SUPPLEMENTARY MATERIAL

Innovative three-step microwave-promoted synthesis of *N*propargyltetrahydroquinoline and 1,2,3-triazole derivatives as a potential factor Xa (FXa) inhibitors: drug design, synthesis, and biological <mark>evaluation</mark>.

TABLE OF CONTENTS

¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 17	S1
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 19	S2
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 20	S 3
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 27	S4
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 28	S5
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 29	S6
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 30	S 7
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 31	S 8
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 32	S9
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 33	S10
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 34	S11
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 35	S12
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 36	S13
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 37	S14
¹ H, ¹³ C, ¹⁹ F NMR; ESI-HRMS; FT-IR for compound 38	S15
FT-IR stacking for aniline compounds (6-9)	S16
FT-IR stacking for N-propargyl aniline compounds (11-14)	S17
FT-IR stacking for N-propargyl tetrahydroquinoline compounds (17-20)	S18
FT-IR stacking for 1H-1,2,3-triazole compounds (27,30,33,36)	S19
FT-IR stacking for 1H-1,2,3-triazole compounds (28,31,34,37)	S20
FT-IR stacking for 1H-1,2,3-triazole compounds (29,32,35,38)	S21
Table of Calculated log Pa of synthesized compounds (cont.)	S22
Reaction optimization for the synthesis of compounds 7-9	S23
Dynamic RMSD for compound 19	S24
ROCs AUC curve for method enrichment	S25
Boiled egg diagram for blood brain-barrier	S26
Crystal data and structure refinement for compound 6	S27
Crystal data and structure refinement for compound 9	S28
Crystal data and structure refinement for compound 20	S29
Dihedral bond angle difference between calculated and experimental compound 9	S30
Hydrogen bond formed in compound 9 crystal	S31
Interactions between the propargyl and carbonyl group in the crystal structure of	
compound 20	S32
Fukui functions for compound 14	S33
Fukui functions for compound 25	S34
Reaction species according to Fukui calculations	S35
Calculated thermochemical energies	S36

Comentado [FZ1]: The title was changed

S2. ¹H, ¹³C, ¹⁹F NMR; ESI-HRMS; FT-IR for compound 19

S3. ¹H, ¹³C, ¹⁹F NMR; ESI-HRMS; FT-IR for compound 20

S4. 1H, 13C, 19F NMR; ESI-HRMS; FT-IR for compound 27

9

S6. ¹H, ¹³C, ¹⁹F NMR; ESI-HRMS; FT-IR for compound 29

cm⁻¹

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 ppm

S8. 1H, 13C, 19F NMR; ESI-HRMS; FT-IR for compound 31

456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492 494 496 498 500 502 50 m/z

12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 ppm

S13. ¹H, ¹³C, ¹⁹F NMR; ESI-HRMS; FT-IR for compound 36

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 ppm

S17. FT-IR stacking for *N*-propargyl aniline compounds (11-14)

S18. FT-IR stacking for N-propargyl tetrahydroquinoline compounds (17-20)

S19. FT-IR stacking for ¹H-1,2,3-triazole compounds (27,30,33,36)

S20. FT-IR stacking for ¹H-1,2,3-triazole compounds (28,31,34,37)

S21. FT-IR stacking for ¹H-1,2,3-triazole compounds (29,32,35,38)

Compound	log Pa	Ilog P ^b	Xlog P3 ^b	Wlog P ^b	Mlog P ^b	Silicos-IT ^ь	Consensus ^b
6	0.84 ± 0.52	1.91	1.12	1.97	1.84	1.89	1.75
7	0.67 ± 0.65	2.69	1.39	1.66	1.54	1.08	1.67
8	0.35 ± 0.61	1.7	1.15	1.54	1.56	1.85	1.56
9	-0.50 ± 0.57	1.63	0.36	0.82	0.71	1.29	0.96
11	1.60 ± 0.56	2.71	1.90	2.32	2.56	2.84	2.47
12	1.42 ± 0.66	3.45	2.17	2.00	2.18	2.15	2.39
13	1.11 ± 0.63	2.22	1.93	1.88	2.3	2.79	2.22
14	0.25 ± 0.58	2.37	1.14	1.16	1.45	2.23	1.67
17	1.75 ± 0.71	3.39	1.57	1.88	2.86	3.11	2.56
18	1.26 ± 0.76	2.63	1.6	1.45	2.63	3.04	2.27
19	0.40 ± 0.73	3.12	0.8	0.73	1.82	2.48	1.79
20	2.58 ± 0.67	3.27	2.74	3.23	3.04	2.65	2.99
27	3.17 ± 0.68	3.56	3.37	3.89	3.53	3.28	3.52
28	2.63 ± 0.70	3.16	2.84	3.79	3.42	3.06	3.25
29	2.40 ± 0.87	4.19	3.01	2.92	2.68	1.95	2.95
30	3.00 ± 0.88	4.18	3.64	3.57	3.15	2.60	3.43
31	2.45 ± 0.91	4.05	3.11	3.48	3.05	2.38	3.21
32	2.09 ± 0.78	3.06	2.77	2.80	2.81	2.57	2.80
33	2.68 ± 0.80	3.34	3.40	3.45	3.31	3.21	3.34
34	2.14 ± 0.83	2.94	2.88	3.35	3.19	2.99	3.07
35	1.23 ± 0.69	3.19	1.98	2.08	2.01	2.01	2.25
36	1.83 ± 0.70	3.37	2.61	2.73	2.51	2.65	2.77
37	1.28 ± 0.74	3.11	2.08	2.64	2.39	2.43	2.53

S22. Table of calculated log P of synthesized compounds (cont.)

^alog P of synthesized compounds were calculated using ACD Labs log P predictor. ^b log P of synthesized compounds were calculated using SwissADME log P predictor

Entry	Lactam (equiv.)	Aniline (equiv.)	CuI (equiv.)	DMEDA (equiv.)	T (°C)	Time (h)	Heating source	Yield (%) ¹	Yield (%) ²	Yield (%) ³
1	1.2	1	0.5	0.5	20	96	r.t.	12.74	9.51	15.29
2	1.2	1	0.5	0.5	100	72	conventional	39.5	23.16	40.41
3	1.2	1	0.5	0.5	120	48	conventional	25.48	28.87	45.37
4	1.2	1	0.5	0.5	60	6	sonication	28.55	30.82	62.81
5	1.2	1	0.05	0.1	120	2,0	microwave	6.68	0.91	15,0
6	1.2	1	0.1	0.2	120	2,0	microwave	31.6	3.86	29.67
7	1.2	1	0.15	0.3	120	2,0	microwave	34.87	8.45	52.79
8	1.2	1	0.25	0.5	120	2,0	microwave	39.5	23.16	60.69
9	1.2	1	0.5	0.5	120	2,0	microwave	79.69	62.31	86.91
10	1.2	1	0.5	0.5	160	1.5	microwave	85.49 ⁴	73.3	88.74
11	1	1.2	0.5	0.5	160	1.5	microwave	90.0 ⁴	86.0	94.0

S23. Reaction optimization for the synthesis of compounds 7-9

 $^1\!N\text{-Boc}$ piperazinone (7), $^2\!Thiomorpholinone$ (8), $^3\!Morpholinone$ (9), $^4\!Reaction$ temperature 90 °C.

S24. Dynamic RMSD for compound 19

S25. ROCs AUC curve for method enrichment

S26. Boiled egg diagram for blood brain-barrier

S27. Crystal data and structure refinement for compound 6

Identification code	6	
Empirical formula	C11H13FN2O	
Formula weight	208.23	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2(1/n)	
Unit cell dimensions	a = 5.6811(8) Å	<i>α</i> = 90°.
	b = 13.3981(19) Å	$\beta = 97.192(5)^{\circ}$.
	c = 13.2740(18) Å	$\gamma = 90^{\circ}.$
Volume	1002.4(2) Å3	
Z	4	
Density (calculated)	1.380 Mg/m3	
Absorption coefficient	0.103 mm-1	
F(000)	440	
Crystal size	0.12 x 0.11 x 0.10 mm3	
Theta range for data collection	2.17 to 26.41°.	
Index ranges	-7<=h<=7, -16<=k<=16, -16<=	=l<=16
Reflections collected	28701	
Independent reflections	$2050 \ [R_{(int)} = 0.0472]$	
Completeness to theta = 26.41°	99.8 %	
Max. and min. transmission	0.9900 and 0.9874	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2050 / 50 / 199	
Goodness-of-fit on F ²	1.082	
Final R indices $[I>2\sigma(I)]$	$R_1 {=}\; 0.0461, wR_2 {=}\; 0.1292$	
R indices (all data)	$R_1\!\!=0.0571,wR_2=0.1376$	
Largest diff. peak and hole	0.488 and -0.262 e.Å-3	

S28. Crystal data and structure refinement for compound 9

Identification code	9	
Empirical formula	C10H11FN2O2	
Formula weight	210.21	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C2/c	
Unit cell dimensions	a = 20.2264(16) Å	α= 90°.
	b = 6.3168(5) Å	$\beta = 109.377(2)^{\circ}.$
	c = 16.1031(12) Å	$\gamma = 90^{\circ}$.
Volume	1940.9(3) Å ³	
Z	8	
Density (calculated)	1.439 Mg/m ³	
Absorption coefficient	0.114 mm ⁻¹	
F(000)	880	
Crystal size	0.27 x 0.21 x 0.13 mm ³	
Theta range for data collection	2.68 to 26.40°.	
Index ranges	-25<=h<=25, -7<=k<=7, -20<=	=1<=20
Reflections collected	27057	
Independent reflections	1991 $[R_{(int)} = 0.0389]$	
Completeness to theta = 26.40°	99.9 %	
Max. and min. transmission	0.9858 and 0.9698	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1991 / 0 / 180	
Goodness-of-fit on F ²	0.789	
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0343, wR_2 = 0.0944$	
R indices (all data)	$R_1 \!\!= 0.0394, wR_2 \!= 0.0995$	
Largest diff. peak and hole	0.231 and -0.186 e.Å ⁻³	

S29. Crystal data and structure refinement for compound 20

Identification code	20	
Empirical formula	C21H21FN2O3	
Formula weight	368.40	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 8.7304(9) Å	$\alpha = 77.885(3)^{\circ}.$
	b = 9.6126(10) Å	$\beta = 71.698(3)^{\circ}$.
	c = 11.8765(12) Å	$\gamma = 70.361(3)^{\circ}$.
Volume	885.15(16) Å ³	
Z	2	
Density (calculated)	1.382 Mg/m ³	
Absorption coefficient	0.100 mm ⁻¹	
F(000)	388	
Crystal size	$0.15 \ x \ 0.13 \ x \ 0.10 \ mm^3$	
Theta range for data collection	1.82 to 26.46°.	
Index ranges	-10<=h<=10, -11<=k<=12, -14	<=l<=14
Reflections collected	32341	
Independent reflections	$3639 [R_{(int)} = 0.0429]$	
Completeness to theta = 26.46°	99.8 %	
Max. and min. transmission	0.9902 and 0.9851	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3639 / 0 / 244	
Goodness-of-fit on F ²	1.116	
Final R indices $[I>2\sigma(I)]$	R1 = 0.0518, $wR2 = 0.1552$	
R indices (all data)	R1 = 0.0619, wR2 = 0.1666	
Largest diff. peak and hole	0.864 and -0.299 e.Å ⁻³	

S30. Dihedral bond angle difference between calculated and experimental compound 9.

S31. Hydrogen bond formed in compound 9 crystal

S32. Interactions between the propargyl and the carbonyl group in the crystal structure of compound 20

Α	tom	Noutral	Cation Arrian		c	6	(0	
$\mathbf{N}^{\mathbf{o}}$	Type	Neutral	Cation	Anion	J-	<i>J</i> +	J°	Δj
1	S	0.258944	0.353466	0.137422	0.094522	0.121522	0.108022	0.027000
2	С	-0.638921	-0.624136	-0.604985	0.014785	0.033936	0.024361	0.019151
3	С	-0.143918	-0.133043	-0.117730	0.010875	0.026188	0.018532	0.015313
4	N	-0.687981	-0.663278	-0.661368	0.024703	0.026613	0.025658	0.001910
5	С	0.576118	0.595208	0.485268	0.019090	0.090850	0.054970	0.071760
6	С	-0.748307	-0.714594	-0.732123	0.033713	0.016184	0.024949	-0.017529
7	С	0.351941	0.188277	0.322766	0.163664	0.029175	0.096420	-0.134489
8	С	-0.244880	-0.033686	-0.295819	0.211194	0.050939	0.131067	-0.160255
9	С	0.258751	0.231914	0.240765	0.026837	0.017986	0.022412	-0.008851
10	С	0.229809	0.364839	0.182387	0.135030	0.047422	0.091226	-0.087608
11	С	-0.121101	-0.123262	-0.151056	0.002161	0.029955	0.016058	0.027794
12	С	-0.112750	-0.033566	-0.114877	0.079184	0.002127	0.040656	-0.077057
13	F	-0.315098	-0.302832	-0.345970	0.012266	0.030872	0.021569	0.018606
14	Ν	-0.663792	-0.689837	-0.673497	0.026045	0.009705	0.017875	-0.016340
15	С	-0.208653	-0.175108	-0.194225	0.033545	0.014428	0.023987	-0.019117
16	0	-0.389878	-0.357438	-0.498669	0.032440	0.108791	0.070616	0.076351
17	С	0.229584	0.156303	0.257936	0.073281	0.028352	0.050817	-0.044929
18	С	-0.526177	-0.432097	-0.591886	0.094080	0.065709	0.079895	-0.028371
19	Н	0.224413	0.246404	0.175686	0.021991	0.048727	0.035359	0.026736
20	Н	0.230835	0.256244	0.185958	0.025409	0.044877	0.035143	0.019468
21	Н	0.202515	0.221628	0.167322	0.019113	0.035193	0.027153	0.016080
22	Н	0.225757	0.242181	0.168567	0.016424	0.057190	0.036807	0.040766
23	н	0.243868	0.280782	0.168761	0.036914	0.075107	0.056011	0.038193
24	Н	0.256761	0.279102	0.206292	0.022341	0.050469	0.036405	0.028128
25	Н	0.185274	0.231223	0.140703	0.045949	0.044571	0.045260	-0.001378
26	Н	0.168206	0.221657	0.121542	0.053451	0.046664	0.050058	-0.006787
27	Н	0.186011	0.203863	0.152611	0.017852	0.033400	0.025626	0.015548
28	Н	0.315077	0.404017	0.289489	0.088940	0.025588	0.057264	-0.063352
29	Н	0.210411	0.271672	0.174992	0.061261	0.035419	0.048340	-0.025842
30	Н	0.225779	0.276459	0.208341	0.050680	0.017438	0.034059	-0.033242
31	Н	0.221403	0.257637	0.195397	0.036234	0.026006	0.031120	-0.010228

S33. Fukui functions for compound 14

Α	tom	Neutral	Cation	A	c	<i>c</i> .	60	• 6
N⁰	Type	Neutrai	Cation	Anion	J-	<i>J</i> +	J	Δj
1	С	-0.080679	-0.024180	-0.113052	0.056499	0.032373	0.044436	-0.024126
2	С	-0.149657	-0.117282	-0.162486	0.032375	0.012829	0.022602	-0.019546
3	С	-0.138827	-0.051506	-0.202111	0.087321	0.063284	0.075303	-0.024037
4	С	-0.149657	-0.117282	-0.162486	0.032375	0.012829	0.022602	-0.019546
5	С	-0.080679	-0.024180	-0.113052	0.056499	0.032373	0.044436	-0.024126
6	С	0.025736	0.084568	0.023830	0.058832	0.001906	0.030369	-0.056926
7	Ν	-0.166497	-0.074790	-0.242773	0.091707	0.076276	0.083992	-0.015431
8	Ν	0.017948	0.037180	-0.122350	0.019232	0.140298	0.079765	0.121066
9	Ν	-0.071665	0.080270	-0.295994	0.151935	0.224329	0.188132	0.072394
10	Η	0.160865	0.240213	0.076127	0.079348	0.084738	0.082043	0.005390
11	Н	0.158119	0.239545	0.081440	0.081426	0.076679	0.079053	-0.004747
12	Н	0.156008	0.247687	0.075340	0.091679	0.080668	0.086174	-0.011011
13	Н	0.158119	0.239545	0.081440	0.081426	0.076679	0.079053	-0.004747
14	Н	0.160865	0.240213	0.076127	0.079348	0.084738	0.082043	0.005390

S34. Fukui functions for compound 25

S35. Reaction species according to Fukui calculations

S36. Calculated thermochemical energies

Compound	E (hartree)	E (eV)	E (kcal/mol)	E (kJ/mol)	∆H (kcal/mol)	∆H (kJ/mol)
12	-826.73	-22496.89	-518779.39	-2170571.43	-	-
13	-1188.45	-32340.04	-745762.91	-3120269.84	-	-
14	-1185.62	-32263.15	-743989.80	-3112851.15	-	-
15	-862.63	-23474.02	-541312.09	-2264848.18	-	-
29	-1222.51	-33266.98	-767138.05	-3209703.34	-61.76	-258.39
32	-1584.23	-43110.13	-994121.74	-4159402.43	-61.92	-259.07
35	-1581.41	-43033.25	-992348.76	-4151984.31	-62.06	-259.64
38	-1258.42	-34244.11	-789670.70	-3303979.91	-61.71	-258.22
30	-1682.12	-45773.94	-1055549.11	-4416414.36	-61.58	-257.65
33	-2043.84	-55617.09	-1282532.70	-5366113.04	-61.64	-257.92
36	-2041.02	-55540.20	-1280759.71	-5358694.86	-61.77	-258.43
39	-1718.03	-46751.06	-1078081.71	-4510690.70	-61.48	-257.23
31	-1321.76	-35967.86	-829420.50	-3470292.93	-61.56	-257.57
34	-1683.49	-45811.01	-1056404.14	-4419991.81	-61.67	-258.04
37	-1680.66	-45734.13	-1054631.13	-4412573.55	-61.78	-258.47
40	-1357.67	-36944.99	-851953.11	-3564569.31	-61.47	-257.20
25	-395.69	-10767.41	-248296.90	-1038873.52	-	-
26	-494.94	-13468.30	-310579.55	-1299463.93	-	-
27	-855.30	-23274.37	-536708.14	-2245585.28	-	-