$ $(\mathrm{m}, 2 \mathrm{H}), 1.28\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.14(\mathrm{~m}, 6 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5,154.0,153.5,152.6,144.6,135.2,130.7,128.2,127.6,120.1,110.1,107.9,104.3,44.3$, 38.0, 32.7, 31.7, 29.9, 28.6, 24.6, 22.6, 14.0. Mass spectrum (ESI) m/z (relative intensity) $431\left(\mathrm{M}^{+}+\mathrm{H}, 80\right), 433$ $\left(\mathrm{M}^{+}+\mathrm{H}+2,100\right) . \mathrm{LC} / \mathrm{MS}$ analysis (Waters MicroMass ZQ system) showed retention time 5.7 min for the title compound.

1-Hydroxy-9-(methoxymethyl)-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (52a). Argon was bubbled through a mixture of $\mathbf{5 1}(17 \mathrm{mg}, 0.039 \mathrm{mmol})$ and $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(44 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $\left(4: 1,0.8 \mathrm{~mL}\right.$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.2 mL of MeOH) for 10 min . Then the reaction mixture was microwaved at $130^{\circ} \mathrm{C}$ for 60 min in a Biotage apparatus. Then the mixture was cooled to room temperature and filtered through a short celite pad. The filtrate was concentrated and $\mathrm{Et}_{2} \mathrm{O}$ was added. The ether solution was washed with water and brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel ($10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) gave 52a ($15 \mathrm{mg}, 99 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) $3306(\mathrm{OH})$, 2939, 2850, 1730 (CO), 1586, 1435, 1176, 1021, 785, 724; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 8.41 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.93(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.91$ (brs, $1 \mathrm{H}, \mathrm{OH}$), $6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 3.50\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $\left(\mathrm{s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.12(\mathrm{~m}, 6 \mathrm{H}), 1.07-0.98(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.8,154.3,153.1,152.6,145.1,135.0,130.3,126.5,125.8,119.8,109.9,107.7,104.6,74.5,58.4,44.3,37.9$, 31.7, 29.9, 28.6, 24.6, 22.6, 14.0. HRMS (ESI) for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{O}_{4}$: calculated 383.2222; found 383.2213. Mass spectrum (ESI) m/z (relative intensity) 383 ($\mathrm{M}^{+}+\mathrm{H}, 100$). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.7 min for the title compound.

9-(Ethoxymethyl)-1-hydroxy-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (52b). Argon was bubbled through a mixture of $\mathbf{5 1}(20 \mathrm{mg}, 0.046 \mathrm{mmol})$ and $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(52 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}(3: 1,0.9$ mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.3 mL of EtOH) for 10 min . Then the reaction mixture was microwaved at $130^{\circ} \mathrm{C}$ for 60 min in a Biotage apparatus. Then the mixture was cooled to room temperature and filtered through a short celite pad. The filtrate was concentrated and $\mathrm{Et}_{2} \mathrm{O}$ was added. The ether solution was washed with water and brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel ($10-30 \% \mathrm{EtOAc} / \mathrm{hexane}$) gave $\mathbf{5 2 b}$ ($18 \mathrm{mg}, 98 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) $3300(\mathrm{OH}), 2953$, 2934, 2865, 1711 (CO), 1699, 1591, 1466, 1378, 1054, 910, 740, 688; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 8.39 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.69$ (d, J $=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.72(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.29\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.27-1.14(\mathrm{~m}, 6 \mathrm{H}), 1.09-1.08(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6,154.0,152.9,152.6,145.7,134.8,130.3,126.5,125.6,119.7,109.8,107.9,104.7,72.4$, 66.2, 44.3, 37.9, 31.7, 29.9, 28.6, 24.6, 22.6, 15.2, 14.0. HRMS (ESI) for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{O}_{4}$: calculated 397.2379; found 397.2374. Mass spectrum (ESI) m/z (relative intensity) 397 ($\mathrm{M}^{+}+\mathrm{H}, 100$). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.7 min for the title compound.

1-Hydroxy-9-(isopropoxymethyl)-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (52c). Argon was bubbled through a mixture of $\mathbf{5 1}(20 \mathrm{mg}, 0.046 \mathrm{mmol})$ and $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(52 \mathrm{mg}, 0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ propan-2-ol ($3: 1,0.9 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 0.3 mL of propan-2-ol) for 10 min . Then the reaction mixture was microwaved at $130^{\circ} \mathrm{C}$ for 60 min in a Biotage apparatus. Then the mixture was cooled to room temperature and filtered through a short celite pad. The filtrate was concentrated and $\mathrm{Et}_{2} \mathrm{O}$ was added. The ethereal solution was washed with water and brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel ($10-30 \%$ EtOAc/hexane) gave 52c ($18 \mathrm{mg}, 97 \%$ yield) as a yellow oil. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3308(\mathrm{OH}), 2962,2927,2857,1694(\mathrm{CO}), 1613,1405,1087,845,743,{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.19$ (s, 1H, Ar-H), 8.37 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.74$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 7.45 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.90(\mathrm{~d}, J=1.4$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 4.81(\mathrm{~s}, 2 \mathrm{H}), 3.82($ septet, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, J=$ 6.1 Hz, 6H, - $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.28\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.13(\mathrm{~m}, 6 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,154.8,152.9,152.6,145.8,135.2,130.2,126.2,125.6,119.6,109.8,107.3$, 104.6, 71.8, 69.7, 44.3, 37.9, 31.7, 29.9, 28.6, 24.6, 22.6, 22.1, 14.0. HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{O}_{4}$: calculated 411.2535; found 411.2528. Mass spectrum (ESI) m/z (relative intensity) $411\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.8 min for the title compound.

9-(Azidomethyl)-1-hydroxy-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (52d). To a stirring solution of $51(30 \mathrm{mg}, 0.07 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.4 \mathrm{~mL})$ under argon atmosphere was added $n-\mathrm{Bu}_{4} \mathrm{~N}^{+} \mathrm{N}_{3}{ }^{-}(79 \mathrm{mg}, 0.28$ mmol) at room temperature and the reaction mixture was stirred for 2 days. The mixture was then quenched by the addition of water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (15$30 \% \mathrm{EtOAc} /$ hexane) gave $\mathbf{5 2 d}$ ($26 \mathrm{mg}, 96 \%$ yield) as a white solid. Mp $137-141^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3285 $(\mathrm{OH}), 2926,2135\left(\mathrm{~N}_{3}\right), 1698(\mathrm{CO}), 1621,1404,1103,1054,846,745 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.94(\mathrm{~s}, 1 \mathrm{H}$, Ar-H), 8.42 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.47$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.69$ (d, J $=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}_{3}\right), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.29\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.27-1.12$ $(\mathrm{m}, 6 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,153.7,153.5,152.7$, $142.3,135.1,130.7,127.0,126.4,120.4,110.0,108.2,104.4,54.8,44.3,38.0,31.7,29.9,28.6,24.6,22.5,13.9$. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{3}$: calculated 394.2131 ; found 394.2124. Mass spectrum (ESI) m / z (relative intensity) $394\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.7 min for the title compound.

Methyl 5-bromo-2',6'-dimethoxy-4'-(2-methyloctan-2-yl)-[1,1'-biphenyl]-2-carboxylate (54). The synthesis was carried out as described for 15, using boronic acid $\mathbf{1 3}$ ($262 \mathrm{mg}, 0.85 \mathrm{mmol}$), 53 ($290 \mathrm{mg}, 0.85 \mathrm{mmol}$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ $(1.1 \mathrm{~g}, 3.4 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(104 \mathrm{mg}, 0.09 \mathrm{mmol})$ in $\mathrm{DME} / \mathrm{H}_{2} \mathrm{O}\left(5: 1,3.5 \mathrm{~mL}\right.$ of DME and 0.7 mL of $\left.\mathrm{H}_{2} \mathrm{O}\right)$. The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel ($10-30 \% \mathrm{EtOAc} /$ hexane) to give 54 ($250 \mathrm{mg}, 62 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 2954, 2930, 2858, 1734 (CO), 1609, 1575, 1453, 1409, 1284, 1238, 1124, 1096, 1017, 829. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.56(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}, 2$ $\left.\times \mathrm{OCH}_{3}\right), 3.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 1.66-1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.29-1.20\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right)$, $1.16-1.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.7,156.4,151.6,137.1$, $135.6,131.1,130.9,129.8,125.6,114.9,102.0,55.7,51.6,44.7,38.4,31.9,30.0,29.0,24.7,22.7,14.2$. Mass spectrum (ESI) m/z (relative intensity) $477\left(\mathrm{M}^{+}+\mathrm{H}, 75\right), 445\left(\mathrm{M}^{+}-\mathrm{OMe}, 100\right), 155$ (100). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 6.2 min for the title compound.

9-Bromo-1-hydroxy-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (55). The synthesis was carried out as described for 1a, using $54(205 \mathrm{mg}, 0.43 \mathrm{mmol}), 9-$ iodo- $9-\mathrm{BBN}(1.4 \mathrm{~mL}$ of a 1.0 M in hexane, 1.4 mmol$)$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The reaction was quenched by ethanolamine $(0.5 \mathrm{~mL})$ and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give $\mathbf{5 5}$ (130 $\mathrm{mg}, 73 \%$ yield) as a white solid. Mp 232-233 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3291 (br, OH), 2957, 2928, 2855, 1693 (CO), 1624, 1594, 1392, 1276, 1261, 1109, 1087. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.03$ (s, 1H, OH), 9.18 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.73(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.87(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.80(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 1.57-1.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.23\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.19-1.11(\mathrm{~m}, 6 \mathrm{H}, 3$ $\left.\times \mathrm{CH}_{2}\right), 1.03-0.94\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.77\left(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (126 MHz , DMSO- d_{6}) $\delta 160.5,156.5$, 153.7, 152.7, 136.6, 131.9, 130.9, 129.8, 129.4, 119.4, 110.1, 105.9, 103.0, 44.0, 38.1, 31.6, 29.8, 28.8, 24.6, 22.5, 14.3. Mass spectrum (ESI) m/z (relative intensity) 417 ($\mathrm{M}^{+}+\mathrm{H}, 100$), 131 (85). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.8 min for the title compound.

9-Bromo-1-(methoxymethoxy)-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (56). To a solution of 55 $(125 \mathrm{mg}, 0.3 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6.0 \mathrm{~mL})$ under an argon atmosphere at $0^{\circ} \mathrm{C}$ was added N, N-diisopropylethylamine $(520 \mu \mathrm{~L}, 3.0 \mathrm{mmol})$, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min . Chloromethyl methyl ether ($120 \mu \mathrm{~L}, 1.6 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for an additional 30 min and then at room temperature for 1 h . The reaction mixture was quenched with saturated aqueous NaHCO_{3}, and the organic material was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane ($0 / 1 \rightarrow 1 / 9$) as eluent to afford $56(127 \mathrm{mg}, 92 \%)$ as a white solid. Mp $68-69^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 2956, 2928, 2857, 1732 (CO), 1616, 1592, 1385, 1157, 1074, 1043, 1010, 965, 926. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.16(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.26(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.65(\mathrm{dd}, J=8.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.07(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.03(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.44\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.64-$ $1.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.27-1.17\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.10-1.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.84(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,155.5,154.1,152.4,135.9,131.6,130.8,130.2,129.9,119.5$, 109.0, 108.4, 105.1, $95.2,56.7,44.2,38.3,31.7,29.9,28.7,24.6,22.6,14.1$. Mass spectrum (ESI) m / z (relative intensity) $461\left(\mathrm{M}^{+}+\mathrm{H}, 65\right)$, 201 (100). LC/MS analysis (Waters MicroMass ZQ system) showed retention time 6.3 min for the title compound.

1-(Methoxymethoxy)-3-(2-methyloctan-2-yl)-6-oxo-6H-benzo[c]chromene-9-sulfonyl fluoride (57). To a mixture of $56(92 \mathrm{mg}, 0.2 \mathrm{mmol})$, DABSO ($52 \mathrm{mg}, 0.22 \mathrm{mmol}$), and $\mathrm{PdCl}_{2}(\mathrm{Amphos})_{2}(16 \mathrm{mg}, 0.02 \mathrm{mmol})$ under an argon atmosphere in a resealable tube at room temperature was added anhydrous $\mathrm{Et}_{3} \mathrm{~N}(60 \mathrm{mg}, 0.6 \mathrm{mmol})$ and anhydrous isopropanol (1.0 mL). The resealable tube was sealed, and the reaction mixture was stirred at $75{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was cooled to room temperature, NFSI ($94 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added in one portion, and the reaction mixture was stirred at room temperature for 3 h . Solvent was removed under reduced pressure, and the mixture was diluted with EtOAc and then filtered through a Celite pad. The filtrate was washed with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane ($0 / 1 \rightarrow 1 / 19$) as eluent to afford 57 ($66 \mathrm{mg}, 71 \%$) as a white solid. Mp 57-58 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 2963, 2930, 2860, 1742 (CO), 1618, $1416,1276,1261,1211,1079,1049 .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.72(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.63(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.07(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 5.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 3.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.67-1.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.27-1.17(\mathrm{~m}$, $\left.6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.11-1.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.83\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6$, 155.6, 155.6, 152.4, $138.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CF}}=25.3 \mathrm{~Hz}\right), 135.8,131.7,127.6,125.7,125.6,109.0,108.5,104.4,95.2,56.9$, $44.1,38.5,31.7,29.8,28.6,24.6,22.6,14.0 ;{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 65.2$.

1-Hydroxy-3-(2-methyloctan-2-yl)-6-oxo-6H-benzo[c]chromene-9-sulfonyl fluoride (58). To a mixture of $\mathbf{5 7}$ $(40 \mathrm{mg}, 0.086 \mathrm{mmol})$ and ethanol ($396 \mathrm{mg}, 8.60 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ at room temperature was added
$\mathrm{Sc}(\mathrm{OTf})_{3}(30 \mathrm{mg}, 0.061 \mathrm{mmol})$. After being flushed with argon, the reaction mixture was refluxed until most of the starting material was consumed as judged by TLC (ca. 8 h). $\mathrm{CH}_{3} \mathrm{CN}$ was removed under reduced pressure, and water (ca. 0.5 mL) was added and stirred for 5 min . The organic material was extracted with EtOAc, and the combined organic extracts were concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane ($0 / 1 \rightarrow 1 / 9$) as eluent to afford $58(33 \mathrm{mg}, 91 \%)$ as a pale yellow solid. Mp 216-217 ${ }^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3373 (br, OH), 2968, 2933, 2859, 1707 (CO), 1630, 1585, 1472, 1418, $1397,1300,1213,1118,1093,1045 .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 9.71$ (d, $\left.J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 8.57$ (d, $J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.13(\mathrm{dd}, J=8.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.99(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.96$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 1.70-1.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.33\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 1.30-1.20\left(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{CH}_{2}\right), 1.15-1.05$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 0.86\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.7,156.6,156.3,153.8,138.4$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CF}}=25.0 \mathrm{~Hz}\right), 137.0,132.4,128.3,127.1,126.9,111.2,107.9,103.8,44.7,39.0,32.5,30.6,28.9,25.4,23.3$, 14.3; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ 64.5. HRMS (ESI) for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5} \mathrm{SF}$: calculated 421.1485; found 421.1503.

Methyl 2',6'-dimethoxy-4'-(2-methyloctan-2-yl)-5-(((triisopropylsilyl)oxy)methyl)-[1,1'-biphenyl]-2carboxylate (59). The synthesis was carried out as described for 15, using boronic acid $\mathbf{1 3}$ ($501 \mathrm{mg}, 1.63 \mathrm{mmol}$), $37(548 \mathrm{mg}, 1.36 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(1.63 \mathrm{~g}, 5 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(162 \mathrm{mg}, 0.14 \mathrm{mmol})$ in DME/ $\mathrm{H}_{2} \mathrm{O}(5: 1,5 \mathrm{~mL}$ of DME and 1 mL of $\mathrm{H}_{2} \mathrm{O}$). The reaction was completed in 45 min and the crude oil obtained after work up was purified by flash column chromatography on silica gel (10-25\% EtOAc/hexane) to give 59 ($684 \mathrm{mg}, 86 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) 2925, 2863, 1707 (CO), 1609, 1576, 1461, 1283, 1239, 1126, 881, 806; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.89$ (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.36(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $6.55(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 3.66\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right), 3.55\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COOCH}_{3}\right), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 6 \mathrm{H}$, $\left.-\mathrm{CH}_{3}\right), 1.27-1.11(\mathrm{~m}, 11 \mathrm{H}), 1.07(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 18 \mathrm{H}), 0.84(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.5,156.6,150.8,144.7,134.8,130.3,129.9,129.7,124.1,116.5,102.2,64.7,55.8,51.3,44.7,38.2,31.8,30.0$, 28.9, 24.7, 22.6, 18.0, 14.0, 12.0.

1-Hydroxy-3-(2-methyloctan-2-yl)-9-(((triisopropylsilyl)oxy)methyl)-6H-benzo[c]chromen-6-one (60). The synthesis was carried out as described for 1a, using 59 ($462 \mathrm{mg}, 0.8 \mathrm{mmol}$), 9 -iodo-9-BBN (2.6 mL of a 1.0 M in hexane, 2.6 mmol) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The reaction was quenched by ethanolamine (1 mL) and the crude obtained after work up was purified by flash column chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane, 2:2:6) to give $60\left(252 \mathrm{mg}, 60 \%\right.$ yield) as a white solid. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3332(\mathrm{OH}), 2927,2866,1722(\mathrm{CO})$, 1708, 1270, 1074,883, 688; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 9.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.47 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.95(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.66(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, $5.00(\mathrm{~s}, 2 \mathrm{H}), 1.57(\mathrm{~m}, 2 \mathrm{H}), 1.28\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.14(\mathrm{~m}, 11 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 18 \mathrm{H}), 0.82(\mathrm{t}, J=6.9$
$\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.4,153.8,153.3,152.6,144.7,135.3,130.6,127.3,127.1,120.5$, $110.1,107.8,104.1,65.7,44.3,38.0,32.6,31.7,29.9,28.6,24.6,22.6,18.0,14.0$.

1-(Methoxymethoxy)-3-(2-methyloctan-2-yl)-9-(((triisopropylsilyl)oxy)methyl)-6H-benzo[c]chromen-6one (61). The synthesis was carried out as described for 59 , using $60(250 \mathrm{mg}, 0.47 \mathrm{mmol}), N, N-$ diisopropylethylamine ($250 \mu \mathrm{~L}, 1.43 \mathrm{mmol}$), chloromethyl methyl ether ($110 \mu \mathrm{~L}, 1.43 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.8 \mathrm{~mL})$. The crude oil obtained after work up was purified by flash column chromatography on silica gel $\left(10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give title compound ($265 \mathrm{mg}, 98 \%$ yield) as a colorless oil. IR (thin film, cm^{-1}) 2928, 2865, 1731 (CO), 1614, 1265, 1099, 1052, 967, 741, 701, 682; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.97(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.48(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.11(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.02(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 4.98(\mathrm{~s}, 2 \mathrm{H}), 3.53\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.62-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H})$, $1.26-1.15(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{~s}, 10 \mathrm{H}), 1.11(\mathrm{~s}, 8 \mathrm{H}), 1.08-1.02(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.6,155.7,153.0,152.3,148.8,134.7,130.2,125.3,123.8,119.6,109.1,108.7,106.5,95.0$, 65.2, 56.3, 44.2, 38.2, 31.7, 29.9, 28.7, 24.7, 22.6, 18.1, 14.0, 12.0.

9-(Hydroxymethyl)-1-(methoxymethoxy)-3-(2-methyloctan-2-yl)-6H-benzo[c]chromen-6-one (62). To а solution of 1-(methoxymethoxy)-3-(2-methyloctan-2-yl)-9-(((triisopropylsilyl)oxy)methyl)-6H-benzo[c]chromen-6-one ($53 \mathrm{mg}, 0.09 \mathrm{mmol}$) in anhydrous THF $(2.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under an argon atmosphere was added TBAF ($0.11 \mathrm{~mL}, 1 \mathrm{M}$ in THF, 0.11 mmol). The reaction was kept at $0^{\circ} \mathrm{C}$ for 10 min and then at room temperature for 1.5 h . The mixture was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (20-40 \% EtOAc/hexane) gave 62 ($37 \mathrm{mg}, 97 \%$ yield) as a yellow oil. IR (thin film, cm^{-1}) $3440(\mathrm{OH}), 2927,1706(\mathrm{CO}), 1612,1266,1054,750 ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.03$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 3.57\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{OCH}_{3}\right), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~s}$, $\left.6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.13(\mathrm{~m}, 6 \mathrm{H}), 1.05(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5$, $155.6,153.3,152.4,147.8,134.9,130.6,125.9,124.7,120.1,109.1,108.5,106.3,95.3,65.2,56.7,44.2,38.3$, 31.7, 29.9, 28.7, 24.6, 17.7, 14.0.

3-(Adamantan-1-yl)-9-(hydroxymethyl)-6,6-dimethyl-6H-benzo[c]chromen-1-ol (63). ${ }^{6}$ To a solution of 39 ($400 \mathrm{mg}, 0.75 \mathrm{mmol}$) in THF (25 mL) under an argon atmosphere at room temperature was slowly added a 3.0 M solution of methylmagnesium bromide in $\mathrm{Et}_{2} \mathrm{O}(2.5 \mathrm{~mL}, 7.5 \mathrm{mmol})$. The reaction mixture was stirred at room temperature for 30 min and then refluxed for an additional 1.5 h . After the mixture was cooled to room temperature, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{ca} 20 \mathrm{~mL}$.$) was added, and the organic material was extracted with \mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with brine, dried over MgSO_{4}, filtered, and concentrated under reduced pressure to give the crude intermediate as a white foam that was used without further purification in the subsequent cyclization. The crude was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ at room temperature, and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(43$ $\mathrm{mg}, 0.225 \mathrm{mmol}$) was added. After being flushed with argon, the reaction mixture was stirred at room temperature for 12 h . Water was added, and the organic material was extracted with CHCl_{3}. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and water, dried over MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane $(1 / 10 \rightarrow$ $1 / 1)$ as eluent to afford $63\left(190 \mathrm{mg}, 65 \%\right.$) as a white solid. Mp $118-119^{\circ} \mathrm{C}$. IR (thin film, cm^{-1}) 3348 (br, OH), 2904, 2849, 1621, 1584, 1407, 1264, 1055. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.56$ (s, 1H, Ar-H), 7.22-7.19 (m, $2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 6.56(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.45(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.05-2.03(\mathrm{~m}, 3 \mathrm{H}$, Ad-H), 1.89-1.88 (m, 6H, Ad-H), 1.81-1.73 (m, 6H, Ad-H), $1.54\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 156.3,155.4,154.2,141.0,139.7,129.6,126.5,126.3,123.4,109.3,107.2,106.9,78.0,65.5,44.1,37.9,37.1$, 30.3, 27.5. HRMS (ESI) for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{O}_{3}$: calculated 391.2273; found 391.2266. Mass spectrum (ESI) m/z (relative intensity) $391\left(\mathrm{M}^{+}+\mathrm{H}, 100\right)$. LC/MS analysis (Waters MicroMass ZQ system) showed retention time 5.2 min for the title compound.

9-(Methoxy-d3)-3-(2-methyloctan-2-yl)-1-((triisopropylsilyl)oxy)-6H-benzo[c]chromen-6-one (64). To a solution of $49(156 \mathrm{mg}, 0.42 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ under an argon atmosphere were added sequentially, 2,6-lutidine ($400 \mathrm{mg}, 3.6 \mathrm{mmol}$), and triisopropylsilyl trifluoromethanesulfonate ($740 \mathrm{mg}, 2.4 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Following the addition, the reaction mixture was gradually warmed to room temperature and the stirring was continued at that temperature for 2 h and then quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with diethyl ether. The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane $(1 / 10 \rightarrow 2 / 10)$ as eluent to afford $197 \mathrm{mg}\left(89 \%\right.$ yield) of $\mathbf{6 4}$ as colorless viscous oil. IR (thin film, $\left.\mathrm{cm}^{-1}\right)$ 2943, 2646, 2074 (CD), 1713 (CO), 1607, 1465, 1399, 1270, 1110, 883; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.35(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.02(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 9.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.76(\mathrm{~s} 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 1.60-1.57\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.48-1.42(\mathrm{~m}$, $3 \mathrm{H},-\mathrm{CH}-), 1.28\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.15\left(\mathrm{~m}\right.$ and d overlapping, $22 \mathrm{H}, 2 \mathrm{x}-\mathrm{CH}_{2}$ - and $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, especially 1.17, d, $\left.J=7.1 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.05-0.99\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.81\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

9-(Methoxy-d3)-3-(2-methyloctan-2-yl)-1-((triisopropylsilyl)oxy)-6H-benzo[c]chromene-6-thione (65). To a stirring solution of $\mathbf{6 4}(148 \mathrm{mg}, 0.28 \mathrm{mmol})$ in anhydrous toluene $(2 \mathrm{~mL})$ under an argon atmosphere was added Lawesson reagent ($226 \mathrm{mg}, 0.56 \mathrm{mmol}$). The reaction mixture was refluxed at $120^{\circ} \mathrm{C}$ for 24 hours and then cooled to room temperature. Then the mixture was diluted with 1 mL solution of benzene/hexane (60:40) and stirred for another 30 minutes. Solid materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography with EtOAc/hexane $(1 / 10 \rightarrow 2 / 10)$ as eluent to afford 115 mg (76% yield) of $\mathbf{6 5}$ as a yellow viscous oil. IR (thin film, cm^{-1}) 2928, 2868, 2073 (CD), 1605, 1463, 1397, 1279 and 1264 (CS), 1180, 1015, 883; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.89(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.49$ (s, 1H, Ar-H), $7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 1.59-1.55\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right)$, 1.47-1.42 (m, 3H, -CH-), $1.26\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.23-1.15$ (m and d overlapping, $22 \mathrm{H}, 2 \mathrm{x}-\mathrm{CH}_{2}-$ and $-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$, especially 1.18 , d, $\left.J=7.1 \mathrm{~Hz},-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.03-0.95\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.81\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.

1-Hydroxy-9-(methoxy-d3)-3-(2-methyloctan-2-yl)-6H-benzo[c]chromene-6-thione (66). To a solution of 65 $(27 \mathrm{mg}, 0.05 \mathrm{mmol})$ in anhydrous THF $(1.25 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$, under an argon atmosphere, was added tetra- n butylammonium fluoride ($0.06 \mathrm{~mL}, 0.06 \mathrm{mmol}, 1 \mathrm{M}$ solution in anhydrous THF). The reaction mixture was stirred for 30 min at the same temperature, and then quenched using a saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. Extractive isolation with diethyl ether, and purification by silica gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} /$ hexane (2:2:6) as eluent gave $66\left(16 \mathrm{mg}, 82 \%\right.$ yield) as a yellow solid. Mp $120-126^{\circ} \mathrm{C}$. IR (thin film, $\left.\mathrm{cm}^{-1}\right) 3061(\mathrm{OH})$, 2931, 2071 (CD), 1686, 1604, 1405, 1274, 1101, 740. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H), $8.46(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.14(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.06(\mathrm{dd}, J=7.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.70(\mathrm{~d}$, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.63(\mathrm{brs}, 1 \mathrm{H},-\mathrm{OH}), 1.61-1.58\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 1.30\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right), 1.26-1.20(\mathrm{~m}, 6 \mathrm{H},-$ $\left.\mathrm{CH}_{2}-\right), 1.05\left(\mathrm{br} \mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.84\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 199.5,165.2,154.4$, 153.6, 153.4, 136.4, 132.3, 131.2, 123.4, 116.2, 110.4, 109.6, 108.2, 44.2, 38.0, 31.7, 29.9, 28.5, 24.6, 22.5, 13.9. HRMS (ESI) for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{D}_{3} \mathrm{O}_{3} \mathrm{~S}$: calculated 388.2026 ; found 388.2025 . Mass spectrum (ESI) m / z (relative intensity) $388\left(\mathrm{M}^{+}+\mathrm{H}, 100\right) . \mathrm{LC} / \mathrm{MS}$ analysis (Waters MicroMass ZQ system) showed retention time 5.9 min for the title compound.

References

1. Papahatjis, D. P.; Nikas, S. P.; Kourouli, T.; Chari, R.; Xu, W.; Pertwee, R. G.; Makriyannis, A. J. Med. Chem. 2003, 46, 3221-3229.
2. Nikas, S. P.; Alapafuja, S. O.; Papanastasiou, I.; Paronis, C. A.; Shukla, V. G.; Papahatjis, D. P.; Bowman, A. L.; Halikhedkar, A.; Han, X. W.; Makriyannis, A. J. Med. Chem. 2010, 53, 6996-7010.
3. Makriyannis, A.; D'Souza, M. R.; Bajaj, S.; Nikas, S. P.; Thakur, G. A. Preparation of 2-cycloalkyl-resorcinol compounds as cannabinergic ligands. WO2014062965A1, 2014.
4. Ogawa, G.; Tius, M. A.; Zhou, H.; Nikas, S. P.; Halikhedkar, A.; Mallipeddi, S.; Makriyannis, A. J. Med. Chem. 2015, 58, 3104-3116.
5. Lu, D.; Meng, Z. X.; Thakur, G. A.; Fan, P. S.; Steed, J.; Tartal, C. L.; Hurst, D. P.; Reggio, P. H.; Deschamps, J. R.; Parrish, D. A.; George, C.; Jarbe, T. U. C.; Lamb, R. J.; Makriyannis, A. J. Med. Chem. 2005, 48, 4576-4585.
6. Thakur, G. A.; Bajaj, S.; Paronis, C.; Peng, Y.; Bowman, A. L.; Barak, L. S.; Caron, M. G.; Parrish, D.; Deschamps, J. R.; Makriyannis, A. J. Med. Chem. 2013, 56, 3904-3921.

	空品		$\stackrel{\circ}{\text { ¢ }}$	$\stackrel{\sim}{\mathrm{A}}$ ल
\1	1v	I	$\stackrel{ }{ }$	1\11/

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H} N \mathrm{MR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(

$\stackrel{T}{1}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
ハ

on on m

 $\stackrel{\%}{1}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCb}_{3}\right) \xrightarrow{\text { (}}$

J/

$$
1|\mid
$$

${ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCb}_{3}\right)$ 位

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

픈
드으N M $\underbrace{i n} \ln ^{n} n^{n} \infty^{n}$

${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(10)

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \stackrel{\text { o }}{\infty}$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

|
-30000
${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\Im}{i}$
웅 (C)

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ö

N

61.99-

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \stackrel{\text { A. }}{\sigma}$ (C)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

هِ

0 o
ì
11

-23000
-22000
-21000
-20000
-19000
-18000
-17000
-16000
-15000
-14000
-13000
-12000
-11000
-10000
-9000
-8000
-7000
-6000
-5000
-4000
-3000
-2000
-1000
-0
-1000
-2000

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
O. 呙
$\stackrel{\text { ñ }}{\sim}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

$\stackrel{0}{\square} \stackrel{\circ}{1} \stackrel{\circ}{\square}$

$\stackrel{\infty}{\infty}$ -

\qquad

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$

$\varepsilon \varepsilon^{\prime} \downarrow \tau-$

| | | | | | | | \| | | | | | | | | | | | | | | | W\||w|w |
| :---: |
| 220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | $\begin{gathered} 110 \\ \mathrm{f1}(\mathrm{ppm}) \end{gathered}$ | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No
$\underbrace{\text { OO }}_{i}$
$\stackrel{\infty}{\stackrel{\infty}{1}}$
$\stackrel{\square}{i}$

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F} \mathrm{NMR}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}\right.$ reference standard)

$\stackrel{\text { N }}{\substack{\text { © } \\ i}}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$

 $\underbrace{\infty} \underbrace{\infty}$ نio)

${ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$

N
$\stackrel{N}{\text { N }}$
ín
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\stackrel{\circ}{\circ}$
 -5.58
-

${ }^{1} \mathrm{HNMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \quad \stackrel{\stackrel{\sigma}{\circ}}{\stackrel{\sigma}{\sigma}}$

$\stackrel{\text { in }}{\underset{\sim}{i}}$

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

