

Supplementary Materials

Redox-Modulations of Photo-physical and Single-Molecule Magnet Properties in Ytterbium Complexes Involving Extended-TTF Triads

Bertrand Lefeuvre ¹, Jessica Flores Gonzalez ¹, Frédéric Gendron ¹, Vincent Dorcet ¹, François Riobé ², Vladimir Cherkasov ³, Olivier Maury ², Boris Le Guennic ¹, Olivier Cador ¹, Viacheslav Kuropatov ^{3,*} and Fabrice Pointillart ^{1,*}

- ¹ Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) UMR 6226, 35000 Rennes, France; bertrand.lefeuvre@univ-rennes1.fr (B.L.); jessica.flores-gonzales@univ-rennes1.fr (J.F.G.); frederic.gendron@univ-rennes1.fr (F.G.); vincent.dorcet@univ-rennes1.fr (V.D.); boris.leguennic@univrennes1.fr (B.L.G.); olivier.cador@univ-rennes1.fr (O.C.)
- ² Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France; francois.riobe@ens-lyon.fr (F.R.); olivier.maury@ens-lyon.fr (O.M.)
- ³ G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, 603950, GSP-445, Tropinina str., 49, Nizhny Novgorod, Russia; cherkasov@iomc.ras.ru
- * Correspondence: viach@iomc.ras.ru (V.K.); Tel: +79-(0)51902995 and fabrice.pointillart@univ-rennes1.fr (F.P.); Tel.: +33-(0)223236752

Academic Editors: Dawid Pinkowicz and Robert Podgajny Received: 20 December 2019; Accepted: 22 January 2020; Published: date

Abstract: The reaction between the 2,2'-benzene-1,4-diylbis(6-hydroxy-4,7-di-*tert*-butyl-1,3benzodithiol-2-ylium-5-olate triad (H₂SQ) and the metallo-precursor [Yb(hfac)₃]·2H₂O led to the formation of a dinuclear coordination complex of formula [Yb₂(hfac)₆(H₂SQ)]·0.5CH₂Cl₂ (H₂SQ-Yb). After chemical oxidation of H₂SQ in 2,2'-cyclohexa-2,5-diene-1,4-diylidenebis(4,7-di-*tert*-butyl-1,3benzodithiole-5,6-dione (Q), the latter triad reacted with the [Yb(hfac)₃]·2H₂O precursor to give the dinuclear complex of formula [Yb₂(hfac)₆(Q)] (Q-Yb). Both dinuclear compounds have been characterized by X-ray diffraction, DFT optimized structure and electronic absorption spectra. They behaved as field-induced Single-Molecule Magnets (SMMs) nevertheless the chemical oxidation of the semiquinone to quinone moieties accelerated by a factor of five the relaxation time of the magnetization of Q-Yb compared to the one for H₂SQ-Yb. The H₂SQ triad efficiently sensitized the Yb^{III} luminescence while the chemical oxidation of H₂SQ into Q induced strong modification of the absorption properties and thus a quenching of the Yb^{III} luminescence for Q-Yb. In other words, both magnetic modulation and luminescence quenching are reached by the oxidation of the protonated semiquinone into quinone.

Keywords: ytterbium; extended-tetrathiafulvalene; electro-activity; single-molecule magnet; luminescence

Figure S1. ORTEP view of the asymmetric unit in [Yb2(hfac)₆(H₂SQ)]·0.5CH₂Cl₂ (H₂SQ-Yb). Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms and CH₂Cl₂ molecule of crystallization are omitted for clarity.

Figure S2. Scan field of the frequency dependence of the in phase ($\chi_{M'}$) component of the ac magnetic susceptibility for H₂SQ-Yb (a) and Q-Yb (b).

Figure S3. Field dependence of the magnetic relaxation time of H_2SQ-Yb . The size of the dots is proportional to the fraction of the sample (from 50% at 200 Oe to 100 % at 1600 Oe).

Figure S4. Frequency dependence of the in-phase component of the magnetic susceptibility for H₂SQ-Yb measured under a DC applied magnetic field of 800 Oe in the 2-6 K temperature range.

Extended Debye model.

$$\chi_{M}' = \chi_{S} + (\chi_{T} - \chi_{S}) \frac{1 + (\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$
$$\chi_{M}'' = (\chi_{T} - \chi_{S}) \frac{(\omega\tau)^{1-\alpha} \cos\left(\alpha \frac{\pi}{2}\right)}{1 + 2(\omega\tau)^{1-\alpha} \sin\left(\alpha \frac{\pi}{2}\right) + (\omega\tau)^{2-2\alpha}}$$

With χ_T the isothermal susceptibility, χ_S the adiabatic susceptibility, τ the relaxation time and α an empiric parameter which describe the distribution of the relaxation time. For SMM with only one relaxing object α is close to zero. The extended Debye model was applied to fit simultaneously the experimental variations of χ_M' and χ_M'' with the frequency f of the oscillating field ($\omega = 2\pi f$). Typically, only the temperatures for which a maximum on the χ'' vs. f curves, have been considered. The best fitted parameters τ , α , χ_T , χ_S are listed in Table S3 with the coefficient of determination R².

Figure S5. Normalized Cole-Cole plots for H₂SQ-Yb at several temperatures between 2 and 3 K.

Figure S6. Temperature variation of the relaxation time for **H₂SQ-Yb** in the temperature range of 2-4 K with the best fitted curve with the Arrhenius law (red line). The best fit was obtained for the combination of Orbach + direct + QTM processes of relaxation ($\tau^{-1} = \tau_0^{-1} \exp(\Delta/T) + BTH^m + \tau \pi^{-1}$) with the following parameters with $\tau_0 = 8.91(53) \times 10^{-7}$ s, $\Delta = 10.1(3)$ K, and $B = 1.28(8) \times 10^{-8}$ s⁻¹ K⁻¹ Oe⁻⁴ and m = 4 (fixed) and $\tau \pi = 1.177 \times 10^{11}$ s.

Figure S7. Temperature variation of the relaxation time for H₂SQ-Yb in the temperature range of 2-4 K with the best fitted curve with the Arrhenius law (red line). The best fit was obtained for the combination of Raman + direct processes of relaxation ($\tau^{-1} = CT^n + BTH^m$) with the following parameters with B = 0 s⁻¹ K⁻¹ Oe⁻⁴ and m = 4 (fixed) and C = 2800(1328) s⁻¹ K^{2.67} with n = 2.67(27).

Figure S8. Temperature variation of the relaxation time for H₂SQ-Yb in the temperature range of 2-4 K with the best fitted curve with the Arrhenius law (red line). The best fit was obtained for the combination of Raman + direct + QTM ($\tau^1 = CT^n + BTH^m + \tau \pi^{-1}$) processes of relaxation with the following parameters with B = 0 s⁻¹ K⁻¹ Oe⁻⁴ and m = 4 (fixed) and C = 2797 s⁻¹ K^{2.67} with n = 2.67 and $\tau \pi$ = 1.256×10¹² s.

Compounds	[Yb ₂ (hfac) ₆ (H ₂ SQ)]·0.5CH ₂ Cl ₂ (H ₂ SQ-Yb)			
Formula	$C_{66.5}H_{49}Yb_2F_{36}O_{16}S_4Cl$			
$M / g.mol^{-1}$	2297.8			
Crystal system	Monoclinic			
Space group	$P2_1/c$ (N°14)			
	a = 20.4105(18) Å			
Call manamatana	b = 22.8006(19) Å			
Cell parameters	c = 18.4142(16) Å			
	$\beta = 94.556(4)^{\circ}$			
Volume / Å ³	8542.4(13)			
Z	4			
T / K	150 (2)			
2θ range /°	$5.92 \le 2\theta \le 54.97$			
pcalc / g.cm ⁻³	1.787			
μ / mm^{-1}	2.443			
Number of reflections	88911			
Independent reflections	19036			
Rint	0.0942			
$Fo^2 > 2\sigma(Fo)^2$	12361			
Number of variables	1127			
R1, ωR2	0.0536, 0.1108			

Table S1. X-ray crystallographic data for H₂SQ-Yb.

Table S2. SHAPE analysis of the coordination polyhedra around the lanthanide in H₂SQ-Yb and H₂SQ-Lu and Q-Lu.[1].

Compounds	Metal	CShM _{SAPR-8} (square antiprism D4d)	CShM _{BTPR-8} (biaugmented trigonal prism C _{2v})	CShM _{TDD-8} (triangular dodecahedron D _{2d})
U.SO Vh	Yb1	3.176	2.188	0.534
H25Q-10	Yb2	2.404	1.700	0.562
H ₂ SQ-Lu	Lu1	1.751	1.997	0.868
	Lu2	2.794	2.442	0.555
01.	Lu1	0.541	1.783	1.842
Q-Lu	Lu2	0.452	1.724	2.160

<i>T </i> K	χ_T / cm ³ mol ⁻¹	$\chi_{\rm S}$ / cm ³ mol ⁻¹	α	au / s	R ²
2	1.17703	0.13528	0.0418	5.72624×10 ⁻⁵	0.99985
2.2	1.07343	0.12506	0.03514	4.38424×10 ⁻⁵	0.99967
2.4	0.98259	0.12501	0.02111	3.45253×10 ⁻⁵	0.99978
2.6	0.91353	0.10954	0.02857	2.73988×10 ⁻⁵	0.99985
2.8	0.84966	0.10401	0.02566	2.2299×10 ⁻⁵	0.99968
3.0	0.79618	0.09982	0.02367	1.84951×10 ⁻⁵	0.99966
3.25	0.73596	0.10146	0.01587	1.51233E-5	0.99954
3.5	0.68147	0.10557	5.96747E-14	1.26781E-5	0.99956
3.75	0.64204	0.09154	0.01788	1.03494E-5	0.99938
4	0.59965	0.10048	4.99889E-16	9.09481E-6	0.99948

Table S3. Best fitted parameters (χ_T , χ_S , τ and α) with the extended Debye model for compound H₂SQ-Yb at 800 Oe in the temperature range 2-3 K.

Table S4. Principal bond lengths (in angstrom) for the X-ray structure of H₂SQ-Yb and for the DFT optimized structures H₂SQ-Lu and Q-Lu.

	RX H ₂ SQ-Yb	DFT H ₂ SQ-Lu	DFT Q-Lu
M-O _{quinone}	2.178 - 2.411	2.226 - 2.493	2.334 - 2.385
< M-O _{quinone} >	2.292	2.345	2.360
M-O _{hfac}	2.280 - 2.343	2.305 - 2.374	2.292 - 2.343
< M-O _{hfac} $>$	2.310	2.332	2.319
C=O	1.289 / 1.301	1.308 / 1.310	1.267
СОН	1.372 / 1.375	1.375 / 1.388	
M-M	21.477	21.391	21.664

Reference

1. M. Llunell, D. Casanova, J. Cirera, J. M. Bofill, P. Alemany, S. Alvarez, S. SHAPE (version 2.1), Barcelona, 2013.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).