Supplementary information

A Non-Targeted Capillary Electrophoresis-Mass Spectrometry Strategy to Study Metabolic Differences in an *In Vitro* Model of High-Glucose Induced Changes in Human Proximal Tubular HK-2 Cells

Samuel Bernardo-Bermejo¹, Elena S ánchez-López¹, Mar á Castro-Puyana^{1,2}, Selma Benito-Mart nez^{3,4}, Francisco Javier Lucio-Cazaña³, Mar á Luisa Marina^{1,2,*}

¹ Departamento de Qu ínica Anal fica, Qu ínica F ísica e Ingenier á Qu ínica, Universidad de Alcal á Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcal á de Henares (Madrid), Spain.

² Instituto de Investigación Qu ínica Andrés M. del R ío (IQAR), Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcaláde Henares (Madrid), Spain.

³ Departamento de Biolog á de Sistemas, Universidad de Alcal á Ctra. Madrid-Barcelona
Km. 33.600, 28871 Alcal á de Henares (Madrid), Spain.

⁴ Ramón y Cajal" Health Research Institute (IRYCIS), Madrid, Spain.

*Correspondence: Departamento de Qu ínica Anal fica, Qu ínica F ísica e Ingenier á Qu ínica, Universidad de Alcal á, Ctra. Madrid-Barcelona, Km. 33.600, 28871 Alcal á de Henares, Madrid, España.

E-mail: mluisa.marina@uah.es

Fax: +34-91 885 4971

Tel: +34-91 885 4935

Figures

Figure S1. Comparison of the sensitivity using different flow rates of sheath liquid. The figure shows the EIC of IS methionine sulfone at different flow rates: marked in red 4 μ L/min, marked in black 6 μ L/min and marked in green 8 μ L/min.

Figure S2. Comparison of extraction solvents in the extracellular fluid. The figure shows the TCE using 100% MeOH (marked in red) and 100% ACN (marked in black).

Figure S3. PCA normalized with IS tyramine. QC, quality control; NG, normal glucose; HG, high glucose; M, osmotic control.

Figure S4. Hierarchical cluster analysis (HCA) of the two analytical sequences: A) HCA of intracellular fluid and B) HCA of extracellular fluid.

Figure S5. Box-plots of the two metabolites of the intracellular fluid unequivocally identified.

Figure S6. Box-plots of the seven metabolites of the extracellular fluid unequivocally and tentatively identified.

Figure S7. Box-plots of the metabolite unequivocally identified in both intra and extracellular fluids.

Figura S3.

Figure S4.

Figure S5.

Figure S7.

Glutamic acid (extracellular fluid)

#	MT (min)	Monoisotopic mass (Da)	Main fragments	p-value*		Trend**				
				HG vs NG	NG vs M					
Intracellular fluid										
1	10.9	503.2651	-	1.61 × 10 ⁻²	1.1 ×10 ⁻²	Ļ				
2	10.9	475.2328	-	1.34 × 10 ⁻²	1.73 ×10 ⁻⁴	Ļ				
3	13.2	299.1356	121.0635, 282.1352	2.32 × 10 ⁻⁷	8.92 × 10 ⁻²	1				
4	13.5	775.4005	-	3.88 × 10 ⁻²	1.82×10^{-4}	\downarrow				
5	13.5	575.2941	-	1.01 × 10 ⁻⁷	6.93 ×10 ⁻⁸	\downarrow				
6	13.5	547.2623	-	1.35 × 10 ⁻⁷	9.10 × 10 ⁻⁸	\downarrow				
7	14.5	609.2809	-	1.08×10^{-3}	0.14	\rightarrow				
8	14.5	581.2505	-	9.39 ×10 ⁻⁴	2.88×10^{-2}	\rightarrow				
9	14.5	809.3868	-	6.34 × 10 ⁻³	0.61	\rightarrow				
10	18.5	308.1188	-	1.78×10^{-4}	3.94×10^{-4}	↑				
Extracellular fluid										
11	10.3	203.9495	90.9754, 84.9587	3.38×10^{-2}	1.55×10^{-2}	1				
12	11.9	262.1397	246.1212, 221.1233, 204.0974	5.56 × 10 ⁻⁶	0.34	→				
13	12.9	109.0640	74.0970, 94.0400	3.22×10^{-3}	0.67	` ↑				
14	13.0	767.3479	427.1522, 327.0499, 191.0769	2.17 × 10 ⁻³	0.25	→				
15	13.1	712.3085	381.2971, 226.9525	8.32 × 10 ⁻⁸	0.16	1				
16	13.8	774.3469	482.2129	1.46 × 10 ⁻⁵	0.99	↑				
17	15.3	308.1535	128.0627, 211.0961, 84.0734, 225.1129	5.12 × 10 ⁻⁸	0.14	<u>↑</u>				
18	15.4	128.0555	84.0790, 121.0623	2.18 × 10 ⁻⁶	0.63	Ļ				
19	15.8	491.3196	226.9489, 90.9748, 158.9617, 381.2956	3.51 × 10 ⁻⁴	0.11	1				
20	15.8	447.3559	90.9737, 381.2967	4.25 × 10 ⁻⁶	0.32	<u>↑</u>				
21	15.8	419.3233	90.9745, 210.0451, 308.1164	1.86 ×10 ⁻³	0.89	↑				
22	16.4	308.1582	191.0708, 90.9734	4.75 × 10 ⁻⁸	0.19	↑				
23	16.5	573.3849	226.9518, 242.9260	6.62 × 10 ⁻⁵	9.54 × 10 ⁻²	\downarrow				
24	16.5	193.0949	84.9565, 78.9930	3.06 × 10 ⁻⁴	0.17	\downarrow				
25	16.6	297.0451	-	6.16 × 10 ⁻⁵	6.52 × 10 ⁻²	↑				
26	16.7	336.1645	90.9740, 158.9606	7.83 ×10 ⁻⁸	17.50 ×10 ⁻²	\uparrow				
27	17.2	266.1380	149.0218, 122.0675, 90.9748	1.17×10^{-4}	0.33	\downarrow				
28	17.3	317.1221	143.0272, 202.0770, 176.0629, 164.0239	1.07×10^{-2}	0.00	\uparrow				
29	19.2	527.3422	314.0307, 120.0033, 391.0416, 217.0165	2.68×10^{-3}	0.38	\uparrow				
30	20.3	133.0373	-	9.38 × 10 ⁻³	0.74	<u>↑</u>				
31	23.1	220.0826	-	5.30 × 10 ⁻⁴	0.26	1				

Table S1. Unknown molecular features which were statistically significant for any of the two analytical sequences

32	24.18	225.0746	78.9956, 106.9899, 90.9746, 116.9731136.0761	5.93 × 10 ⁻⁵	0.34	\downarrow
33	24.80	279.1324	90.9743	9.60 × 10 ⁻³	0.74	↑
34	25.10	296.0501	176.0593, 120.0036	2.59×10^{-6}	0.37	<u>↑</u>
35	26.28	343.1268	90.9744, 57.0682, 158.9627	1.96 ×10 ⁻⁵	0.23	↑
36	27.26	574.1223	226.9493, 158.9635	1.14×10^{-4}	0.13	\downarrow

*p-value of Mann Whitney U test < FDR cut-off (0.040). **↑: The metabolite (on average) is more abundant in HG vs NG; ↓: The metabolite (on average) is less abundant in HG vs NG.