## Supporting Information

# Design and Synthesis of a Compound Library Exploiting 5Methoxyleoligin as Potential Cholesterol Efflux Promoter 

Thomas Linder ${ }^{1}$, Sophie Geyrhofer ${ }^{1}$, Eleni Papaplioura ${ }^{1}$, Limei Wang ${ }^{\mathbf{2}}$, Atanas G. Atanasov ${ }^{3}$,Verena Dirsch ${ }^{1}$, Michael Schnürch ${ }^{1}$, Marko D. Mihovilovic*${ }^{1}$ Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, 1060 Vienna, Austria;thomas.linder@thermofisher.com (T.L.), sophie.geyrhofer@gmail.com (S.G.),eleni.papaplioura@tuwien.ac.at (E.P.)

2 Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China; limei.wang@qdu.edu.cn
${ }^{3}$ Department of Pharmacognosy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria; atanas.atanasov@univie.ac.at (A.G.A.), verena.dirsch@univie.ac.at (V.D.)
${ }^{4}$ Ludwig Boltzmann Institute for Digital Health and Patient Safety, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria.
5 Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
${ }^{6}$ Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
7 Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Hermann.Stuppner@uibk.ac.at (H.S.)

* Correspondence: michael.schnuerch@tuwien.ac.at (M.S.), marko.mihovilovic@tuwien.ac.at (M.D.M.); Tel.: +43 (1) 58801-163616 (M.S.)
General Notes ..... 3
Table 1. Results of reaction condition optimization of the Sharpless epoxidation. ..... 6
General Procedure A (GPA) ..... 7
General Procedure B (GPB) ..... 7
A. Synthesis of Intermediate Compounds ..... 8
A. $1( \pm)$-1-(3,4,5-Trimethoxyphenyl)prop-2-en-1-ol (rac 7) ..... 8
A. 2 Enantiomeric separation of (R)- and (S)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-ol (7\&8)[8] .....  8
A. 3 (1R)-Oxiran-2-yl(3,4,5-trimethoxyphenyl)methanol (9). ..... 10
A. 4 2-((R)-(Prop-2-yn-1-yloxy)(3,4,5-trimethoxyphenyl)methyl)oxiran (10). ..... 11
A. 5 ((2S,3R)-4-Methylene-2-(3,4,5-trimethoxyphenyl)tetrahydrofuran-3-yl)methanol (11) ..... 12
A. 6 tert-Butyldimethyl(((2S,3R)-4-methylene-2-(3,4,5-trimethoxyphenyl)tetrahydrofu- ran-3- yl)methoxy)silane (12) ..... 12
A. 7 tert-Butyl(((2S,3R,4R)-4-(3,4-dimethoxybenzyl)-2-(3,4,5-trimethoxyphenyl) tetrahydrofuran-3- yl)methoxy)dimethylsilane (I). ..... 13
A. 8 ((2S,3R,4S)-4-(3,4-Dimethoxyphenyl)- 2-(3,4,5-trimethoxyphenyl)tetrahydro-3-yl) methanol (13) ..... 14

A. 9 (Z)-((2S,3R,4S)-4-(3,4-Dimethoxyphenyl)- 2-(3,4,5-trimethoxyphenyl)tetrahydro- ..... 15
furan -tetrahydrofuran-3-yl)methyl 2-methylbut-2-enoate (1) [9] ..... 15
B. Synthesis of leoligin analogs ..... 16
B. 1 (E)-((2S,3R,4R)-4 -(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran -3- yl)methyl 2-methylbut-2-enoate (35) ..... 16
B. 2 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3- ..... 17
yl) methyl 3-methylbut-2-enoate (36) ..... 17
B. 3 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3- ..... 19
yl)methyl benzoate (37) ..... 19
B. 4 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3- ..... 20
yl)methyl 2-mehylbenzoate (38) ..... 20
B. 5 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3- ..... 21
yl)methyl cuyclopropanecarboxylate (39) ..... 21
B. 6 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3 ..... 22
-yl)methyl cyclohexanecarboxylate (40) ..... 22
B. 7 ((2S,3R,4R)- 2-(3,4-Dimethoxybenzyl)-4-(4-methoxybenzyl)tetrahydrofuran-3-yl) ..... 23
methanol (19) ..... 23
B. 8 ((2S,3R,4R)- 2-(3,4-Dimethoxybenzyl)-4-(3-methoxybenzyl)tetrahydrofuran-3- ..... 24
yl)methanol (20) ..... 24
B. 9 ((2S,3R,4R)- 4--(3,4-Dimethoxyphenyl)-2- (3,4-dimethoxyphenyl)tetrahydrofuran-3- yl)methanol (21) ..... 25
B. 10 ((2S,3R,4R)- 4-4-Benzyl-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3-yl)methanol (22) ..... 26
B. 11 (2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-(trifluoromethyl)benzyl)tetrahydro ..... 27
furan-3- yl)methanol (23) ..... 27
B. 12 ((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-fluorobenzyl)tetrahydrofuran-3-yl) ..... 28
methanol (24) ..... 28
B. 13 ((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-methylbenzyl)tetrahydrofuran-3-yl) ..... 29
methanol (25) ..... 29
B. 14 ((2S,3R,4R)-4-(4-(tert-Butyl)benzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran- ..... 30
3-yl) methanol (26) ..... 30
B. 15 Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-methoxybenzyl)tetrahydrofuran-3 ..... 31
-yl)methyl 2-methylbut-2-enoate (27) ..... 31
B. $16(Z)-((2 S, 3 R, 4 R)$-2-(3,4-Dimethoxyphenyl)-4-(3-methoxybenzyl)tetrahydrofuran-3 ..... 32
-yl)methyl 2-methylbut-2-enoate (28) ..... 32
B. 17 ( $Z$ )-((2S,3R,4R)-4-(3,4-Dimethoxybenzyl)-2-(3,4- dimethoxyphenyl) tetrahy-drofuran -3- yl)methyl 2-methylbut-2-enoate (leoligin, 29) ..... 33
B. 18 (Z)-((2S,3R,4R)-4-Benzyl-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3-yl)methyl 2-methylbut- 2-enoate (30) ..... 34
B.19(Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-(trifluoromethyl)benzyl) ..... 35
tetrahydrofuran-3-yl)methyl 2-methylbut-2-enoate (31) ..... 35
B. 20 (Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-fluorobenzyl)tetrahydrofuran-3 ..... 36
-yl)methyl 2-methylbut-2-enoate (32) ..... 36
B. 21 (Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-methylbenzyl)tetrahydrofuran-3- ..... 37
yl)methyl 2- methylbut-2-enoate (33) ..... 37
B. 22 (Z)-((2S,3R,4R)-4-(4-(tert-Butyl)benzyl)-2-(3,4-dimethoxyphenyl)tetrahydro ..... 38
furan-3-yl)methyl 2-methylbut-2-enoate (34) ..... 38
References ..... 40


## General Notes

## Chemicals

Unless noted otherwise, reactants and reagents were purchased from commercial sources and used without further purification.

Dry toluene, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}$, THF and MeOH were obtained from a dispensing system by passing commercial material through a cartridge containing activated alumina (PURESOLV, Innovative Technology), stored under dry nitrogen and then used as such without further drying unless specified.

Dry EtOH and DMF were purchased from a commercial source and used without further drying.

DMSO was dried by treating commercial material with $\mathrm{CaH}_{2}$ mesh at $150^{\circ} \mathrm{C}$ under argon, followed by distillation under reduced pressure.[1]

Deoxygenated and dry THF was obtained by refluxing and distilling pre-dried material (as described above) from sodium and benzophenone under argon.[2]

Zinc dust was activated by treating commercially available zinc dust with aqueous HCl (2 M ), followed by thorough washing with water, subsequently with MeOH and dry $\mathrm{Et}_{2} \mathrm{O}$. After drying in vacuo at $60^{\circ} \mathrm{C}$ the material was stored under argon.[3]

Molecular sieves were activated by heating them to $200^{\circ} \mathrm{C}$ for approximately 6 h in high vacuum and were then stored under argon.[4]

Melting ranges were determined using a Kofler-type Leica Galen III micro hot stage microscope or an SRS OptiMelt Automated Melting Point System and are uncorrected. Temperatures are reported in intervals of $0.5^{\circ} \mathrm{C}$.

Aluminum-backed Merck silica gel 60 with fluorescence indicator $\mathrm{F}_{254}$ was used for Thin Layer Chromatography (TLC). Spots were visualized under UV light ( 254 nm ) and by staining with cerium ammonium molybdate (CAM) solution ( 20 g of ammonium pentamolybdate, 0.8 g of cerium(IV) ammonium sulfate, 400 mL of $10 \mathrm{v} / \mathrm{v} \%$ sulfuric acid) as a general purpose reagent. Alcohols were also visualized with $p$-anisaldehyde solution (3.5 $\mathrm{g} p$-anisaldehyde, 1.5 mL acetic acid, 5 mL sulfuric acid, 120 mL ethanol), and compounds pertaining double bonds were visualized with potassium permangante solution ( 1.5 g potassium permanganate, 10 g potassium carbonate, $1 \mathrm{~mL} 10 \mathrm{w} / \mathrm{w} \% \mathrm{NaOH}, 200 \mathrm{~mL}$ water).

Specific rotation was measured using an Anton Parr MCP500 polarimeter and HPLC grade solvents under conditions as specified individually. Values are reported in the form + or specific rotation (concentration in terms of g / 100 mL , solvent).

## Analytical Chromatography-Spectroscopy

Gas Chromatography-Mass Spectroscopy (GC-MS) was used to analyze samples of reaction products with sufficient volatility. The following instruments and columns were used:

Instrument: Thermo Scientific Finnigan Focus GC / Quadrupole DSQ II device using a helium flow of $2.0 \mathrm{~mL} / \mathrm{min}$, analyzing an $\mathrm{m} / \mathrm{z}$ range from 50 to 650 .

Column: BGB 5 ( $0.25 \mu \mathrm{~m}$ film; 30 mx 0.25 mm ID)
Temperature gradients are as follows:
Method A: $100^{\circ} \mathrm{C}(2 \mathrm{~min})$, to $280^{\circ} \mathrm{C}$ in $10 \mathrm{~min}, 11 \mathrm{~min}$ hold-time at $280^{\circ} \mathrm{C}(23 \mathrm{~min})$
Method B: $80^{\circ} \mathrm{C}(2 \mathrm{~min})$, to $280^{\circ} \mathrm{C}$ in $10 \mathrm{~min}\left(20^{\circ} \mathrm{C} / \mathrm{min}\right), 12 \mathrm{~min}$ hold-time at $280^{\circ} \mathrm{C}$ (24 min)

Method C: $100{ }^{\circ} \mathrm{C}(2 \mathrm{~min})$, to $280{ }^{\circ} \mathrm{C}$ in $4.5 \mathrm{~min}\left(40^{\circ} \mathrm{C} / \mathrm{min}\right), 16.5 \mathrm{~min}$ hold-time at $280^{\circ} \mathrm{C}$ (23 min)

Method D: $100^{\circ} \mathrm{C}(2 \mathrm{~min})$, to $280^{\circ} \mathrm{C}$ in $4.5 \mathrm{~min}\left(40^{\circ} \mathrm{C} / \mathrm{min}\right), 31.5 \mathrm{~min}$ hold-time at $280^{\circ} \mathrm{C}$ (38 min)

Method E: $100^{\circ} \mathrm{C}(2 \mathrm{~min})$, to $280^{\circ} \mathrm{C}$ in $4.5 \mathrm{~min}\left(40^{\circ} \mathrm{C} / \mathrm{min}\right), 41.5 \mathrm{~min}$ hold-time at $280^{\circ} \mathrm{C}$ (48 min)

Data is reported in the form retention time; $m / z_{1}$ (relative intensity in $\%$ ), $m / z_{2}$ (relative intensity in $\%$ ), ... Only signals with $m / z \geq 90$ and relative intensity $\geq 15 \%$ are given, except for the signal at $100 \%$ relative intensity which is always given. Also, the molecular ion signal $\mathrm{M}^{+}$is given regardless of its intensity or $m / z$; in cases where $\mathrm{M}^{+}$was not visible due to excessive fragmentation, a characteristic fragment signal is identified instead.

High Pressure Liquid Chromatography (HPLC) was used to determine enantiomeric excess of reaction products, using a Dionex UltiMate 3000 device (RS Diode Array Detector). Chiral separation columns and analysis conditions are specified individually. In all cases, retention times include appropriate guard cartridges containing the same stationary phase as the separation column.

Liquid Chromatography-High Resolution Mass Spectroscopy (LC-HRMS) was used to confirm exact molecular mass of reaction products by their quasi-molecular ions $\left(\mathrm{M}+\mathrm{H}^{+}\right.$or $\mathrm{M}+\mathrm{Na}^{+}$). The following two instruments were used:

Instrument 1: Shimadzu Prominence HPLC device (DGU-20 A3 degassing unit, $2 \times$ LC20AD binary gradient pump, SIL-20 A auto injector, CTO-20AC column oven, CBM-20A control module, and SPD-M20A diode array detector). Samples were eluted through a Phenomenex Kinetex precolumn ( $5 \mu \mathrm{~m}$ core shell ODS(3) phase; $4 \mathrm{~mm} \times 2 \mathrm{~mm}$ ID) at $40^{\circ} \mathrm{C}$ under conditions comprising gradients of $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$ containing formic acid ( $0.1 \mathrm{v} / \mathrm{v} \%$ ), and then detected using a Shimadzu IT-TOF-MS by Electrospray Ionization (ESI) or Atmospheric Pressure Chemical Ionization (APCI), as indicated individually. Analyses were performed by E. Rosenberg (CTA, VUT) and L. Czollner (IAS, VUT).

Instrument 2: Agilent 1100/1200 HPLC device (degassing unit, 1200SL binary gradient pump, column thermostat, and CTC Analytics HTC PAL autosampler). Samples were eluted through a silica-based Phenomenex C-18 Security guard cartridge ( $1.7 \mu \mathrm{~m}$ PD; 2.1 mm ID) at $40^{\circ} \mathrm{C}$ under isocratic conditions comprising $\mathrm{H}_{2} \mathrm{O}$ containing formic acid ( $0.1 \mathrm{v} / \mathrm{v} \%$ ) / MeOH containing formic acid ( $0.1 \mathrm{v} / \mathrm{v} \%$ ) in a ratio of 30 : 70 at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$, and then detected using an Agilent 6230 LC-TOF-MS equipped with an Agilent Dual AJS ESI source by Electrospray Ionization (ESI). Analyses were performed by L. Czollner (IAS, VUT).

## Preparative chromatography

Flash column chromatography was carried out on Merck silica gel $60(40-63 \mu \mathrm{~m})$, and separations were performed using a Büchi Sepacore system (dual Pump Module C-605, Pump Manager C-615, Fraction Collector C-660, and UV Monitor C-630 or UV Photometer C635).

Preparative High Peformance Liquid Chromatography (preparative HPLC) was carried out on a Phenomenex Luna reversed-phase column ( $10 \mu \mathrm{~m}$ C18(2) phase, $100 \mathrm{~A} ; 250 \mathrm{~mm}$ x 21.20 mm ID), and separations were performed using a Shimadzu LC-8A device (SIL-10AP autosampler, SPD-20 detector, and FRC-10A fraction collector).

Reaction temperatures were measured externally (electronic thermometer connected to heater-stirrer or low temperature thermometer in case of cryogenic reactions) unless otherwise noted.
 Accuracy Extender.

Nuclear Magnetic Resonance (NMR) spectroscopy
NMR spectra were recorded from $\mathrm{CDCl}_{3}$ or DMSO- $\mathrm{d}_{6}$ solutions on a Bruker AC 200 (200 MHz proton resonance frequency) or a Bruker Advanced UltraShield ( 400 MHz ) spectrometer (as indicated individually), and chemical shifts are reported in ascending order in ppm relative to the nominal residual solvent signals, i.e. ${ }^{1} \mathrm{H}: \delta=2.50 \mathrm{ppm}$ (DMSO-d ${ }_{6}$ ); ${ }^{13} \mathrm{C}: \delta=77.16 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right), \delta=39.52 \mathrm{ppm}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right)$. $[5,6]$ For all ${ }^{1} \mathrm{H}$ spectra in $\mathrm{CDCl}_{3}$, however, shifts are reported relative to TMS as internal standard ( $\delta=0 \mathrm{ppm}$ ) due to the interference of aromatic signals of many samples with the residual solvent signal of $\mathrm{CDCl}_{3}$. For ${ }^{13} \mathrm{C}$ spectra, $J$-modulated (APT) or DEPT-135 pulse sequences were used to aid in the assignment.

Table 1. Results of reaction condition optimization of the Sharpless epoxidation.


| Entry <br> $\#$ | Temperature <br> $\left[{ }^{\circ} \mathrm{C}\right]$ | Time [h] | Catalyst <br> $[\mathrm{mol} \%]$ | Batch size [g] | Yield [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | | $[8$ | 45 | 0.1 | 18 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | 22 | 45 | 0.05 | 66 |
| 2 | -20 | 7 | 45 | 0.05 | 82 |
| 4 | -20 | 22 | 45 | 0.05 | 80 |
| 5 | -20 | 30 | 45 | 0.05 | 80 |


| 6 | -20 | 22 | 15 | 0.05 | 26 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | -20 | 22 | 45 | 0.05 | 54 |
| 8 | -20 | 22 | 90 | 0.05 | 53 |
| 9 | -20 | 22 | 45 | 0.1 | 22 |
| 10 | -20 | 22 | 45 | 1 | 67 |
| 11 | -20 | 22 | 45 | 2 | 75 |
| 12 | -20 | 22 | 45 | 5 | 81 |

## General Procedure A (GPA)



All compounds 35-40 in this section were prepared according to the General Outline above. Thus, for the preparation of any particular compounds, the experimental details are given in full in the analogous procedure below.
Generally, reaction progress was monitored by TLC or GC-MS, and the reaction was terminated when complete. Details for work-up and purification are given for each case individually to afford compounds of structure 35-40.

## General Procedure B (GPB)



In this section, crude material TBDMS-18 from the previous silyl protection [7] was used. Molar amounts of TBDMS-18 are thus based on complete-conversion calculations in the protection step. However, masses of TBDMS-18 correspond to the actual gross weight of staring material as used. Yields are calculated over all four steps (protection, hydroboration, coupling and deprotection.)
All compounds 19-26 in this section were prepared according to the General Procedure A above and are arranged such that compounds with the same $\mathrm{R}^{1}$ are grouped together. However, certain variations exist with respect to the experimental details, and a single general procedure is therefore not readily stated in more detail. Thus, for the preparation of any particular compound, the experimental details are either given in full, or the reader is referred
to an analogous procedure already described for a compound in this section. Generally, reaction progress was monitored by TLC and the reaction was terminated when compete or when no further conversion was observed. Details for wok-up and purification are given for each case individually to afford compounds of structure 33-39.

## A. Synthesis of Intermediate Compounds

## A. 1 (土)-1-(3,4,5-Trimethoxyphenyl)prop-2-en-1-ol (rac 7)



3,4,5-trimethoxybenzaldehyde
Chemical Formula: $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}$
Molecular Weight: 196,20

dry THF, argon, $-60^{\circ} \mathrm{C}$

rac 7
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ Molecular Weight: 224,25

A round bottomed flask was charged with 3,4,5-trimethoxybenzaldehyde ( $25 \mathrm{~g}, 127.4 \mathrm{mmol}$, 1 equiv.) under argon atmosphere. Dry THF ( $175 \mathrm{~mL}, 0.73 \mathrm{M}$ ) was added and the solution was cooled to $-60^{\circ} \mathrm{C}$. Vinylmagnesium bromide ( $146.5 \mathrm{~mL}, 146.5 \mathrm{mmol}, 1.15$ equiv.) was added drop wise via a dropping funnel over 2 h while the temperature was kept nearly constant $\left( \pm 5^{\circ} \mathrm{C}\right)$. Reaction progress was monitored by TLC. When the reaction was finished, the mixture was then allowed to warm to $-10^{\circ} \mathrm{C}$. Satd. aqu. $\mathrm{NH}_{4} \mathrm{Cl}$ solution ( 30 mL ) was added drop wise over 15 min and the temperature was maintained below $+10^{\circ} \mathrm{C}$. Subsequently water ( 130 mL ) was added to dissolve the magnesium salts and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(1 \times 150 \mathrm{~mL}, 2 \times 75 \mathrm{~mL})$. The combined organic layers were washed with satd. aqu. $\mathrm{NaHCO}_{3}$ solution ( 45 mL ) and brine ( 30 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through a plug of silica ( 5 g , preconditioned with $\mathrm{Et}_{2} \mathrm{O}$ ). The solvent was removed in vacuo and the product was dried in vacuo without further purification. The purity of the product was determined by H-NMR (> $95 \%$ ).
${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 1.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xOCH}_{3}\right)$, 5.13 (d, J=5.87 Hz, 1H, H2), 5.16-5.43 (m, 2H, H4), 5.93-6.13 (m, 1H, H3), $6.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H} 2^{\prime}\right.$ \& H6')
A. 2 Enantiomeric separation of (R)- and (S)-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-ol (7\&8)[8]

rac 7
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
Molecular Weight: 224,25

Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$ Molecular Weight: 224,25

8
Chemical Formula: $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ Molecular Weight: 266,29

Rac 7 ( $28.3 \mathrm{~g}, 126.2 \mathrm{mmol}, 1$ equiv.) was dissolved in MTBE ( $690 \mathrm{~mL}, 0.18 \mathrm{M}$ ) and vinyl acetate ( $40.5 \mathrm{~mL}, 504.8 \mathrm{mmol}, 4$ equiv.). The solution was kept at $40.5{ }^{\circ} \mathrm{C}$ and Amano lipase PS on diatomite ( $3.68 \mathrm{~g}, 13 \mathrm{w} / \mathrm{w} \%$ ) was added. Reaction progress was monitored by chiral HPLC. After 76 h at this temperature the enantiomeric separation was complete, and the mixture was filtered through Celite 545. The solvent was removed in vacuo and the compounds were separated by column chromatography (MPLC, $2 \times 90 \mathrm{~g}$ silica in sequence, $50 \mathrm{~mL} / \mathrm{min}$ flow rate, $12 \%$ EtOAc for 50 min , then $12-100 \%$ in 60 min ).
(S)-1-(3,4,5-Trimethoxyphenyl)prop-2-en-1-ol (7):

Yield: 11.17 g ( 39 \%, >99.9 \% ee)
Appearance: slightly yellow oil
TLC: $\operatorname{Rf}(\mathrm{PE} / \mathrm{EtOAc}=0 / 1)=0.28$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=+8.74(\mathrm{MeOH} ;$ c 1.000)
GC-MS (EI, 70 eV, Method A): 224 ( ${ }^{+}$, 81), 193 (38), 181 (25), 169 (100), 154 (24), 151 (24), 149 (25), 139 (19), 138 (52), 123 (18), 121 (31)
${ }^{1} \mathbf{H}-N M R(200 ~ M H z, ~ C D C l 3): ~ \delta 1.95(b s, 1 H, O H), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.86(\mathrm{~s}, 6 \mathrm{H}$, $\left.2 \mathrm{xOCH}_{3}\right), 5.13(\mathrm{~d}, \mathrm{~J}=5.87 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H}-\mathrm{OH}), 5.16-5.43\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.93-6.13(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}\right), 6.59(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C} \underline{\mathrm{H}}-\mathrm{C}-\mathrm{CH})$
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 56.01\left(\mathrm{q} 3^{\prime} \mathrm{OCH}_{3} \& 5^{\prime} \mathrm{OCH}_{3}\right), 60.76\left(\mathrm{q}, 4^{\prime} \mathrm{OCH}_{3}\right), 75.34(\mathrm{~d}$, $\underline{\mathrm{C}} \mathrm{H}-\mathrm{OH}$ ), 103.08 (d, $\underline{\mathrm{C}}-\mathrm{C}-\underline{\mathrm{C}} \mathrm{H}$ ), $115.19\left(\mathrm{t}, \mathrm{CH}=\underline{\mathrm{CH}}_{2}\right.$ ), $138.31\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 139.97\left(\mathrm{~d}, \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right)$, 153.24 (s, $m$-Caryl). One $\mathrm{C}_{\mathrm{q}}$ not visible.

## (R)-1-(3,4,5-Trimethoxyphenyl)allyl acetate (8):

Yield: 15.17 g ( $45 \%, 86$ \% ee)
Appearance: nearly colorless oil
TLC: $\operatorname{Rf}(\operatorname{PE} / E t O A c=1 / 2)=0.27$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=+45.308(\mathrm{MeOH} ;$ с 1.2531)
GC-MS (EI, 70 eV, Method A): 266 (M ${ }^{+}$, 36), 224 (73), 207 (30), 206 (27), 191 (69), 177 (27), 176 (100), 163 (23), 161 (41), 149 (31), 148 (23), 133 (24), 121 (19), 106 (27), 105 (21), 103 (19)
${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85(\mathrm{~s}, 6 \mathrm{H}$, $2 \mathrm{xOCH}_{3}$ ), $5.19-5.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 5.88-6.07\left(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right), 6.18(\mathrm{~d}, \mathrm{~J}=5.67 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{OCH}), 6.56(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{C}-\mathrm{CH})$
${ }^{13} \mathbf{C - N M R}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.3\left(\mathrm{q}, \mathrm{COCH}_{3}\right), 56.1\left(\mathrm{q}, 2 \mathrm{xOCH}_{3}\right), 60.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 76.1$ (d, OCH), 104.3 (d, $\underline{C H}-\mathrm{C}-\underline{\mathrm{C}} H), 116.8\left(\mathrm{t}, \mathrm{CH}=\underline{\mathrm{C}} \mathrm{H}_{2}\right.$ ), 134.4 ( $\left.\mathrm{s}, p-\mathrm{C}_{\text {ary }}\right)$, $136.0\left(\mathrm{~d}, \underline{\mathrm{CH}}=\mathrm{CH}_{2}\right.$ ), 137.8 (s, CH-C(CH)-CH), 153.3 ( $\mathrm{s}, m$ - $\mathrm{C}_{\text {ary }}$ ), 169.9 ( $\mathrm{s}, \mathrm{C}=\mathrm{O}$ ).

## A. 3 (1R)-Oxiran-2-yl(3,4,5-trimethoxyphenyl)methanol (9)



Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$
Molecular Weight: 224,25
Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$ Molecular Weight: 240,25

Dry DCM ( 150 mL ), (-)-DET ( $2.789 \mathrm{~g}, 12.536 \mathrm{mmol}, 0.6$ equiv.) and $7(5.085 \mathrm{~g}$, $22.676 \mathrm{mmol}, 1$ equiv.) were (additionally) dried over activated MS overnight under argon atmosphere. (-)-DET was dissolved in dried DCM ( 1 mL ) and cooled to $-20^{\circ} \mathrm{C}$ via a cryostat. $\mathrm{Ti}(\mathrm{OiPr}) 4$ ( $3.00 \mathrm{~mL}, 10.145 \mathrm{mmol}, 0.45$ equiv.) in dry $\mathrm{DCM}(70 \mathrm{~mL}, 0.14 \mathrm{M})$ was added and the reaction mixture was stirred for 15 min . Then TBHP ( 5.5 M in decane, 10.31 mL , $56.689 \mathrm{mmol}, 2.5$ equiv.) was added slowly. After 30 min the solution of 7 was added and the resulting mixture was stirred for 70 h at $-20^{\circ} \mathrm{C}$. Reaction progress was monitored by TLC. When the reaction was finished, a solution of sodium sulfite ( 20 g in 100 mL water) was added as well as 1000 mL DCM and 500 mL water. The aqueous layer was extracted with DCM ( $4 \times 500 \mathrm{~mL}$ ) and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed in vacuo and the compound was purified via column chromatography (MPLC, product rotated on BULK Isolute Sorbent, 90 g silica, $50 \mathrm{~mL} / \mathrm{min}$ flow rate, $8 \%$ EtOAc for 15 min , then $8-50 \%$ EtOAc in 25 min , then $50-100 \% \mathrm{EtOAc}$ in 10 min , then $100 \%$ for 10 min ).

Yield: 4.431 g ( $81 \%$ )
Appearance: orange oil
TLC: $\operatorname{Rf}(\mathrm{PE} / \mathrm{EtOAc}=0 / 1)=0.08$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-13.748(\mathrm{MeOH} ; \mathrm{c} 1.3092)$
${ }^{1} \mathbf{H}-N M R(200 ~ M H z, ~ C D C l 3): ~ \delta ~ 2.36(d, ~ J=2.16 ~ H z, ~ 1 H, ~ O H), ~ 2.77 ~(d d, ~ J=4.89 ~ \& ~ 4.10 ~ H z, ~$ $1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$ ), $2.93\left(\mathrm{dd}, \mathrm{J}=5.09 \& 2.74 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right.$ ), $3.16-3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CH}-\mathrm{O}\right), 3.82(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), $3.85\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xOCH}_{3}\right), 4.77-4.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\underline{\mathrm{CH}}-\mathrm{O}), 6.60(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{C}-\mathrm{CH})$
${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 43.7$ (t, $\mathrm{CH}_{2}$ ), $55.0\left(\mathrm{~d}, \underline{\mathrm{CH}}-\mathrm{O}_{\left.-\mathrm{CH}_{2}\right), 56.1\left(\mathrm{q}, 2 \mathrm{xOCH}_{3}\right), 60.8}\right.$ (q, $\mathrm{OCH}_{3}$ ), $71.1(\mathrm{~d}, \underline{\mathrm{CH}}-\mathrm{OH}), 103.2(\mathrm{~d}, \underline{\mathrm{CH}}-\mathrm{C}-\underline{\mathrm{CH}}), 135.2\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 153.4$ (s, 2C, $\left.m-\mathrm{C}_{\text {ary }}\right)$. One $\mathrm{C}_{\mathrm{q}}$ not visible.

## A. 4 2-((R)-(Prop-2-yn-1-yloxy)(3,4,5-trimethoxyphenyl)methyl)oxiran (10)



Chemical Formula: $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{5}$
Molecular Weight: 240,25
$+$



Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$
Molecular Weight: 278,30
NaH (60 \% dispersion in mineral oil, 2.2 equiv.) was dissolved in dry THF ( 1 M with respect to NaH ) under argon atmosphere and cooled with an ice bath. Dry DMSO ( 10 equiv.) was added. To this suspension substrate $9(4.431 \mathrm{~g}, 18.443 \mathrm{mmol})$ added slowly as a solution in dry THF ( 0.4 M with respect to 9 ). After stirring for 15 min a solution of 3-bromopropyne in THF was added slowly, usually followed by additional THF to dissolve the formed slurry. The ice bath was then removed, and the reaction mixture was stirred for 48 h . Progress of the reaction was monitored by TLC until complete conversion was indicated. The solution was cooled to $0^{\circ} \mathrm{C}$ again and $\mathrm{HCl}(1 \mathrm{M}, 1$ equiv.) was added drop wise. Most of the THF was then removed in vacuo and water was added. The aqueous layer was extracted with $4 \mathrm{xEt}_{2} \mathrm{O}$, the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed. The crude product was purified via column chromatography (MPLC, 90 g silica, $50 \mathrm{~mL} / \mathrm{min}$ flow rate, $3 \%$ EtOAc for 10 min , then 3-30 \% EtOAc in 20 min , then 30100 \% EtOAc in 20 min , then $100 \% \mathrm{EtOAc}$ for 10 min ).

Yield: 4.211 g , ( 82 \%)
Appearance: slightly yellow oil
TLC: $\operatorname{Rf}(\mathrm{PE} / \mathrm{EtOAc}=4 / 1)=0.19$
$[\alpha]_{D}^{20}=-118.8(\mathrm{MeOH} ; \mathrm{c} 1.0163)$
GC-MS (EI, 70 eV, Method A): 9.97 min ; Main fragments (relative intensity): 278 ( $\mathrm{M}^{+}$, 57), 248 (56), 235 (93), 209 (96), 196 (70), 195 (44), 193 (17), 192 (16), 181 (65), 179 (22), 178 (100), 176 (33), 168 (16), 166 (21), 163 (31), 161 (17), 156 (32), 151 (27), 135 (18), 121 (17)
 $2.54,1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}$ ), $2.84\left(\mathrm{dd}, \mathrm{J}=5.19 \& 3.91,1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}_{2}-\mathrm{O}\right), 3.12-3.20(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{CH}}-$ $\mathrm{CH}_{2}-\mathrm{O}$ ), 3.85 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$ ), 3.88 ( $\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{xOCH}_{3}$ ), 4.01 (dd, J=15.66 \& $2.35 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-$ $\mathrm{CH}_{2}-\mathrm{O}$ ), 4.24 (dd, $\mathrm{J}=15.66 \& 2.34 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\underline{C H}_{2}-\mathrm{O}$ ), $4.43(\mathrm{~d}, \mathrm{~J}=4.70 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{CH}-\mathrm{O})$, 6.60 ( $\mathrm{s}, 2 \mathrm{H}, \underline{\mathrm{CH}}-\mathrm{C}-\mathrm{CH}$ ).
 O), $56.1\left(\mathrm{q}, 2 \mathrm{xOCH}_{3}\right), 60.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 74.9(\mathrm{~d}, \mathrm{C} \equiv \underline{\mathrm{CH}}), 79.2(\mathrm{~s}, \underline{\mathrm{C}} \equiv \mathrm{CH}), 79.7(\mathrm{~d}, \mathrm{CH}-\underline{\mathrm{CH}}-$


## A. 5 ((2S,3R)-4-Methylene-2-(3,4,5-trimethoxyphenyl)tetrahydrofuran-3-yl)methanol (11)



A flask was charged with act. $\mathrm{Zn}(2.306 \mathrm{~g}, 35.264 \mathrm{mmol}, 7$ equiv. $)$ and $\mathrm{Cp}_{2} \mathrm{TiCl}_{2}(3.135 \mathrm{~g}$, $12.594 \mathrm{mmol}, 2.5$ equiv.) under argon; deoxygenated THF ( 60 mL , distilled from $\mathrm{Na} / \mathrm{benzophenone}$ ) was added. After 1 h of stirring at rt , the Zn was allowed to settle for 5 min and the solution (without the Zn ) was transferred to a solution of $\mathbf{1 0}(1.402 \mathrm{~g}$, $5.038 \mathrm{mmol}, 1$ equiv.) in deoxygenated THF ( 40 mL ) over a period of 25 min . Stirring was continued for 70 min at rt and reaction progress was monitored by TLC. When the reaction was completed, diluted sulfuric acid ( $10 \%$ in water, 30 mL ) was added and the major amount of THF was evaporated. Water was added to the crude product and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 200 \mathrm{~mL})$. The combined organic layers were washed with satd. $\mathrm{NaHCO}_{3}$ solution, brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified via column chromatography (MPLC, 90 g silica, $50 \mathrm{~mL} / \mathrm{min}$ flow rate, $10-50 \%$ EtOAc for 20 min , then $50-100 \%$ in 15 min , then $100 \%$ for 15 min ).

Yield: 1.412 g, (61 \%)
Appearance: yellow oil
TLC: $\operatorname{Rf}(\mathrm{PE} / \mathrm{EtOAc}=2 / 1)=0.07$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}=+6.2(\mathrm{MeOH} ; \mathrm{c} 1.0791)$
HRMS (ESI ${ }^{+}$): exact mass calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{5}$ : 303.1203. Found: 303.1203. $[\mathrm{M}+\mathrm{Na}]^{+}$, $\Delta=0.00 \mathrm{ppm}$

GC-MS (EI, 70 eV, Method A): 280 (17), 197 (12), 196 (11), 195 (11), 182 (37), 181 (100), 169 (57), 154 (31), 139 (13), 138 (45), 125 (13), 115 (12), 110 (10)
${ }^{1} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.62(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.69-85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 3), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.85\left(\mathrm{~s}, 8 \mathrm{H}, 2 \mathrm{x} \mathrm{OCH}_{3} \& \mathrm{CH}_{2} \mathrm{O}\right), 4.35-4.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 5), 4.78(\mathrm{~d}, \mathrm{~J}=7.44 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2), 5.02-$ $5.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{\prime}\right.$ \& $\mathrm{H}^{\prime}$ ).
${ }^{13} \mathbf{C}-$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 54.0(\mathrm{~d}, \mathrm{C} 4), 56.0\left(\mathrm{q}, 2 \mathrm{xOCH}_{3}\right), 60.7\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 61.9(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{O}$ ), 71.4 (d, C3), 83.4 (d, C2), 103.5 (d, C2' \& C6'), $105.0\left(\mathrm{t}, \mathrm{CH}_{2}\right), 136.8\left(\mathrm{~s}, \mathrm{C}_{\mathrm{q}}\right), 148.5$ (d, C3), 153.5 ( $\mathrm{s}, \mathrm{C} 3^{\prime} \& \mathrm{C}^{\prime}$ '). One $\mathrm{C}_{\mathrm{q}}$ not visible

## A. 6 tert-Butyldimethyl(((2S,3R)-4-methylene-2-(3,4,5-trimethoxyphenyl)tetrahydrofu-ran-3-yl)methoxy)silane (12)



Substrate 11 ( $1.014 \mathrm{~g}, 3.617 \mathrm{mmol}, 1$ equiv.), imidazole ( $0.518 \mathrm{~g}, 7.596 \mathrm{mmol}, 2.1$ equiv.) and 4-DMAP ( $23.1 \mathrm{mg}, 0.181 \mathrm{mmol}, 0.05$ equiv.) were dissolved in DMF ( $21 \mathrm{~mL}, 0.17 \mathrm{M}$ ) under argon. TBDMSCl ( 3 M in THF, $1.45 \mathrm{~mL}, 4.341 \mathrm{mmol}, 1.2 \mathrm{eq}$ ) was added to the solution and the mixture was stirred for 16 h at rt . Reaction progress was monitored by TLC. When the reaction was finished, $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{~mL})$ and satd. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(20 \mathrm{~mL})$ were added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The combined organic layers were washed with satd. $\mathrm{NaHCO}_{3}$ solution ( 10 mL ) and brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was evaporated, and the crude product used without purification in the next step.

## A. 7 tert-Butyl(((2S,3R,4R)-4-(3,4-dimethoxybenzyl)-2-(3,4,5-trimethoxyphenyl) tetrahydrofuran-3-yl)methoxy)dimethylsilane (I)



A flask was charged with $\mathbf{1 2}$ ( $3.617 \mathrm{mmol}, 1$ equiv.) under argon and $9-\mathrm{BBN}(0.5 \mathrm{M}$ in THF, $10.85 \mathrm{~mL}, 5.426 \mathrm{mmol}, 1.5$ equiv.) was added. The resulting mixture was stirred for 22.5 h at $40^{\circ} \mathrm{C}$. On the next day, it was allowed to warm to rt and aqueous NaOH solution $(1 \mathrm{M}$, 10 mL ) was added. Stirring was continued for another 15 min and 4-iodoveratrole ( 1.248 g , 4.792 mmol , 1.3 equiv.) and $\mathrm{PdCl}_{2}(\mathrm{dppf}) . \mathrm{CH}_{2} \mathrm{Cl}_{2}(88.5 \mathrm{mg}, 0.109 \mathrm{mmol}, 0.03$ equiv.) were added. The mixture became biphasic and was stirred for another 24 h at rt , then $\mathrm{Et}_{2} \mathrm{O}$ ( 100 mL ) and brine ( 25 mL ) were added. Reaction progress was monitored by TLC. The layers were separated, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated. The crude product was used without further purification in the next step.

## A. 8 ((2S,3R,4S)-4-(3,4-Dimethoxyphenyl)- 2-(3,4,5-trimethoxyphenyl)tetrahydro-3-yl) methanol (13)



A flask was charged with $\mathbf{I}$ ( $3.617 \mathrm{mmol}, 1$ equiv.) under argon and TBAF ( 1 M in THF, $4.34 \mathrm{~mL}, 4.341 \mathrm{mmol}$ ) was added. The reaction was stirred for 20 h at rt . Reaction progress was monitored by TLC. When the reaction was finished, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine $(25 \mathrm{~mL})$ were added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 30 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \mathrm{x}$ 35 mL ). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was evaporated. The compound was purified via column chromatography (MPLC, 90 g silica, 40 $\mathrm{mL} / \mathrm{min}$ flow rate, 30 EtOAc for 5 min , then 30-100\% EtOAc in 45 min ).

Yield: 0.631 g ( 42 \% over 3 steps)
Appearance: yellow oil
TLC: $\operatorname{Rf}(\mathrm{PE} / \mathrm{EtOAc}=1 / 1)=0.27$
Specific rotation: $[\alpha]_{D}^{20}=+7.1(\mathrm{MeOH}$; c 2.143)
HRMS (ESI ${ }^{+}$): exact mass calculated for $\mathrm{C}_{23} \mathrm{H}_{3} \mathrm{O}_{7}$ : 441.1884. Found: 441.1903. $[\mathrm{M}+\mathrm{Na}]^{+}$, $\Delta=4.31 \mathrm{ppm}$
${ }^{\mathbf{1}} \mathbf{H}$-NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.68(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.32-2.82\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3 \& \mathrm{H} 4 \& \mathrm{CH}_{2}\right)$, $2.92\left(\mathrm{dd}, \mathrm{J}=12.82 \& 4.60 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 15 \mathrm{H}, 4 \mathrm{xOCH}_{3}, \mathrm{CH}_{2} \mathrm{O}\right.$, H5), 4.07 (dd, J=8.41 \& $6.45 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 4.84 (d, J=6.06 Hz, 1H, H2), 6.56 (s, 2H, H2' \& H6'), 6.67-6-83 (m, 3H, H2" \& H5" \& H6").
${ }^{13}$ C-NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 33.1\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.2(\mathrm{~d}, \mathrm{C} 4), 52.4(\mathrm{~d}, \mathrm{C} 3), 55.8\left(\mathrm{q}, 2 \mathrm{xOCH}_{3}\right)$, $56.1\left(\mathrm{q}, 2 \mathrm{xOCH}_{3}\right), 60.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 60.9\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{OH}\right), 73.0(\mathrm{t}, \mathrm{C} 5), 82.9(\mathrm{~d}, \mathrm{C} 2), 102.5\left(\mathrm{~d}, \mathrm{C}^{\prime}\right.$ \& C6'), 111.2 (d, CH), 111.8 (d, CH), 120.4 (d, C6"), 132.9 (s, C1"), 137.05 (s, Cq), 138.7 (s, $\mathrm{C}_{\mathrm{q}}$ ), 147.4 ( $\mathrm{s}, \mathrm{C} 4$ "), 148.9 ( $\mathrm{s}, \mathrm{C} 3$ "), 153.2 ( $\mathrm{s}, \mathrm{C} 3^{\prime} \& \mathrm{C}^{\prime}$ ).

## A. 9 (Z)-((2S,3R,4S)-4-(3,4-Dimethoxyphenyl)- 2-(3,4,5-trimethoxyphenyl)tetrahydro-

## furan -tetrahydrofuran-3-yl)methyl 2-methylbut-2-enoate (1) [9]

Method 1:


The substrate $\mathbf{1 3}$ ( $152.6 \mathrm{mg}, 0.365 \mathrm{mmol}$ ), angelic acid ( 1.5 equiv.) and $\mathrm{PPh}_{3}$ ( 3.5 equiv.) were charged under argon, cooled with an ice bath and dissolved in THF ( 0.13 M ). DEAD (3.5 equiv.) was added slowly and the reaction was stirred for 18.5 h in the dark while being allowed to warm to rt. Reaction progress was monitored by TLC. When the reaction was finished, brine was added, the layers separated, and the aqueous phase was extracted with 3 $\mathrm{x} \mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed via evaporation. The crude product was purified via column chromatography (MPLC, 40 g silica, $50 \mathrm{~mL} / \mathrm{min}$ flow rate, $10-22 \%$ EtOAc in 10 min , then $22 \% \mathrm{EtOAc}$ for 10 min , then $22-65 \%$ EtOAc in 40 min .

Method 2:


Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8}$
Molecular Weight: 500,58
Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{O}_{7}$

Molecular Weight: 418,48
Prepared according to the above procedure. Modification: Instead of using DEAD, ADD was used.

Yield: Method 1: 30.2 mg ( 34 \%), Method 2: 134.2 mg ( $74 \%$ )
Appearance: slightly yellow viscous oil

TLC: $\operatorname{Rf}(\mathrm{PE} / \mathrm{EtOAc}=2 / 1)=0.25$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=+19.7(\mathrm{MeOH} ; \mathrm{c} 1.5415)$. According to literature: $[\alpha]_{D}^{20}=+20.86(\mathrm{MeOH} ; 0.302)$
HRMS (ESI ${ }^{+}$): exact mass calculated for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8}$ : 523.2302. Found: 523.2311. $[\mathrm{M}+\mathrm{Na}]^{+}$, $\Delta=1.72 \mathrm{ppm}$

GC-MS (EI, 70 eV, Method B): 500 (M ${ }^{+}, 12$ ), 249 (24), 203 (13), 196 (11), 195 (61), 190 (11), 189 (15), 181 (23), 178 (11), 177 (14), 152 (15), 151 (100), 107 (14)
${ }^{\mathbf{1}} \mathbf{H}-$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.83-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \alpha-\mathrm{CH}_{3}\right), 1.95-2.04\left(\mathrm{~m}, 3 \mathrm{H}, \beta-\mathrm{CH}_{3}\right)$, 2.47$2.81\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3 \& \mathrm{H} 4 \& \mathrm{CH}_{2}\right), 2.88\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.77(\mathrm{dd}, \mathrm{J}=8.70 \& 6.26 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5)$, $3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xOCH}_{3}\right), 3.85\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{xOCH}_{3}\right), 4.07(\mathrm{dd}, \mathrm{J}=8.70 \& 6.07$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.29\left(\mathrm{dd}, \mathrm{J}=11.35 \& 7.14,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.43\left(\mathrm{dd}, \mathrm{J}=11.35 \& 6.56 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 4.83 (d, J=5.87, 1H, H2), 6.02-6.17 (m, 1H, $\beta-\mathrm{CH}$ ), 6.54 ( $\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{H} 2^{\prime} \& \mathrm{H}^{\prime}\right)$ ), 6.64-6.83 (m, 3H, H2" \& H5" \& H6").
${ }^{13}$ C-NMR ( $50 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 15.8\left(\mathrm{q}, \beta-\mathrm{CH}_{3}\right)$, $20.5\left(\mathrm{q}, \alpha-\mathrm{CH}_{3}\right), 33.12\left(\mathrm{t}, \mathrm{CH}_{2}\right), 42.56(\mathrm{~d}$, $\mathrm{C} 4), 49.2(\mathrm{~d}, \mathrm{C} 3), 55.8\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 55.9\left(\mathrm{q}, \mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{C}^{\prime} \mathrm{OCH}_{3} \& \mathrm{C}^{\prime} \mathrm{OCH}_{3}\right), 60.8(\mathrm{q}$, $\mathrm{C}^{\prime} \mathrm{OCH}_{3}$ ), 62.2 (t, CH2O), 72.8 (t, C5), 83.1 (d, C2), 102.5 (d, C2' \& C6'), 111.3 (d, C2"), 111.8 (d, C5"), 120.4 (d, C6"), 127.2 (s, $\alpha-\mathrm{C}$ ), 132.7 ( $\mathrm{s}, \mathrm{C} 1{ }^{\prime \prime}$ ), 138.2 ( $\mathrm{s}, \mathrm{C}_{\mathrm{q}}$ ), 139.0 (d, $\beta-\mathrm{CH}$ ), 147.5 (s, C4"), 148.9 (s, C3"), 153.3 (s, C3' \& C5'), 167.6 (s, C=O). One C ${ }_{q}$ not visible.

## B. Synthesis of leoligin analogs

## B. 1 (E)-((2S,3R,4R)-4 -(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran -3yl)methyl 2-methylbut-2-enoate (35)



A reaction vessel was charged with a stirring bar, tiglic acid ( $36.0 \mathrm{mg}, 0.360 \mathrm{mmol}, 4.0$ equiv.) and 4-DMAP ( $1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 0.1$ equiv.), and then evacuated and back-filled with argon using standard Schlenk technique. Dry $\mathrm{CH}_{2} \mathrm{CL}_{2}(1.0 \mathrm{~mL})$ was then added via syringe and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. The vessel was briefly opened, $\mathrm{EDCl} . \mathrm{HCl}$ ( $63.8 \mathrm{mg}, 0.33 \mathrm{mmol}, 3.7$ equiv.) added in one go and the mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. Meanwhile, a second vessel was charged with a stirring bar and starting material 12 (35.0 $\mathrm{mg}, 0.090 \mathrm{mmol}, 1.00$ equiv.), evacuated and back-filled with argon ( 3 x ), and DIPEA ( 78 $\mu \mathrm{L}, 0.45 \mathrm{mmol}, 5.0$ equiv.) was added via syringe. After 3 h , the solution containing the activated carboxylic acid was transferred to the second vial via syringe and stirred for 16 h at room temperature. The reaction solution was used directly for flash chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}, \mathrm{EtOAc} / \mathrm{LP}, 10: 90$ to 50:50 in 30 min ).

Yield: 40.3 mg ( 95 \%)
Appearance: colorless oil
TLC: $\operatorname{Rf}(E t O A c / L P=1 / 1)=0.57$
$[\alpha]_{D}^{20}=+17.5(\mathrm{MeOH} ; ~ c ~ 12.48)$.
LC-HRMS (ESI): exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}$: 523.2302. Found: 493.2204. $\Delta=$ 1.42 ppm

GC-MS (EI, 70 eV, Method D): $26.18 \mathrm{~min} ; 470.2$ ( $\mathrm{M}^{+}, 2$ ), 219.1 (30), 189.1 (16), 177.1 (16), 166.1 (15), 165.1 (90), 151.1 (100), 107.1 (16).
 $\mathrm{H} 3, \mathrm{H} 4, \mathrm{C} 4-\mathrm{CH}_{2}$ ), 3.77 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 3.86 (s, $3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}$ ), 3.87 (s, $6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.09\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.26$ (dd, ${ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}$ ), 4.43 (dd, ${ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}$ ), 4.83 (d, ${ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.67-6.88$ (m, 7H, $\left.6 \times \mathrm{Ar}-\mathrm{H}, \mathrm{H} 3^{\prime \prime \prime}\right)$.
${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 12.1$ ( $\mathrm{q}, \mathrm{C} 5$ "'), 14.5 ( $\mathrm{q}, \mathrm{C} 4$ "'), 33.4 (t, C4-C ), 42.8 (d, C4), 49.3 (d, C3), 55.98 (q, $\mathrm{Ar}-\mathrm{OCH}_{3}$ ), 56.01 ( $\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}$ ), 56.03 (q, Ar- $\mathrm{OCH}_{3}$ ), 56.1 (q, Ar$\mathrm{OCH}_{3}$ ), 62.8 (t, C3-C), 72.9 ( $\mathrm{t}, \mathrm{C} 5$ ), 83.3 (d, C2), 109.1 (d, C2'), 111.1 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.3 (d, C6'), 120.6 (d, C6"), 128.4 (s, C2"'), 132.8 (s, C1"), 135.1 (s, C1'), 137.9 (d, C3"'), 147.6 (s, C4"), 148.6 (s, C4'), 149.1 ( $\mathrm{s}, \mathrm{C} 3$ "), 149.2 ( $\left.\mathrm{s}, \mathrm{C} 3^{\prime}\right), 168.0$ (s, C1'").

## B. 2 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3yl) methyl 3-methylbut-2-enoate (36)


3.) work-up and purification 4.) tert-BuOK, dry THF, r. t., argon


36

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{7}$ Molecular Weight: 470.55 gmol-1

Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$ Molecular Weight: 388.45 gmol-1

A reaction vessel was charged with a stirring bar, 3-methylbut-2-enoic acid ( $36.0 \mathrm{mg}, 0.360$ mmol, 4.0 equiv.) and 4-DMAP ( $1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 0.1$ equiv.), and then evacuated and backfilled with argon using standard Schlenk technique ( 1 x ). Dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was then added via syringe and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. The vessel was briefly opened, EDCI.HCl ( $63.8 \mathrm{mg}, 0.333 \mathrm{mmol}, 3.7$ equiv.) added in one go and the mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. Meanwhile, a second vessel was charged with a stirring bar and starting
material 12 ( $35.0 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.00$ equiv.), evacuated and back-filled with argon ( 3 x ), and DIPEA ( $78 \mu \mathrm{~L}, 0.45 \mathrm{mmol}, 5.0$ equiv.) was added via syringe. After 3 h , the solution containing the activated carboxylic acid was transferred to the second vial via syringe and stirred for 16 h at room temperature. The reaction solution was used directly for flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $10: 90$ to $22: 78$ in 9 min , then $22: 78$ isocratically for 6 min , then to $62: 38 \mathrm{in} 30 \mathrm{~min}$ ) to give a mixture of the targeted compound 36, as well as $\beta-\gamma$ double bond isomerization compound 36' (approximate ratio 3 $: 1$, by NMR, 34.4 mg$).{ }^{1}$ Thus, a new reaction vessel was charged with a stirring bar and part of the so obtained material ( $24.7 \mathrm{mg}, 0.052 \mathrm{mmol}$ ), evacuated and back-filled with argon. To this was then added tert-BuOK ( $2.9 \mathrm{mg}, 0.026 \mathrm{mmol}$ ) in dry THF ( 1.0 mL ) via syringe and the solution stirred at room temperature for 18 h . THF ( 1.0 mL ) was added, followed by $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ and a solution of $\mathrm{KHSO}_{4}(0.029 \mathrm{mmol}, 3.9 \mathrm{mg})$ in brine $(2 \mathrm{~mL})$. Water $(1.5 \mathrm{~mL})$ was added to dissolve the salts, the layers were separated, the aqueous phase was re-extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{~mL})$, the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were evaporated. Finally, flash column chromatography ( 9 g silica, flow rate 20 $\mathrm{mL} / \mathrm{min}$, EtOAc / LP, $10: 90$ to $50: 50$ in 30 min ).

Yield: $17.0 \mathrm{mg}, 40 \%$ (with respect to the amount of starting material 21), $56 \%$ (with respect also to the amount of $\alpha-\beta$ and $\beta-\gamma$ mixture applied for de-isomerization), respectively

Appearance: nearly colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.50 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}]^{\mathbf{2 0}}:+29.2(\mathrm{c} 1.63, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 493.2197$, found: 493.2201, $\Delta: 0.81 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 5.38 \pm 0.48$
GC-MS (EI, 70 Ev, Method D): $25.73 \mathrm{~min} ; 470.2$ (M ${ }^{+}$, 2), 219.1 (29), 189.1 (17), 177.1 (16), 166.1 (15), 165.0 (89), 152.1 (15), 151.1 (100), 107.0 (18).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.90\left(\mathrm{~d},{ }^{4} J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4 \mathrm{~b} ' \mathrm{I}\right), 2.17$ ( $\mathrm{d},{ }^{4} J=1.1 \mathrm{~Hz}, 3 \mathrm{H}$, H4a"'), $2.47-2.84$ (m, 3H, H3, H4, C4-CH), 2.89 (dd, ${ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-$ CH), 3.75 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.87(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{~d},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.21\left(\mathrm{dd},{ }^{2} J=11.3\right.$ $\left.\mathrm{Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.37\left(\mathrm{dd},{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.81\left(\mathrm{~d},{ }^{3} J=\right.$ $6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $5.62-5.68$ (m, 1H, H2'"), $6.67-6.91$ (m, 6H, Ar-H).
${ }^{13}$ C NMR ( 50 MHz, CDCl $_{3}$ ): $\delta 20.4$ ( $\left.\mathrm{q}, \mathrm{C} 4 \mathrm{~b} " '\right), 27.6$ ( $\mathrm{q}, \mathrm{C} 4 \mathrm{a} "$ '), 33.3 (t, C4-C), 42.7 (d, C4), 49.3 (d, C3), 55.97 (q, Ar- $\mathrm{OCH}_{3}$ ), 55.99 (q, $\mathrm{Ar}-\mathrm{OCH}_{3}$ ), 56.02 (q, Ar- $\mathrm{OCH}_{3}$ ), 56.1 (q, Ar$\mathrm{OCH}_{3}$ ), 61.8 (t, C3-C), 72.9 (t, C5), 83.1 (d, C2), 109.0 (d, C2'), 111.1 (d, C5'), 111.5 (d, C5"*), 112.1 (d, C2"*), 115.7 (d, C2'"), 118.2 (d, C6'), 120.6 (d, C6"), 132.9 (s, C1"), 135.2
 C1"').

## B. 3 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3-

 yl)methyl benzoate (37)

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{7}$ Molecular Weight: $492.56 \mathrm{gmol}^{-1}$

Preparation: analogous to 36, using starting material 21 ( $35.0 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.00$ equiv.) and benzoic acid ( $44.0 \mathrm{mg}, 0.360 \mathrm{mmol}, 4.0$ equiv.).The reaction solution was used directly for flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $10: 90$ to 22:78 in 9 min , then $22: 78$ isocratically for 6 min , then to $62: 38$ in 30 min ).

Yield: 40.4 mg , ( 91 \%)
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.54 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}]_{\mathbf{D}^{20}}{ }^{\mathbf{2 0}}$ +20.2 (c $\left.2.04, \mathrm{MeOH}\right)$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 515.2040$, found: 515.2050, $\Delta: 1.94 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 5.70 \pm 0.44$
GC-MS (EI, 70 eV, Method D): $46.13 \mathrm{~min} ; 492.2$ ( ${ }^{+}$, 3), 219.1 (24), 207.0 (24), 189.1 (16), 177.1 (15), 165.1 (72), 151.1 (94), 107.1 (18), 106.1 (15), 105.0 (100).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 2.55-3.02\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{C} 4-\mathrm{CH}_{2}\right), 3.76-3.83(\mathrm{~m}, 1 \mathrm{H}$, H5), $3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.13\left(\mathrm{dd},{ }^{2} J=\right.$ $8.6 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), $4.46\left(\mathrm{dd},{ }^{2} J=11.2 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.63\left(\mathrm{dd},{ }^{2} J\right.$ $\left.=11.3 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.91\left(\mathrm{~d},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.66-6.95(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{x}$ Ar'-H, $3 \times \mathrm{Ar}$ "-H), 7.42 (t, ${ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4^{\prime \prime}$ ), $7.50-7.62$ (m, 1H, H5"'), $7.89-7.97$ (m, 2H, H3"').

[^0]
## B. 4 ((2S,3R,4R)-4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3yl)methyl 2-mehylbenzoate (38)



38
Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}$
Molecular Weight:506.59 gmol-1

Preparation: analogous to 36, using starting material 21 ( $29.5 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.0$ equiv.), 2-methylbenzoic acid ( $41.4 \mathrm{mg}, 0.304 \mathrm{mmol}, 4.0$ equiv), EDCI. $\mathrm{HCl}(53.9 \mathrm{mg}, 0.281 \mathrm{mmol}$, 3.7 equiv.), 4-DMAP ( $0.9 \mathrm{mg}, 7.6 \mu \mathrm{~mol}, 0.1$ equiv.) and DIPEA ( $66 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 5.0$ equiv.). The reaction solution was used directly for flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}, \mathrm{EtOAc} / \mathrm{LP}, 7: 93$ to $50: 50$ in 30 min ).

Yield: 28.9 mg , ( $75 \%$ )
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.44 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}] \mathbf{D}^{25}:+19.1$ (c $\left.2.89, \mathrm{MeOH}\right)$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 529.2197$, found: $529.2234, \Delta: 6.99 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 6.16 \pm 0.44$
GC-MS (EI, 70 eV, Method E): $50.43 \mathrm{~min} ; 506.3$ ( ${ }^{+}$, 4), 219.1 (31), 207.0 (35), 189.1 (18), 177.1 (16), 166.1 (15), 165.1 (79), 152.1 (15), 151.1 (100), 119.0 (88), 107.1 (15), 91.1 (58).
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{2 0 0} \mathbf{~ M H z , ~ C D C l} 3$ ): $\delta 2.53$ - 2.90 (m, 3H, H3, H4, C4-CH), 2.60 (s, 3H, H8'"), $2.95\left(\mathrm{dd},{ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.72-3.82$ (m, 1H, H5), 3.83 (s, 3H, Ar$\mathrm{OCH}_{3}$ ), $3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.12\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 5$ ), 4.42 (dd, $\left.{ }^{2} J=11.2 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.60\left(\mathrm{dd},{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=6.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}$ ), 4.90 (d, ${ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.66-6.94$ (m, 6H, Ar-H), $7.15-7.27$ (m, $2 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$, H6"'), 7.41 (td, ${ }^{3} J=7.5 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5{ }^{\prime \prime}$ ), 7.76 (dd, ${ }^{3} J=7.6 \mathrm{~Hz},{ }^{4} J=1.3$ Hz, 1H, H7'").
${ }^{13}$ C NMR ( $50 \mathbf{M H z}$, CDCl $_{3}$ ): $\delta 21.9$ (q, C8'"), 33.4 (t, C4-C), 42.8 (d, C4), 49.4 (d, C3), $55.91\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 55.94\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 55.98\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.02\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 63.1(\mathrm{t}$, C3-C), 72.9 (t, C5), 83.3 (d, C2), 109.1 (d, C2'), 111.1 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.3 (d, C6'), 120.6 (d, C6"), 125.8 (d, C6'"), 129.2 (s, C2'"), 130.6 (d, C4"'), 131.9 (d, C7"'*), 132.3 (d, C5"'*), 132.6 (s, C1"), 135.0 (s, C1'), 140.6 (s, C3"'), 147.6 (s, C4"), 148.6 (s, C4'), 149.1 (s, C3'), 149.2 (s, C3'), 167.3 (s, C1'").

## B. 5 ((2S,3R,4R)-4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3yl)methyl cyclopropanecarboxylate (39)



Preparation: analogous to 36, using starting material 21 ( $35.0 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.00$ equiv.), cyclopropanecarboxylic acid ( $17.8 \mathrm{mg}, 0.207 \mathrm{mmol}, 2.3$ equiv.), EDCI.HCl ( $34.5 \mathrm{mg}, 0.180$ mmol, 2.0 equiv.), 4-DMAP ( $1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 0.1$ equiv.) and DIPEA ( $39 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$, 2.5 equiv.). The reaction solution was used directly for flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}, \mathrm{EtOAc} / \mathrm{LP}, 10: 90$ to $22: 78$ in 9 min , then $22: 78$ isocratically for 6 min , then to $62: 38 \mathrm{in} 30 \mathrm{~min}$ ).

Yield: 37.4 mg , ( 91 \%)
Appearance: colorless oil
$\boldsymbol{R f}$ (silica): 0.54 (EtOAc / LP, $1: 1$ )
$[\alpha] \mathbf{D}^{\mathbf{2 0}}:+17.8$ (c 1.89, MeOH)
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 479.2040$, found: $479.2048, \Delta: 1.67 \mathrm{ppm}$
$\boldsymbol{( l o g} \boldsymbol{P})_{\text {calc: }} 4.05 \pm 0.44$
GC-MS (EI, 70 eV, Method C): $23.81 \mathrm{~min} ; 456.2$ ( ${ }^{+}$, 5), 219.1 (27), 189.1 (16), 165.1 (67), 152.1 (15), 151.0 (100), 107.1 (16).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 0.80-1.02$ (m, 4H, H3'"), 1.50 - 1.64 (m, 1H, H2"'), 2.46 2.94 (m, 4H, H3, H4, C4-CH2), 3.75 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 3.86 (s, 3H, Ar$\mathrm{OCH}_{3}$ ), $3.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.08\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 5$ ), 4.19 (dd, ${ }^{2} J=11.2 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}$ ), 4.37 (dd, ${ }^{2} J=11.2 \mathrm{~Hz},{ }^{3} J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}), 4.81\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.68-6.91$ (m, 6H, Ar-H).
${ }^{13}$ C NMR ( 50 MHz, CDCl $_{3}$ ): $\delta 8.6$ (t, $2 \times \mathrm{C} 3$ '"), 13.0 (d, C2'"), 33.3 (t, C4-C ), 42.6 (d, C4), 49.2 (d, C3), $56.0\left(\mathrm{q}, 4 \times \mathrm{Ar}-\mathrm{OCH}_{3}\right), 62.8$ (t, C3-C), 72.9 (t, C5), 83.1 (d, C2), 109.0 (d, C2'), 111.1 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.2 (d, C6'), 120.5 (d, C6"), 132.7 (s, C1"), 135.1 (s, C1'), 147.6 (s, C4"), 148.6 (s, C4'), 149.0 (s, C3'), 149.1 (s, C3'), 174.8 (s, C1'").

## B. 6 ((2S,3R,4R)- 4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3

 -yl)methyl cyclohexanecarboxylate (40)

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{7}$
Molecular Weight: 498.61 gmol-1

Preparation: analogous to 36, using starting material 21 ( $35.0 \mathrm{mg}, 0.090 \mathrm{mmol}, 1.00$ equiv.), cyclohexanecarboxylic acid ( $26.5 \mathrm{mg}, 0.207 \mathrm{mmol}, 2.3$ equiv.), EDCI. HCl ( $34.5 \mathrm{mg}, 0.180$ $\mathrm{mmol}, 2.0$ equiv.), 4-DMAP ( $1.1 \mathrm{mg}, 9.0 \mu \mathrm{~mol}, 0.1$ equiv.) and DIPEA ( $39 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$, 2.5 equiv.). The reaction solution was used directly for flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}, \mathrm{EtOAc} / \mathrm{LP}, 10: 90$ to $22: 78$ in 9 min , then $22: 78$ isocratically for 6 min , then to $62: 38 \mathrm{in} 30 \mathrm{~min}$ ).

Yield: $33.3 \mathrm{mg},(74 \%)$
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.62 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}:+16.8$ (c 1.62, MeOH)
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 521.2510$, found: $521.2516, \Delta: 1.15 \mathrm{ppm}$
$(\log P)$ calc: $5.75 \pm 0.44$
GC-MS (EI, 70 eV, Method D): $40.73 \mathrm{~min} ; 498.2$ ( ${ }^{+}$, 3), 219.1 (26), 165.1 (53), 151.1 (100).
 2.35 (m, 1H, H2'"), $2.46-2.83$ (m, 3H, H3, H4, C4-CH), 2.86 (dd, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), 3.76 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}$ ), 3.87 (s, 6 H , Ar- $\mathrm{OCH}_{3}$ ), $3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right.$ ), 4.07 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 4.17 (dd, ${ }^{2} J$ $\left.=11.3 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.37\left(\mathrm{dd},{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.80$ (d, ${ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.66-6.91$ (m, 6H, Ar-H).
 C3'"), 33.3 (t, C4-C), 42.7 (d, C4), 43.3 (d, C2"'), 49.3 (d, C3), 56.0 ( $\mathrm{q}, 4 \times \mathrm{x} \mathrm{Ar-OCH} 3$ ), 62.4 (t, C3-C), 72.9 (t, C5), 83.0 (d, C2), 109.0 (d, C2'), 111.1 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.2 (d, C6'), 120.6 (d, C6"), 132.7 (s, C1"), 135.1 (s, C1'), 147.6 (s, C4"), 148.6 (s, C4'), 149.1 ( $\mathrm{s}, \mathrm{C} 3$ "), 149.2 ( $\left.\mathrm{s}, \mathrm{C} 3^{\prime}\right), 176.0$ ( $\mathrm{s}, \mathrm{C} 1{ }^{\prime \prime}$ ').

## B. 7 ((2S,3R,4R)- 2-(3,4-Dimethoxybenzyl)-4-(4-methoxybenzyl)tetrahydrofuran-3-yl) methanol (19)



TBDMS-18
1.) 9-BBN, dry THF, $40^{\circ} \mathrm{C}$, argon
2.) $\mathrm{H}_{2} \mathrm{O}$
3.) 4-bromoanisole ( 1.3 eq ),
$\mathrm{Pd}($ dppf $) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mol} \%)$, $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( 5.0 eq ), dry \& deoxyg. THF, r. t., argon
4.) $\mathrm{MgSO}_{4}(1.0 \mathrm{eq})$
5.) TBAF (1.7 eq), dry THF, r. t., argon


19
Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{5}$ Molecular Wieght: $358.43 \mathrm{gmol}^{-1}$

A reaction vessel was charged with a stirring bar and crude starting material TBDMS-18 $(715.9 \mathrm{mg}, 1.964 \mathrm{mmol}$ ), and then evacuated and back-filled with argon using standard Schlenk technique. A solution of 9-BBN ( 0.5 M in THF, $5.89 \mathrm{~mL}, 2.95 \mathrm{mmol}$ ) was added via syringe, the reaction was stirred for 21 h at $40^{\circ} \mathrm{C}$ and then allowed to cool to room temperature. Water ( $35 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$ ) was subsequently added and stirring was continued for 2 h to decompose excess $9-\mathrm{BBN}$. This mixture was then purged by bubbling argon into the solution through a needle, and dry and deoxygenated THF was added to produce a total volume of 10.0 mL , i.e. a 0.196 M solution of borylated intermediate, thus allowing the use of aliquots for subsequent coupling. An aliquot ( $0.97 \mathrm{~mL}, 0.19 \mathrm{mmol}, 1.0$ equiv.) of this solution was transferred via syringe to a separate vessel which had been charged with a stirring bar, 4-bromoanisole ( $46.2 \mathrm{mg}, 0.247 \mathrm{mmol}, 1.3$ equiv.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{mg}$, $4.8 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(310 \mathrm{mg}, 0.950 \mathrm{mmol}, 5.0$ equiv.) under argon and was stirred for 36 h at room temperature. Following this, $\mathrm{MgSO}_{4}(23 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv.) was added and stirring was continued for 1.5 h to remove residual water. For deprotection, a solution of TBAF ( 1.0 M in THF, $0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}, 1.7$ equiv.) was added via syringe and the mixture was finally stirred for 32 h at room temperature. The heterogeneous reaction content was filtered and rinsed with EtOAc ( 20 mL ) and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $30: 70$ to $80: 20$ in 30 min ) afforded the title compound $\mathbf{1 9}$.

Yield: 41.7 mg , (61 \%)
Appearance light-brown oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.66 (EtOAc)
$[\boldsymbol{\alpha}]^{\mathbf{D}}{ }^{\mathbf{2 5}}: \quad+13.0(\mathrm{c} 4.17, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 381.1678$, found: $381.1689, \Delta: 2.89 \mathrm{ppm}$
$(\boldsymbol{\operatorname { l o g } P} \boldsymbol{P})_{\text {calc: }} 3.36 \pm 0.55$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.69\left(\mathrm{t},{ }^{3} \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right.$ ), 2.39 (quint, ${ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, H3), 2.55 (dd, ${ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $2.63-2.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.90$ (dd, ${ }^{2} J$ $=12.7 \mathrm{~Hz},{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $3.67-3.96\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}, \mathrm{H} 5\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4{ }^{\prime}-\right.$ $\mathrm{OCH}_{3}$ ), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.05\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{H} 5$ ), 4.82 ( $\mathrm{d},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.77-6.93$ ( $\mathrm{m}, 5 \mathrm{H}, 3 \times \mathrm{Ar}$ '-H, H3", H5"), 7.11 (d, ${ }^{3} J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 ", \mathrm{H6} "$ ").
${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 32.8$ (t, C4-C), 42.4 (d, C4), 52.5 (d, C3), 55.3 (q, C4"$\mathrm{OCH}_{3}$ ), $55.97\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.02\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 61.0(\mathrm{t}, \mathrm{C} 3-\underline{\mathrm{C}}), 73.0(\mathrm{t}, \mathrm{C} 5), 82.9(\mathrm{~d}, \mathrm{C} 2)$, 109.0 (d, C2'), 111.0 (d, C5'), 114.1 (d, C3", C5"), 118.1 (d, C6'), 129.6 (d, C2", C6"), 132.5 (s, C1"), 135.6 (s, C1'), 148.4 (s, C4'), 149.1 (s, C3'), 158.1 (s, C4").

## B. 8 ((2S,3R,4R)- 2-(3,4-Dimethoxybenzyl)-4-(3-methoxybenzyl)tetrahydrofuran-3-

yl)methanol (20)


A reaction vessel was charged with a stirring bar and crude starting material TBDMS-18 ( $843.2 \mathrm{mg}, 2.313 \mathrm{mmol}$ ), and then evacuated and back-filled with argon using standard Schlenk technique. A solution of 9-BBN ( 0.5 M in THF, $6.94 \mathrm{~mL}, 3.47 \mathrm{mmol}$ ) was added via syringe, the reaction was stirred for 35 h at $40^{\circ} \mathrm{C}$ and then allowed to cool to room temperature. Water ( $42 \mu \mathrm{~L}, 2.3 \mathrm{mmol}$ ) was subsequently added and stirring was continued for 2 h to decompose excess 9-BBN. This mixture was then purged by bubbling argon into the solution through a needle, and dry and deoxygenated THF was added to produce a total volume of 13.0 mL , i.e. a 0.178 M solution of borylated intermediate, thus allowing the use of aliquots for subsequent coupling.

An aliquot ( $1.07 \mathrm{~mL}, 0.19 \mathrm{mmol}, 1.0$ equiv.) of this solution was transferred via syringe to a separate vessel which had been charged with a stirring bar, 3-iodoanisole ( $57.8 \mathrm{mg}, 0.247$ $\mathrm{mmol}, 1.3$ equiv.), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{mg}, 4.8 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%)$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(310 \mathrm{mg}$, $0.950 \mathrm{mmol}, 5.0$ equiv.) under argon and was stirred for 50 h at room temperature. Following this, $\mathrm{MgSO}_{4}$ ( $23 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv.) was added and stirring was continued for 1.5 h to remove residual water. For deprotection, a solution of TBAF ( 1.0 M in THF, 0.32 mL , $0.32 \mathrm{mmol}, 1.7$ equiv.) was added via syringe and the mixture was finally stirred for 24 h at room temperature. The heterogeneous reaction content was filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $15: 85$ to $85: 15 \mathrm{in} 40 \mathrm{~min}$ ) afforded the title compound $\mathbf{2 0}$.

Yield: $52.6 \mathrm{mg},(77 \%)$
Appearance: pale brown oil
$\boldsymbol{R}_{\mathbf{f}}$ (silica): 0.58 (EtOAc)
$[\boldsymbol{\alpha}]^{\mathbf{D}}{ }^{25}:+19.4(\mathrm{c} 3.69, \mathrm{MeOH})$
LC-HRMS (ESI):calculated for $\mathrm{M}+\mathrm{Na}^{+}: 381.1672$, found: 381.1681, $\Delta: 2.36 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 3.36 \pm 0.55$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.87$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.40 (quint, ${ }^{3} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), 2.58 (dd, ${ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $2.66-2.86(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.94\left(\mathrm{dd},{ }^{2} J=12.7\right.$ $\left.\mathrm{Hz},{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.68-3.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}, \mathrm{H} 5\right), 3.78$ (s, 3H, C3"-OCH 3 ), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.06\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right)$, $4.82\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.70-6.91(\mathrm{~m}, 6 \mathrm{H}, 3 \times \mathrm{Ar}-\mathrm{H}, 3 \times \mathrm{Ar}$ "-H), $7.15-7.25(\mathrm{~m}, 1 \mathrm{H}$, H5").
${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 33.6$ (t, C4-C), 42.1 (d, C4), 52.5 (d, C3), 55.2 (q, C3"$\left.\mathrm{OCH}_{3}\right), 55.9\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 60.8(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 73.0(\mathrm{t}, \mathrm{C} 5), 82.8(\mathrm{~d}, \mathrm{C} 2)$, 108.9 (d, C2'), 111.0 (d, C5'*), 111.4 (d, C4"*), 114.6 (d, C2"), 118.1 (d, C6'), 121.1 (d, C6"), 129.6 (d, C5"), 135.5 ( $\mathrm{s}, \mathrm{C} 1$ '), 142.2 (s, C1"), 148.4 (s, C4'), 149.1 (s, C3'), 159.8 (s, C3").
B. 9 ((2S,3R,4R)- 4--(3,4-Dimethoxyphenyl)-2- (3,4-dimethoxyphenyl)tetrahydrofuran-3-yl)methanol (21)


21
Chemical Formula : $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{6}$
Molecular Weight: $388.45 \mathrm{~g} \mathrm{~mol}^{-1}$

A reaction vessel was charged with a stirring bar and crude starting material TBDMS-18 ( $2.51 \mathrm{~g}, 6.88 \mathrm{mmol}, 1.0$ equiv.), and then evacuated and back-filled with argon using standard Schlenk technique. A solution of $9-\mathrm{BBN}(0.5 \mathrm{M}$ in THF, $20.7 \mathrm{~mL}, 10.3 \mathrm{mmol}, 1.5$ equiv.) was added via syringe, the reaction was stirred for 16.5 h at $40^{\circ} \mathrm{C}$ and then allowed to cool to room temperature. Following this, a degassed aqueous solution of $\mathrm{NaOH}(2 \mathrm{M}, 20 \mathrm{~mL})$ was added cautiously and stirring was continued for another 15 min . 4-Iodoveratrole $(2.36 \mathrm{~g}, 8.95$ mmol, 1.30 equiv.) and $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(161 \mathrm{mg}, 0.198 \mathrm{mmol}, 2.9 \mathrm{~mol} \%)$ were then added, and the resulting biphasic mixture was stirred vigorously at room temperature for $25 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ were then added, the layers were separated, the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$, the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered into a new reaction vessel. From there, the solvent was evaporated, a stirring bar was added to the residue and the vessel was evacuated and back-filled with
argon. For deprotection, a solution of TBAF ( 1.0 M in THF, $8.25 \mathrm{~mL}, 8.25 \mathrm{mmol}, 1.2$ equiv.) was added via syringe and the mixture was finally stirred for 18 h at room temperature. $\mathrm{Et}_{2} \mathrm{O}$ $(200 \mathrm{~mL})$ and brine $(50 \mathrm{~mL})$ was added, the layers were separated and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 50 \mathrm{~mL})$ and $\mathrm{EtOAc}(2 \times 50 \mathrm{~mL})$. The combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents were evaporated. Flash column chromatography of the entire crude material in two sequential runs (first run: 90 g silica with 9 g pre-column, flow rate $40 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $30: 70$ for 3 min , then to $100: 0$ in 60 min ; second run: 90 g silica, flow rate $40 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $45: 55$ to $85: 15 \mathrm{in} 60 \mathrm{~min}$ ) afforded the title compound 21.

Yield: $1.04 \mathrm{~g}, 39$ \% (over 4 steps from unprotected alcohol 18)
Appearance: slightly colored oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.43 (EtOAc)
$[\alpha] \mathbf{D}^{\mathbf{2 0}}:+19.2(\mathrm{c} 1.45, \mathrm{MeOH}) ;$ lit. $^{279}[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 5}}:+19.4$ (c $0.6, \mathrm{CHCl}_{3}$ )
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 411.1778$, found: $411.1783, \Delta: 1.22 \mathrm{ppm}$
$(\boldsymbol{\operatorname { l o g } P} \boldsymbol{P})_{\text {calc }}: 3.18 \pm 0.56$
${ }^{1} \mathbf{H}$ NMR ( $200 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.52$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.42 (quint, ${ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), 2.56 (dd, ${ }^{2} J=12.7 \mathrm{~Hz},{ }^{3} J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $2.66-2.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.94\left(\mathrm{dd},{ }^{2} J=12.8\right.$ $\mathrm{Hz},{ }^{3} J=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $3.73-3.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}\right), 3.76\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=5.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5), 3.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.81\left(\mathrm{~d},{ }^{3} J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.70-6.81(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.81-6.91(\mathrm{~m}, 3 \mathrm{H}$, Ar-H).
${ }^{13}$ C NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 33.4$ (t, C4-C), 42.5 (d, C4), 52.7 (d, C3), 56.1 (q, 4 x Ar$\mathrm{OCH}_{3}$ ), 61.1 (t, C3-C), 73.1 ( $\mathrm{t}, \mathrm{C} 5$ ), 82.9 (d, C2), 109.1 (d, C2'), 111.1 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.2 (d, C6'), 120.6 (d, C6"), 133.1 ( $\mathrm{s}, \mathrm{C} 1$ "), 135.5 ( $\mathrm{s}, \mathrm{C} 1$ '), 147.6 ( s , C4"), 148.5 (s, C4'), 149.1 (s, C3'), 149.2 (s, C3').

## B. 10 ((2S,3R,4R)- 4-4-Benzyl-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3-yl)methanol (22)



A reaction vessel was charged with a stirring bar and crude starting material TBDMS-18 $(715.9 \mathrm{mg}, 1.964 \mathrm{mmol})$, and then evacuated and back-filled with argon using standard Schlenk technique. A solution of $9-\mathrm{BBN}(0.5 \mathrm{M}$ in THF, $5.89 \mathrm{~mL}, 2.95 \mathrm{mmol})$ was added via syringe, the reaction was stirred for 21 h at $40^{\circ} \mathrm{C}$ and then allowed to cool to room temperature. Water ( $35 \mu \mathrm{~L}, 2.0 \mathrm{mmol}$ ) was subsequently added and stirring was continued
for 2 h to decompose excess 9-BBN. This mixture was then purged by bubbling argon into the solution through a needle, and dry and deoxygenated THF was added to produce a total volume of 10.0 mL , i.e. a 0.196 M solution of borylated intermediate, thus allowing the use of aliquots for subsequent coupling. An aliquot ( $0.97 \mathrm{~mL}, 0.19 \mathrm{mmol}, 1.0$ equiv.) of this solution was transferred via syringe to a separate vessel which had been charged with a stirring bar, bromobenzene ( $38.8 \mathrm{mg}, 0.247 \mathrm{mmol}, 1.3$ equiv.) $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(3.9 \mathrm{mg}$, $4.8 \mu \mathrm{~mol}, 2.5 \mathrm{~mol} \%$ ) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(310 \mathrm{mg}, 0.950 \mathrm{mmol}, 5.0$ equiv.) under argon and was stirred for 36 h at room temperature. Following this, $\mathrm{MgSO}_{4}(23 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.0$ equiv.) was added and stirring was continued for 1.5 h to remove residual water. For deprotection, a solution of TBAF ( 1.0 M in THF, $0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}, 1.7$ equiv.) was added via syringe and the mixture was finally stirred for 32 h at room temperature. The heterogeneous reaction content was filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc in LP, $20: 80$ to $70: 30$ in 30 min ) afforded the title compound 22.

Yield: 39.3 mg , (63 \%)
Appearance: light-brown oil
Rf (silica): 0.45 (EtOAc / LP, $2: 1$ )
$[\alpha]{ }^{23}:+18.3(\mathrm{c} 3.80, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 351.1567$, found: $351.1577, \Delta: 2.85 \mathrm{ppm}$
$(\boldsymbol{\operatorname { l o g }} \boldsymbol{P})_{\text {calc: }} 3.44 \pm 0.54$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.70$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.40 (quint, ${ }^{3} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), 2.61 (dd, ${ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $2.67-2.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.96\left(\mathrm{dd},{ }^{2} J=12.6\right.$ $\left.\mathrm{Hz},{ }^{3} \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.69-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}, \mathrm{H} 5\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.87$ (s, $3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}$ ), $4.05\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.83\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right)$, 6.77 - 6.94 (m, 3H, Ar'-H), 7.14 - 7.35 (m, 5H, Ar"-H).
${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 33.7$ (t, C4-C $), 42.2$ (d, C4), 52.5 (d, C3), 55.98 ( $\mathrm{q}, \mathrm{Ar}^{\prime}-$ $\mathrm{OCH}_{3}$ ), $56.02\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 61.0(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 73.0(\mathrm{t}, \mathrm{C} 5), 82.9(\mathrm{~d}, \mathrm{C} 2), 109.0(\mathrm{~d}, \mathrm{C} 2$ '), 111.1 (d, C5'), 118.1 (d, C6'), 126.3 (d, C4"), 128.7 (d, C2"*, C6"*), 128.7 (d, C3"*, C5"*), 135.6 (s, C1'), 140.5 (s, C1'), 148.4 (s, C4'), 149.1 (s, C3').

## B. 11 (2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-(trifluoromethyl)benzyl)tetrahydro

## furan-3- yl)methanol (23)



23
Chemical Formula: $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{O}_{4}$
Molecular Wieght: $396.40 \mathrm{gmol}^{-1}$

Preparation: analogous to 20, using 1-bromo-4-(trifluoromethyl)benzene ( $55.6 \mathrm{mg}, 0.247$ mmol, 1.3 equiv.) as aryl halide coupling partner. The heterogeneous reaction content was filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}, \mathrm{EtOAc} / \mathrm{LP}, 15: 85$ to $80: 20$ in 45 min ) afforded the title compound 23.

Yield: $57.2 \mathrm{mg},(76 \%)$
Appearance: nearly colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.59 (EtOAc)
$[\mathbf{\alpha}] \mathbf{D}^{\mathbf{2 5}:}+18.7$ (c 2.68, MeOH)
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 419.1441$, found: 419.1437, $\Delta:-0.95 \mathrm{ppm}$
$(\boldsymbol{\operatorname { l o g }} \boldsymbol{P})_{\text {calc: }} 4.01 \pm 0.58$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.79$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.42 (quint, ${ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), $2.60-$ 2.86 (m, 2H, H4, C4-CH), 3.04 (d, ${ }^{2} J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $3.71\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=5.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5), 3.76-3.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right)$, $4.03\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.82\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.78-6.91(\mathrm{~m}$, 3H, Ar'-H), 7.31 (d, $\left.{ }^{3} J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 ", ~ H 6 "\right), ~ 7.55 ~\left(d, ~{ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 "\right.$, H5").
${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 33.4$ (t, C4-C $), 42.1$ (d, C4), 52.4 (d, C3), 55.99 (q, Ar'$\left.\mathrm{OCH}_{3}\right), 56.02\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 60.8(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 72.7(\mathrm{t}, \mathrm{C} 5), 82.8(\mathrm{~d}, \mathrm{C} 2), 108.9(\mathrm{~d}, \mathrm{C} 2$ '), 111.1 (d, C5'), 118.1 (d, C6'), 124.3 (q, C4"- $\underline{C F}_{3},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.7 \mathrm{~Hz}$ ), 125.6 (dq, C3", C5", ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8$ Hz ), 128.7 (q, C4", ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}$ ), 129.1 (d, C2", C6"), 135.3 ( $\mathrm{s}, \mathrm{C} 1$ '), 144.8 (q, C1", ${ }^{5} J_{\mathrm{C}-\mathrm{F}}$ $=1.3 \mathrm{~Hz}), 148.5$ (s, C4'), 149.2 ( $\left.\mathrm{s}, \mathrm{C} 3^{\prime}\right)$.

## B. 12 ((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-fluorobenzyl)tetrahydrofuran-3-yl)

 methanol (24)

24
Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{FO}_{4}$ Molecular Weight: 346.39 gmol-1

Preparation: analogous to 19, using 1-bromo-4-fluorobenzene ( $43.2 \mathrm{mg}, 0.247 \mathrm{mmol}, 1.3$ equiv.) as aryl halide coupling partner. The heterogeneous reaction content was filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $30: 70$ to $50: 50$ in 15 min , then to $85: 15$ in 5 min , then $85: 15$ isocratically) afforded the title compound 24.
Yield: 40.2 mg , ( $61 \%$ )
Appearance: light-brown oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.59 (EtOAc)
$[\boldsymbol{\alpha}] \mathbf{D}^{25}:+18.5$ (c 3.82, MeOH)
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 369.1473$, found: $369.1475, \Delta: 0.54 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 3.49 \pm 0.60$
${ }^{1} \mathbf{H}$ NMR ( $200 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.66$ (bs, $1 \mathrm{H}, \mathrm{OH}$ ), 2.40 (quint, ${ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), 2.58 (dd, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $2.62-2.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.95\left(\mathrm{dd},{ }^{2} J=12.5\right.$ $\mathrm{Hz},{ }^{3} J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), 3.71 (dd, ${ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), $3.75-3.96(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.04\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} \mathrm{~J}=6.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5), 4.82\left(\mathrm{~d},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.79-6.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.91-7.04(\mathrm{~m}, 2 \mathrm{H}$, H3", H5"), 7.08 - 7.20 (m, 2H, H2", H6").
${ }^{13} \mathbf{C}$ NMR ( $50 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 32.8$ (t, C4-C $), 42.4$ (d, C4), 52.5 (d, C3), 56.00 (q, Ar'$\left.\mathrm{OCH}_{3}\right), 56.04\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 60.9(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 72.8(\mathrm{t}, \mathrm{C} 5), 82.9(\mathrm{~d}, \mathrm{C} 2), 109.0\left(\mathrm{~d}, \mathrm{C} 2{ }^{\prime}\right), 111.1$ (d, C5'), 115.4 (dd, C3", C5", ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}$ ), 118.1 (d, C6'), 130.1 (dd, C2", C6", ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.8$ $\mathrm{Hz}), 135.5\left(\mathrm{~s}, \mathrm{C} 1\right.$ '), $136.2\left(\mathrm{~d}, \mathrm{C} 1^{\prime \prime},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 148.5\left(\mathrm{~s}, \mathrm{C} 4{ }^{\prime}\right), 149.2\left(\mathrm{~s}, \mathrm{C} 3^{\prime}\right), 161.5(\mathrm{~d}$, C4", ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.2 \mathrm{~Hz}$ ).

## B. 13 ((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-methylbenzyl)tetrahydrofuran-3-yl) methanol (25)



Preparation: analogous to 19, using 4-bromotoluene ( $42.2 \mathrm{mg}, 0.247 \mathrm{mmol}, 1.3$ equiv.) as aryl halide coupling partner. The heterogeneous reaction content was filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc in LP, $20: 80$ to $70: 30 \mathrm{in} 30 \mathrm{~min}$ ) afforded the title compound 25.

Yield: $43.2 \mathrm{mg},(66 \%)$
Appearance: light-brown oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.47 (EtOAc / LP, $2: 1$ )
$[\boldsymbol{\alpha}]^{\mathbf{2}}{ }^{23}:+15.0(\mathrm{c} 4.34, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 365.1723$, found: $365.1727, \Delta: 1.10 \mathrm{ppm}$
$(\log \boldsymbol{P})_{\text {calc: }} 3.90 \pm 0.54$
${ }^{1} \mathbf{H}$ NMR ( $\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.72\left(\mathrm{t},{ }^{3} J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}\right), 2.31(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 4$ "-CH3$), 2.39$ (quint, ${ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), 2.57 (dd, ${ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), $2.65-2.85$ (m, 1H, H4), 2.91 (dd, $\left.{ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.66-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}\right.$, H5), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.05\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, H5), 4.82 (d, ${ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.77-6.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{H}\right), 7.02-7.13$ (m, 4H, Ar"-H).
${ }^{13}$ C NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 21.1$ ( $\mathrm{q}, \mathrm{C} 4$ "- $\mathrm{CH}_{3}$ ), 33.2 (t, C4-C ), 42.3 (d, C4), 52.5 (d, C3), 55.9 (q, Ar'-OCH3), 56.0 (q, Ar'-OCH3), 60.9 (t, C3-C $), 73.1$ (t, C5), 82.9 (d, C2), 109.0 (d, C2'), 111.0 (d, C5'), 118.1 (d, C6'), 128.6 (d, C2", C6'), 129.3 (d, C3", C5"), 135.6 ( $\mathrm{s}, \mathrm{C} 1^{\prime}$ ), 135.8 (s, C4"), 137.4 (s, C1"), 148.4 (s, C4'), 149.1 (s, C3').

## B. 14 ((2S,3R,4R)-4-(4-(tert-Butyl)benzyl)-2-(3,4-dimethoxyphenyl)tetrahydrofuran-

## 3-yl) methanol (26)



26
Chemical Formula: $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$
Molecular Weight: $384.51 \mathrm{gmol}^{-1}$
Preparation: analogous to 19, using 1-bromo-4-(tert-butyl)benzene ( $52.6 \mathrm{mg}, 0.247 \mathrm{mmol}$, 1.3 equiv.) as aryl halide coupling partner. The heterogeneous reaction content was filtered and rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and the solvents were evaporated. Flash column chromatography ( 18 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc in LP, $20: 80$ to $70: 30$ in 30 min ) afforded the title compound 26.

Yield: 49.1 mg , (67 \%)
Appearance: light-brown oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.76 (EtOAc)
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 5}}: \quad+12.0(\mathrm{c} 4.91, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 407.2193$, found: $407.2183, \Delta:-2.46 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 5.13 \pm 0.55$
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $\mathbf{2 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$ ): $\delta 1.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C} 4 \mathrm{H}-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.68(\mathrm{bs}, 1 \mathrm{H}, \mathrm{OH}), 2.40$ (quint, ${ }^{3} J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3$ ), 2.59 (dd, $\left.{ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J=9.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 2.67-2.86(\mathrm{~m}, 1 \mathrm{H}$, H4), 2.92 (dd, $\left.{ }^{2} J=12.6 \mathrm{~Hz},{ }^{3} J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.69-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}_{2}, \mathrm{H} 5\right), 3.86$ (s, $3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}$ ), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right.$ ), $4.08\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.83$ (d, ${ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.78-6.94$ (m, 3H, Ar'-H), 7.12 (d, ${ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2$ ", H6"), 7.31 (d, ${ }^{3} J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3$ ", H5").
${ }^{13} \mathbf{C}$ NMR ( $\mathbf{5 0} \mathbf{~ M H z , ~ C D C 1 3}$ ): $\delta 31.5\left(\mathrm{q}, \mathrm{C} 4 "-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.1(\mathrm{t}, \mathrm{C} 4-\underline{\mathrm{C}}), 34.5\left(\mathrm{~s}, \mathrm{C} 4 "-\underline{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $42.2(\mathrm{~d}, \mathrm{C} 4), 52.5(\mathrm{~d}, \mathrm{C} 3), 56.00\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.03\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 61.0(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 73.2(\mathrm{t}$, C5), 82.9 (d, C2), 109.0 (d, C2'), 111.1 (d, C5'), 118.1 (d, C6'), 125.5 (d, C3', C5"), 128.4 (d, C2", C6"), 135.7 (s, C1'), 137.4 (s, C1"), 148.4 (s, C4'), 149.1 (s, C3'; s, C4"; signal overlap).

## B. 15 Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-methoxybenzyl)tetrahydrofuran-3 -yl)methyl 2-methylbut-2-enoate (27)



Preparation: a reaction vessel was charged with a stirring bar, starting material 19 ( 24.0 mg , $0.067 \mathrm{mmol}, 1.0$ equiv.), angelic acid ( $7.6 \mathrm{mg}, 0.076 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{PPh}_{3}(46.5 \mathrm{mg}$, $0.177 \mathrm{mmol}, 3.5$ equiv.), and then evacuated and back-filled with argon using standard Schlenk technique. Dry THF ( 0.75 mL ) was then added via syringe and the solution cooled to $0{ }^{\circ} \mathrm{C}$ in an ice bath. To the stirred mixture was then added a solution of ADD $(44.7 \mathrm{mg}$, $0.177 \mathrm{mmol}, 3.5$ equiv.) in dry THF ( 1.0 mL ) via syringe over approximately 1 min , and the reaction stirred for 22 h while being kept away from light and allowed to warm slowly to room temperature. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solvents were evaporated and flash column chromatography was performed ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $10: 90$ isocrtically for 3 min , then $40: 60$ in 30 min ) to afford the title compound 27.

Yield: 24.0 mg , ( 81 \%)
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.67 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 5}:}+25.1$ (c 2.35, MeOH)
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}$: 463.2091, found: 463.2058, $\Delta:-7.12 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 5.56 \pm 0.46$
GC-MS (EI, 70 eV, Method D): $18.75 \mathrm{~min} ; 440.2$ ( ${ }^{+}$, 3), 219.1 (31), 166.1 (17), 165.1 (89), 160.1 (17), 159.1 (20), 151.1 (17), 147.1 (23), 121.0 (100).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.85-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 5{ }^{\prime \prime}\right), 2.00\left(\mathrm{dq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$ ), $2.49-2.82$ (m, 3H, H3, H4, C4-CH), 2.89 (dd, ${ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-$ CH ), 3.76 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 3.79 (s, $3 \mathrm{H}, \mathrm{C} 4$ " $-\mathrm{OCH}_{3}$ ), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-$ $\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.27\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.11.4 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.40\left(\mathrm{dd},{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.84$ (d, $\left.{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.10\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime}\right), 6.79-6.89(\mathrm{~m}, 5 \mathrm{H}, 3 \mathrm{x}$ Ar'-H, H3", H5"), 7.09 (d, $\left.{ }^{3} J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2^{\prime \prime}, \mathrm{H} 6 "\right)$.
${ }^{13}$ C NMR (50 MHz, CDCl 3 ): $\delta 16.0$ ( $\mathrm{q}, \mathrm{C} 4{ }^{\prime \prime}$ ), 20.7 ( $\mathrm{q}, \mathrm{C} 5{ }^{\prime \prime}$ ), 32.8 (t, C4-C), 42.7 (d, C4), $49.3(\mathrm{~d}, \mathrm{C} 3), 55.4\left(\mathrm{q}, \mathrm{C} 4 "-\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 62.3(\mathrm{t}, \mathrm{C} 3-\underline{\mathrm{C}})$, 72.8 (t, C5), 83.0 (d, C2), 109.0 (d, C2'), 111.1 (d, C5'), 114.1 (d, C3", C5"), 118.1 (d, C6'), 127.5 ( $\mathrm{s}, \mathrm{C} 2^{\prime \prime}$ ), 129.6 (d, C2", C6"), 132.2 (s, C1"), 135.1 (s, C1'), 139.0 (d, C3'"), 148.6 (s, C4'), 149.2 (s, C3'), 158.2 (s, C4"), 167.9 (s, C1"').

## B. 16 (Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(3-methoxybenzyl)tetrahydrofuran-3

-yl)methyl 2-methylbut-2-enoate (28)


Preparation: analogous to 27, using starting material 20 ( $28.1 \mathrm{mg}, 0.078 \mathrm{mmol}, 1.00$ equiv.). $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solvents were evaporated and flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $1: 99$ to $10: 90$ in 5 min , then to $40: 60$ in 30).

Yield: $31.2 \mathrm{mg}, 90 \%$
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.68 (EtOAc / cyclohexane, $1: 1$ )
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}:+30.4(\mathrm{c} 1.21, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 463.2091$, found: $463.2109, \Delta: 3.89 \mathrm{ppm}$
$(\log P)$ calc: $5.56 \pm 0.46$

GC-MS (EI, 70 eV, Method D): $17.63 \mathrm{~min} ; 440.1\left(\mathrm{M}^{+}, 6\right), 340.1$ (18), 219.1 (36), 174.1 (28), 173.1 (18), 166.1 (24), 165.0 (100), 159.1 (28), 151.0 (37), 147.1 (23), 121.1 (58), 91.1 (23).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.85-1.91$ (m, 3H, H5'"), $2.00\left(\mathrm{dq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$ ), $2.53-2.87$ (m, 3H, H3, H4, C4-CH), 2.93 (dd, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-$ CH ), 3.77 (dd, ${ }^{2} J=8.7 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), $3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} 3 "-\mathrm{OCH}_{3}\right.$ ), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-$ $\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.08\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.27\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.11.4 \mathrm{~Hz},{ }^{3} J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.41\left(\mathrm{dd},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.84$ (d, $\left.{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.10\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime}\right), 6.69-6.92(\mathrm{~m}, 6 \mathrm{H}, 3 \mathrm{x}$ Ar'-H, H2", H4", H6"), 7.23 (t, $\left.{ }^{3} J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5 "\right)$.
${ }^{13}$ C NMR ( $50 \mathbf{M H z}, \mathbf{C D C l}_{3}$ ): $\delta 16.0$ ( $\mathrm{q}, \mathrm{C} 4$ "'), 20.7 ( $\mathrm{q}, \mathrm{C} 5$ "'), 33.7 (t, C4-C), 42.4 (d, C4), 49.3 (d, C3), 55.3 (q, C3"-OCH ${ }_{3}$ ), $56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 62.3$ (t, C3-C$)$, 72.8 (t, C5), 82.9 (d, C2), 108.9 (d, C2'), 111.1 (d, C5'*), 111.5 (d, C4"*), 114.6 (d, C2"), 118.2 (d, C6'), 121.1 (d, C6"), 127.5 (s, C2'"), 129.7 (d, C5"), 135.0 (s, C1'), 139.1 (d, C3'"), 141.8 (s, C1"), 148.6 (s, C4'), 149.2 (s, C3'), 159.9 (s, C3'), 167.8 (s, C1'").

## B. 17 (Z)-((2S,3R,4R)-4-(3,4-Dimethoxybenzyl)-2-(3,4-dimethoxyphenyl) tetrahydrofuran -3-yl)methyl 2-methylbut-2-enoate (leoligin, 29)



A reaction vessel was charged with a stirring bar, starting material 21 ( $989 \mathrm{mg}, 2.55 \mathrm{mmol}$, 1.0 equiv.), angelic acid ( $383 \mathrm{mg}, 3.83 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{PPh}_{3}(2.34 \mathrm{~g}, 8.93 \mathrm{mmol}, 3.5$ equiv.), and then evacuated and back-filled with argon using standard Schlenk technique. Dry THF ( 20 mL ) was then added and the solution cooled to $0^{\circ} \mathrm{C}$ in an ice bath. To the stirred mixture was then added DEAD ( $1.40 \mathrm{~mL}, 8.93 \mathrm{mmol}, 3.5$ equiv.) dropwise via syringe, and the reaction stirred for 12 h while being kept away from light and allowed to warm slowly to room temperature. The solvent was evaporated, which was followed by the addition of $\mathrm{CHCl}_{3}$ $(15 \mathrm{~mL}), \mathrm{LP}(300 \mathrm{~mL})$ and water $(200 \mathrm{~mL})$. The layers were separated and the aqueous phase was re-extracted with LP ( $4 \times 50 \mathrm{ml}$ ). The solvents were evaporated from the combined organic phases and then flash column chromatography was performed ( 180 g silica, flow rate $40 \mathrm{~mL} / \mathrm{min}, \mathrm{EtOAc} / \mathrm{LP}, 25: 75$ to $50: 50 \mathrm{in} 60 \mathrm{~min}$ ) to afford the title compound 29. An analytical sample could be crystallized from a saturated solution of heptane and cooling it to $-20^{\circ} \mathrm{C}$ for several days.

Yield: $1.124 \mathrm{~g}, 94$ \%
Appearance: nearly colorless oil
Melting range: $45.0-46.5^{\circ} \mathrm{C}$; lit. ${ }^{153}$ melting range: $\mathrm{n} / \mathrm{a}$ (natural compound obtained as a colorless amorphous substance)
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.57 (EtOAc / LP, $1: 1$ )
$[\alpha] \mathbf{D}^{25}:+23.4$ (c 3.69, MeOH); lit. ${ }^{153}[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 0}}:+25\left(\mathrm{c} 0.002, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 493.2197$, found: $493.2201, \Delta: 0.81 \mathrm{ppm}$
$(\boldsymbol{\operatorname { l o g } P} \boldsymbol{P})_{\text {calc: }} 5.38 \pm 0.48$
GC-MS (EI, 70 eV, Method E): $23.65 \mathrm{~min} ; 470.2$ ( ${ }^{+}$, 3), 219.1 (26), 189.1 (15), 177.1 (15), 165.1 (72), 151.0 (100), 107.1 (15).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.85-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} \mathbf{' l}^{\prime \prime}\right), 2.00\left(\mathrm{dq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$ ), $2.49-2.85$ (m, 3H, H3, H4, C4-CH), 2.90 (dd, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-$ CH ), 3.78 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), $3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{3}-\mathrm{OCH}_{3}\right), 3.87(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}-$ $\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 4.08\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.28\left(\mathrm{dd},{ }^{2} J=\right.$ $11.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}$ ), 4.42 (dd, $\left.{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.84$ (d, ${ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$ ), $6.10\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime}\right), 6.67-6.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 2{ }^{\prime}\right.$, H6"), 6.77 - 6.90 (m, 4H, H2', H5', H6', H5").
${ }^{13}$ C NMR ( $100 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 16.0$ (q, C4"'), 20.7 (q, C5'"), 33.3 (t, C4-C ), 42.8 (d, C4), $49.3(\mathrm{~d}, \mathrm{C} 3), 56.0\left(\mathrm{q}, 2 \mathrm{x} \mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.0\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 62.3(\mathrm{t}, \mathrm{C} 3-\mathrm{C})$, 72.8 (t, C5), 83.0 (d, C2), 109.0 (d, C2'), 111.2 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.2 (d, C6'), 120.6 (d, C6"), 127.5 (s, C2"'), 132.7 (s, C1"), 135.1 (s, C1'), 139.0 (d, C3"'), 147.6 (s, C4"), 148.6 (s, C4'), 149.1 (s, C3"), 149.2 (s, C3'), 167.8 (s, C1'").

## B. 18 ( $Z$ )-((2S,3R,4R)-4-Benzyl-2-(3,4-dimethoxyphenyl)tetrahydrofuran-3-yl)methyl 2-methylbut-2-enoate (30)



30
Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{O}_{5}$
Molecular Weight: 410.50 gmol- $^{1}$
Preparation: analogous to 27, using starting material 22 ( $24.4 \mathrm{mg}, 0.074 \mathrm{mmol}, 1.00$ equiv.) $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solvents were evaporated and flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $1: 99$ to $35: 65$ in 30 min ).

Yield: $26.4 \mathrm{mg},(86 \%)$
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.74 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}]_{D^{25}}{ }^{25}$ +31.6(c 2.64, MeOH)
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 433.1985$, found: $433.1968, \Delta:-3.92 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 5.64 \pm 0.44$
GC-MS (EI, 70 eV, Method E): $13.41 \mathrm{~min} ; 410.2$ ( ${ }^{+}$, 2), 219.1 (22), 166.1 (55), 165.0 (100), 151.0 (19), 117.1 (23), 91.0 (68).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.85-1.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 5^{\prime \prime}\right), 2.00\left(\mathrm{dq},{ }^{3} J=7.3 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$ ), $2.70-2.53$ (m, 2H, H3, C4-CH), $2.89-2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H} 4), 2.95$ (dd, ${ }^{2} J=12.5 \mathrm{~Hz}$, ${ }^{3} J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), 3.77 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 3.87 (s, $3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.28\left(\mathrm{dd},{ }^{2} J=11.4 \mathrm{~Hz}\right.$, $\left.{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.41\left(\mathrm{dd},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.85\left(\mathrm{~d},{ }^{3} J=6.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 2), 6.10\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3 \mathrm{"}\right.$ '), $6.92-6.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{H}\right), 7.36$ - 7.13 (m, 5H, Ar"-H).
${ }^{13}$ C NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 16.0$ (q, C4"'), 20.7 (q, C5"'), 33.7 (t, C4-C), 42.5 (d, C4), 49.3 (d, C3), $56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 62.3(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 72.8(\mathrm{t}, \mathrm{C} 5), 83.0(\mathrm{~d}$, C2), 108.9 (d, C2'), 111.1 (d, C5'), 118.1 (d, C6'), 126.4 (d, C4"), 127.5 (s, C2"'), 128.7 (d, C2", C6"; C3", C5"; signal overlap), 135.1 (s, C1'), 139.1 (d, C3'"), 140.2 (s, C1"), 148.6 (s, C4'), 149.2 (s, C3'), 167.8 (s, C1'").

## B.19(Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-(trifluoromethyl)benzyl) tetrahydrofuran-3-yl)methyl 2-methylbut-2-enoate (31)



31
Chemical Formula: $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{O}_{5}$
Molecular Weight: $478.50 \mathrm{gmol}^{-1}$
Preparation: analogous to 27, using starting material 23 ( $32.7 \mathrm{mg}, 0.082 \mathrm{mmol}, 1.00$ equiv.). $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ The solvents were evaporated and flash column chromatography $(9 \mathrm{~g}$ silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $1: 99$ to $40: 60$ in 40 min ).

Yield: 34.3 mg , ( 87 \%)
Appearance: colorless oil
$\boldsymbol{R}_{\mathbf{f}}$ (silica): 0.74 (EtOAc / cyclohexane, $1: 1$ )
$[\boldsymbol{\alpha}]^{\mathbf{2} \mathbf{2 0}}: ~+28.5(\mathrm{c} 0.97, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 501.1859$, found: $501.1882, \Delta: 4.59 \mathrm{ppm}$
$(\log \boldsymbol{P})_{\text {calc: }} 6.21 \pm 0.49$
GC-MS (EI, 70 eV, Method D): $12.47 \mathrm{~min} ; 478.1$ ( $\mathrm{M}^{+}$, 2), 219.0 (28), 166.1 (39), 165.0 (100), 159.0 (25).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.85-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 5^{\prime \prime}\right), 2.00\left(\mathrm{dq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$ ), $2.55-2.89$ (m, 3H, H3, H4, C4-CH), $2.95-3.07$ (m, 1H, C4-CH), 3.74 (dd, ${ }^{2} J=$ $8.7 \mathrm{~Hz},{ }^{3} J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.8.8 \mathrm{~Hz},{ }^{3} J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.28\left(\mathrm{dd},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.40\left(\mathrm{dd},{ }^{2} J\right.$ $\left.=11.4 \mathrm{~Hz},{ }^{3} J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.84\left(\mathrm{~d},{ }^{3} J=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.12\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J\right.$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime}$ '), $6.79-6.92\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{H}\right), 7.30\left(\mathrm{~d},{ }^{3} J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2\right.$ ", H6"), 7.56 (d, ${ }^{3} J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3 "$, H5").
${ }^{13}$ C NMR ( $50 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 16.0$ ( $\mathrm{q}, \mathrm{C} 4{ }^{\prime \prime \prime}$ ), 20.7 ( $\mathrm{q}, \mathrm{C} 5{ }^{\prime \prime}$ ), 33.6 (t, C4-C), 42.3 (d, C4), 49.3 (d, C3), $56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 62.1$ (t, C3-C), 72.6 (t, C5), 82.9 (d, $\mathrm{C} 2), 108.9$ (d, C2'), 111.2 (d, C5'), 118.2 (d, C6'), 124.3 ( $\mathrm{q}, \mathrm{C} 4 "-\mathrm{CF}_{3},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=272.0 \mathrm{~Hz}$ ), 125.7 (dq, C3", C5", ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}$ ), 127.4 (s, C2"'), $128.9\left(\mathrm{q}, \mathrm{C} 4 ",{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.3 \mathrm{~Hz}\right), 129.1(\mathrm{~d}, \mathrm{C} 2 "$, C6"), 134.8 ( $\left.\mathrm{s}, \mathrm{C} 1^{\prime}\right), 139.3$ (d, C3"'), 144.4 (q, C1", ${ }^{5} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.3 \mathrm{~Hz}$ ), 148.7 (s, C4'), 149.2 (s, C3'), 167.8 (s, C1"').

## B. 20 ( $Z$ )-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-fluorobenzyl)tetrahydrofuran-3

-yl)methyl 2-methylbut-2-enoate (32)


32
Chemical Formula: $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{5}$ Molecular Weight: $428.49 \mathrm{gmol}^{-1}$

Preparation: analogous to 27, using starting material 24 ( $29.8 \mathrm{mg}, 0.086 \mathrm{mmol}, 1.0$ equiv.). $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solvents were evaporated and flash column chromatography $(9 \mathrm{~g}$ silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $1: 99$ to $35: 65$ in 30 min ).

Yield: $27.8 \mathrm{mg},(75 \%)$
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.73 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}]^{\mathbf{D}}{ }^{25}: \quad+34.0(\mathrm{c} 1.04, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 451.1891$, found: $451.1909, \Delta: 3.99 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 0.69 \pm 0.52$
GC-MS (EI, 70 eV, Method E): $13.23 \mathrm{~min} ; 428.2$ ( ${ }^{+}$, 3), 328.2 (15), 219.1 (24), 166.1 (48), 165.0 (100), 151.0 (17), 135.1 (22), 109.0 (68).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.83-1.91$ (m, 3H, H5'"), $2.00\left(\mathrm{~d},{ }^{3} J=7.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}\right.$ ), $2.51-2.85(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{C} 4-\mathrm{CH}), 2.92\left(\mathrm{dd},{ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.74$ (dd, $\left.{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.06\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 4.26 (dd, $\left.{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.40\left(\mathrm{dd},{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=\right.$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}), 4.84\left(\mathrm{~d},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.11$ (q, ${ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime}$ ), $6.79-$ $6.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{H}\right), 6.98$ (dd, $\left.{ }^{3} J=8.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{F}}=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} "^{\prime \prime}, \mathrm{H} 5{ }^{\prime}\right), 7.13\left(\mathrm{dd},{ }^{3} J=8.4\right.$ $\left.\mathrm{Hz},{ }^{4} J_{\mathrm{H}-\mathrm{F}}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2{ }^{\prime \prime}, \mathrm{H}^{\prime \prime}\right)$.
${ }^{13}$ C NMR ( $50 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 16.0$ ( $\mathrm{q}, \mathrm{C} 4$ "'), 20.7 ( $\mathrm{q}, \mathrm{C} 5$ "'), 32.9 (t, C4- $\underline{\mathrm{C}}$ ), 42.6 (d, C4), 49.3 (d, C3), $56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 62.2(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 72.7(\mathrm{t}, \mathrm{C} 5), 82.9(\mathrm{~d}$, C2), 108.9 (d, C2'), 111.2 (d, C5'), 115.5 (dd, C3", C5", ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}$ ), 118.1 (d, C6'), 127.4 (s, C2"'), 130.1 (dd, C2", C6", ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}$ ), 135.0 ( $\mathrm{s}, \mathrm{C} 1$ '), 135.8 (d, C1", ${ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}$ ), 139.2 (d, C3'"), 148.6 (s, C4'), 149.2 (s, C3'), 161.6 (d, C4", ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.2 \mathrm{~Hz}$ ), 167.8 (s, C1"').

## B. 21 (Z)-((2S,3R,4R)-2-(3,4-Dimethoxyphenyl)-4-(4-methylbenzyl)tetrahydrofuran-3-

yl)methyl 2- methylbut-2-enoate (33)


33
Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5}$
Molecular Weight: $425.53 \mathrm{gmol}^{-1}$
Preparation: analogous to 27, using starting material 25 ( $29.4 \mathrm{mg}, 0.086 \mathrm{mmol}, 1.00$ equiv.). $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solvents were evaporated and flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, $1: 99$ to $35: 65$ in 30 min ).

Yield: 30.8 mg , ( $84 \%$ )
Appearance: colorless oil
$\boldsymbol{R}_{\mathrm{f}}$ (silica): 0.75 (EtOAc / LP, $1: 1$ )
$[\boldsymbol{\alpha}]^{\mathbf{2} \mathbf{2 0}}:+27.1(\mathrm{c} 1.92, \mathrm{MeOH})$
LC-HRMS (ESI): calculated for $\mathrm{M}+\mathrm{Na}^{+}: 447.2142$, found: $447.2149, \Delta: 1.57 \mathrm{ppm}$
$(\log P)_{\text {calc: }} 6.10 \pm 0.45$
GC-MS (EI, 70 eV, Method D): $14.99 \mathrm{~min} ; 424.3$ ( ${ }^{+}$, 3), 219.1 (26), 166.1 (50), 165.1 (100), 151.1 (19), 143.1 (18), 131.1 (27), 105.1 (76).
${ }^{1} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.84-1.90\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 5^{\prime \prime}\right), 2.00\left(\mathrm{dq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}\right.$, $3 \mathrm{H}, \mathrm{H} 4{ }^{\prime \prime}$ ), 2.32 (s, 3H, C4"-CH3), $2.51-2.84(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H} 3, \mathrm{H} 4, \mathrm{C} 4-\mathrm{CH}), 2.91\left(\mathrm{dd},{ }^{2} J=12.4\right.$ $\mathrm{Hz},{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}$ ), 3.76 (dd, ${ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ ), 3.87 ( $\mathrm{s}, 3 \mathrm{H}, ~ \mathrm{Ar}^{\prime}-$ $\mathrm{OCH}_{3}$ ), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.07\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.27\left(\mathrm{dd},{ }^{2} J=\right.$ $\left.11.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.41$ (dd, $\left.{ }^{2} J=11.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.84$ (d, $\left.{ }^{3} J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.10\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime \prime}\right), 6.78-6.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\right.$ H), $7.03-7.14$ (m, 4H, Ar"-H).
${ }^{13}$ C NMR ( $50 \mathbf{M H z}$, CDCl $_{3}$ ): $\delta 16.0$ ( $\mathrm{q}, \mathrm{C} 4$ "'), 20.7 ( $\mathrm{q}, \mathrm{C} 5$ "'), 21.1 ( $\mathrm{q}, \mathrm{C} 4 "-\mathrm{CH}_{3}$ ), 33.2 (t, C4C), $42.6(\mathrm{~d}, \mathrm{C} 4), 49.3(\mathrm{~d}, \mathrm{C} 3), 56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 62.3(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 72.9$ (t, C5), 83.0 (d, C2), 108.9 (d, C2'), 111.1 (d, C5'), 118.1 (d, C6'), 127.5 (s, C2"'), 128.6 (d, C2", C6"), 129.4 (d, C3", C5"), 135.1 (s, C1'), 135.9 (s, C4"), 137.1 (s, C1"), 139.0 (d, C3"'), 148.5 (s, C4'), 149.2 (s, C3'), 167.8 (s, C1"').

## B. 22 (Z)-((2S,3R,4R)-4-(4-(tert-Butyl)benzyl)-2-(3,4-dimethoxyphenyl)tetrahydro

## furan-3-yl)methyl 2-methylbut-2-enoate (34)



34
Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{O}_{5}$
Molecular Weight: $466.61 \mathrm{gmol}^{-1}$
Preparation: analogous to 27, using starting material 26 ( $31.1 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.00$ equiv.). $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added to the reaction content, which was then filtered and rinsed with more $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$. The solvents were evaporated and flash column chromatography ( 9 g silica, flow rate $20 \mathrm{~mL} / \mathrm{min}$, EtOAc / LP, 7: 93 isocratically for 3 min , then to 35: 65 in 30 min ).

Yield: $25.4 \mathrm{mg},(67 \%)$
Appearance: colorless oil
$\boldsymbol{R}_{\mathbf{f}}$ (silica): 0.78 (EtOAc / LP, 1:1)
$\left[\boldsymbol{\alpha}_{\mathbf{D}} \mathbf{D}^{\mathbf{2 0}}: ~+21.4\right.$ (c 1.52, MeOH)
LC-HRMS (APCI): calculated for $\mathrm{M}^{+} \mathrm{Na}^{+}: 489.2611$, found: $489.2676, \Delta: 13.29 \mathrm{ppm}$
$(\log \boldsymbol{P})_{\text {calc: }} 7.33 \pm 0.46$
GC-MS (EI, 70 eV, Method E): $19.94 \mathrm{~min} ; 466.3$ ( ${ }^{+}$, 2), 219.1 (37), 185.1 (20), 180.1 (16), 166.1 (37), 165.1 (100), 151.1 (20), 147.1 (19), 132.1 (16), 131.1 (15), 117.1 (25).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ( $200 \mathrm{MHz}, \mathbf{C D C l}_{3}$ ): $\delta 1.31$ ( $\mathrm{s}, 9 \mathrm{H}, \mathrm{C} 4$ "-C( $\left.\mathrm{CH}_{3}\right)_{3}$ ), $1.85-1.90$ (m, 3H, H5"'), 2.00 (dq, ${ }^{3} J=7.2 \mathrm{~Hz},{ }^{5} J=1.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 4 " '$ ), $2.53-2.86$ (m, 3H, H3, H4, C4-CH), 2.91 (dd, ${ }^{2} J=$ $\left.12.4 \mathrm{~Hz},{ }^{3} J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{CH}\right), 3.80\left(\mathrm{dd},{ }^{2} J=8.5 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 3.87(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}$ ), $3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 4.09\left(\mathrm{dd},{ }^{2} J=8.6 \mathrm{~Hz},{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5\right), 4.28\left(\mathrm{dd},{ }^{2} J\right.$ $\left.=11.3 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.42$ (dd, $\left.{ }^{2} J=11.4 \mathrm{~Hz},{ }^{3} J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{CH}\right), 4.84$ (d, $\left.{ }^{3} J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2\right), 6.10\left(\mathrm{qq},{ }^{3} J=7.2 \mathrm{~Hz},{ }^{4} J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 3{ }^{\prime \prime \prime}\right), 6.79-6.92(\mathrm{~m}, 3 \mathrm{H}$, Ar'-H), 7.10 (d, $\left.{ }^{3} J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 2 ", ~ H 6 "\right), ~ 7.32 ~\left(d, ~{ }^{3} J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 3^{\prime \prime}\right.$, H5").
 $\mathrm{C} 4-\underline{\mathrm{C}}), 34.5\left(\mathrm{~s}, \mathrm{C} 4 "-\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 42.5(\mathrm{~d}, \mathrm{C} 4), 49.3(\mathrm{~d}, \mathrm{C} 3), 56.0\left(\mathrm{q}, \mathrm{Ar}^{\prime}-\mathrm{OCH}_{3}\right), 56.1$ (q, Ar'$\mathrm{OCH}_{3}$ ), 62.4 (t, C3-C), 73.0 (t, C5), 83.0 (d, C2), 109.0 (d, C2'), 111.1 (d, C5'), 118.2 (d, C6'), 125.6 (d, C3", C5"), 127.5 ( s, C2"'), 128.4 (d, C2", C6"), 135.2 (s, C1'), 137.1 (s, C1"), 139.0 (d, C3"'), 148.6 (s, C4'), 149.18 (s, C3'*), 149.21 (s, C4"*), 167.9 (s, C1'").

## References

1. Schwetlick, K., Organikum. 22 ed. 2004, Weinheim: Wiley-VCH.
2. Simas, A.B.C., et al., An expeditious and consistent procedure for tetrahydrofuran (THF) drying and deoxygenation by the still apparatus. Quim. Nova, 2009. 32(9): p. 2473-2475.
3. Mandal, P.K., G. Maiti, and S.C. Roy, Stereoselective Synthesis of Polysubstituted Tetrahydrofurans by Radical Cyclization of Epoxides Using a Transition-Metal Radical Source. Application to the Total Synthesis of ( $\pm$ )-Methylenolactocin and ( $\pm$ )Protolichesterinic Acid. J. Org. Chem., 1998. 63(9): p. 2829-2834.
4. Gao, Y., et al., Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization. J. Am. Chem. Soc., 1987. 109(19): p. 5765-5780.
5. Gottlieb, H.E., V. Kotlyar, and A. Nudelman, NMR chemical shifts of common laboratory solvents as trace impurities. J. Org. Chem., 1997. 62(21): p. 7512-7515.
6. Fulmer, G.R., et al., NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. Organometallics, 2010. 29(9): p. 2176-2179.
7. Linder, T., et al., Leoligin-inspired synthetic lignans with selectivity for cell-type and bioactivity relevant for cardiovascular disease. Chem Sci, 2019. 10(22): p. 5815-5820.
8. Chakraborty, P., et al., Titanocene(III) chloride mediated formal synthesis of magnofargesin and 7ấ²-epimagnofargesin. Tetrahedron Lett. 53(48): p. 6584-6587.
9. Schwaiger, S., et al., New constituents of Leontopodium alpinum and their in vitro leukotriene biosynthesis inhibitory activity. Planta Med., 2004. 70(10): p. 978-985.

[^0]:    ${ }^{13} \mathbf{C}$ NMR ( 50 MHz, CDCl $_{3}$ ): $\delta 33.5$ (t, C4-C), $42.8(\mathrm{~d}, \mathrm{C} 4), 49.3(\mathrm{~d}, \mathrm{C} 3), 55.9\left(\mathrm{q}, \mathrm{Ar}^{\mathbf{1}} \mathrm{OCH}_{3}\right)$, $55.99\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.02\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 56.1\left(\mathrm{q}, \mathrm{Ar}-\mathrm{OCH}_{3}\right), 63.4(\mathrm{t}, \mathrm{C} 3-\mathrm{C}), 73.0(\mathrm{t}, \mathrm{C} 5)$, 83.5 (d, C2), 109.1 (d, C2'), 111.2 (d, C5'), 111.4 (d, C5"*), 112.0 (d, C2"*), 118.3 (d, C6'), 120.6 (d, C6"), 128.5 (d, C4"'), 129.7 (d, C3'"), 130.0 (s, C2"'), 132.6 (s, C1"), 133.3 (d, C5'"), 135.0 (s, C1'), 147.7 (s, C4"), 148.6 (s, C4'), 149.1 (s, C3'), 149.2 (s, C3'), 166.5 (s, C1"').

